
COLLOQU IUM MATHEMAT ICUM
VOL. 138 2015 NO. 2

ON CO-GORENSTEIN MODULES, MINIMAL FLAT RESOLUTIONS
AND DUAL BASS NUMBERS

BY

ZAHRA HEIDARIAN and HOSSEIN ZAKERI (Tehran)

Abstract. The dual of a Gorenstein module is called a co-Gorenstein module, de-
fined by Lingguang Li. In this paper, we prove that if R is a local U -ring and M is
an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex
HomR̂(C(U , R̂),M) is a minimal flat resolution for M when we choose a suitable triangular

subset U on R̂. Moreover we characterize the co-Gorenstein modules over a local U -ring
and Cohen–Macaulay local U -ring.

1. Introduction. Throughout this paper, R is a commutative Noethe-
rian ring and M is an R-module. If R is a local ring with maximal ideal m
and residue field k = R/m, then R̂ denotes the m-adic completion of R and
E = ER(k) denotes the injective hull of k.

In [1], using the minimal injective resolution of M , the Bass numbers
µi(p,M) are defined, and it is proved that µi(p,M) = dimk(p) ExtiRp

(k(p),Mp)
for all i ≥ 0 and all prime ideals p of R.

In [9], Enochs and Xu define the dual Bass numbers πi(p,M) by using
the minimal flat resolution of M and they proved that, for all i ≥ 0 and all
prime ideals p of R,

(1) πi(p,M) = dimk(p) Tor
Rp

i (k(p),HomR(Rp,M))

whenever M is a cotorsion R-module.
In [29], Tang and the second named author introduce the concept of

co-Cohen–Macaulay modules over local rings and study their properties.
In [11]–[12], Li studies the vanishing properties of dual Bass numbers and
proves that the colocalization of co-Cohen–Macaulay modules preserves the
co-Cohen–Macaulayness under certain conditions. Moreover, Li [11] defines
co-Gorenstein modules by vanishing properties of the dual Bass numbers of
modules.

Let us mention here that the Bass numbers, dual Bass numbers and
the colocalization technique are successfully used in the study of coalge-
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bras over a field in [4], [13], [24] and [25]. In the non-commutative context,
Cohen–Macaulay modules are usually studied in relation to tame representa-
tion type in the integral representation theory, vector bundles, and classical
orders (see [7], [26] and [27]).

The Cousin complex CR(M) was introduced by Sharp [19]. If M is a
finitely generated R-module, then M is a Cohen–Macaulay R-module if and
only if the Cousin complex CR(M) is exact (see [20, Theorem 2.4]). More-
over, by [20, Section 3], M is a Gorenstein R-module if and only if CR(M)
provides a minimal injective resolution for M . On the other hand, Sharp
and the second author [23] introduced the modules of generated fractions
as a generalization of modules of fractions. Let U = {Ui : i ∈ N} be any
chain of triangular subsets on R. Then one can construct an associated
complex C(U , R) which consists of generalized fractions modules. Further-
more, in [29, Theorem 3.10], Tang and the second author have proved that
if we choose a suitable triangular subset U on R, then M is a co-Cohen–
Macaulay R-module with respect to U if and only if the induced complex
HomR(C(U , R),M) is exact.

The following conjecture is discussed by Li [11]:

Conjecture 1.1. Let R be a U -ring and M be an Artinian R-module.
One can choose a suitable chain U of triangular subsets on R such that M
is a co-Gorenstein R-module with respect to U if and only if the induced
complex HomR(C(U , R),M) is a minimal flat resolution of M .

In Section 3, we prove the conjecture under certain conditions (see Theo-
rem 3.9). We also characterize co-Gorenstein modules by means of the local
cohomology module HdimR

m (R) over a Cohen–Macaulay U -ring R.

2. Preliminaries and notation. In [14], Melkersson and Schenzel in-
troduced the colocalization of modules as follows. Let R be a ring, S be a
multiplicatively closed subset of R and M be an R-module. The RS-module
HomR(RS ,M) is called the colocalization of M with respect to S. As a dual
notion of SuppR(M) = {p ∈ Spec(R) : Mp 6= 0}, the co-support of M is
defined to be cosuppR(M) = {p ∈ Spec(R) : HomR(Rp,M) 6= 0}. Also in
[14], the codimension of M is defined to be codimRM = sup{dim(R/p) :
p ∈ cosuppR(M)}.

The Krull dimension KdimRM of an Artinian module M , introduced
by Roberts [17] is defined inductively as follows. When M = 0, we set
KdimRM = −1. Then by induction, for any integer α ≥ 0, we set KdimRM
= α if (i) KdimRM < α is false, and (ii) for any ascending chain M0 ⊆M1 ⊆
· · · of submodules of M there exists an integer n such that KdimR(Mi+1/Mi)
< α for all i > n.
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Note that if (R,m) is local and M 6= 0 is an Artinian R-module, then by
[17, Theorem 6] we have

KdimRM = inf
{
i ∈ Z : there exist x1, . . . , xi ∈ m with

lR(0 :M (x1, . . . , xi)) <∞
}
.

We also recall that AnnR(M) = {x ∈ R : xM = 0} and V(AnnR(M)) =
{p ∈ Spec(R) : AnnR(M) ⊂ p}.

Let x1, . . . , xn be a sequence of elements of R. We say that x1, . . . , xn is
a poor M -cosequence if

0 :M (x1, . . . , xi−1)
xi−→ 0 :M (x1, . . . , xi−1)

is surjective for i = 1, . . . , n; it is an M -cosequence if, in addition, we have
0 :M (x1, . . . , xn) 6= 0. For an ideal I of R with 0 :M I 6= 0, the cograde of M
with respect to I, denoted by cogradeIM , is the length of a maximal M -
cosequence in I. Notice that the lengths of any two maximal M -cosequences
in I are equal.

For an element p ∈ cosuppR(M) we define the co-height of p with respect
to M , written cohtM p, by

cohtM p = sup
{
n ∈ Z : there exists a chain p0 ( · · · ( pn of length n

such that pi ∈ cosuppR(M) for all 0 ≤ i ≤ n
}

.

It is obvious that cohtM p = codimRp HomR(Rp,M).

A property of finitely generated modules is that AnnR(M/pM) = p
for any p ∈ V(AnnR(M)). However the dual of this property, that is,
AnnR (0 :M p) = p for any p ∈ V(AnnR(M)), is not true for any Artinian
module. For example, let (R,m) be a Noetherian local domain of dimension 2

such that R̂, the m–adic completion of R, has an associated prime q of dimen-
sion 1. Then, by [6], the ArtinianR-moduleH1

m(R) satisfies AnnR(0 :H1
m(R) p)

= p for no p ∈ V(AnnR(H1
m(R))).

Proposition 2.1 ([5, Proposition 2.1]). Let (R,m) be a Noetherian local
ring and M be an Artinian R-module. If one of the following two conditions
is satisfied:

(i) R is complete with respect to the m-adic topology,
(ii) M contains a submodule isomorphic to the injective hull of R/m,

then AnnR(0 :M p) = p for any p ∈ V(AnnR(M)).

Definition 2.2. A commutative Noetherian ring R is called a U -ring if
AnnR(0 :M p) = p for any Artinian R-module M and any p ∈ V(AnnR(M)).

Notice that, in view of the above proposition, any complete local ring is
a U -ring.
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Remark 2.3. Let R be a commutative Noetherian ring.

(i) Recall that an R-module I is faithfully injective if it is injective and
HomR(M, I) = 0 only if M = 0. It is well known that if (R,m) is
local, then E = E(R/m) is faithfully injective.

(ii) If (R,m) is local, then any Artinian R-module M has a natural

R̂-module structure and, by [10, Lemma 1.14], M ⊗R R̂ ∼= M . Here

R̂ is the completion of R in the m-adic topology.
(iii) By [30, Section 3.3], all Artinian R-modules are cotorsion and if M

is an Artinian R-module then, by [30, Proposition 5.2.8],

πi(p,M) = dimk(p) Tor
Rp

i (k(p),HomR(Rp,M))

for all p ∈ cosuppR(M) and i ≥ 0.

One can easily prove the following two lemmas.

Lemma 2.4. Let (R,m) be a local ring and M be an Artinian R-module.

Let x1, . . . , xn be a sequence of elements of R or R̂. Then x1, . . . , xn is an
M -cosequence if and only if x1, . . . , xn is a Hom

R̂
(M,E)-sequence.

Lemma 2.5 ([12, Lemma 2.6]). Let R be a Noetherian ring and M be an
Artinian R-module such that AnnR(0 :M p) = p for any p ∈ V(AnnRM).
Then

KdimRM = codimRM.

Remark 2.6. Let S be a ring. Then with the notation of [18] the fol-
lowing statements hold:

(i) Consider the triple (RA, RBS , CS), where A is finitely generated and
C is injective. Then, by [18, Theorem 9.51], there is an isomorphism,

TorRi (A,HomS(B,C)) ∼= HomS(ExtiR(A,B), C)

for any integer i ≥ 0.
(ii) If the R-module B in the triple (RA, SBR, SC) is projective, then,

by [18, Exercise 9.21], there exists an isomorphism

ExtiS(B ⊗R A,C) ∼= ExtiR(A,HomS(B,C))

for any i ≥ 0.

Lemma 2.7. Let (R,m) be a local U -ring and M be an Artinian R-
module. Then

codimRM ≥ dim
R̂

Hom
R̂

(M,E).
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Proof. Let x1, . . . , xi be a sequence of elements of R. Then by Remark
2.3 and Matlis duality,

0 :M (x1, . . . , xi) ∼= 0 :M (x1, . . . , xi)⊗R R̂ ∼= Hom
R̂

(R̂/(x1, . . . , xi)R̂,M)

∼= Hom
R̂

(
R̂/(x1, . . . , xi)R̂,Hom

R̂
(Hom

R̂
(M,E), E)

)
∼= Hom

R̂

(
R̂/(x1, . . . , xi)R̂⊗Hom

R̂
(M,E), E

)
∼= Hom

R̂

(
Hom

R̂
(M,E)/(x1, . . . , xi) Hom

R̂
(M,E), E

)
.

Hence, in view of Lemma 2.5 and [3, p. 413], we have

codimRM ≥ dim
R̂

Hom
R̂

(M,E).

Proposition 2.8. Let (R,m) be a local ring and M be an Artinian
R-module. Then

(i) Supp
R̂

(Hom
R̂

(M,E)) = cosupp
R̂

(M).

(ii) Let i ≥ 0 and p ∈ Spec(R̂). The dual Bass number πi(p,M) is zero
if and only if the Bass number µi(p,Hom

R̂
(M,E)) is zero.

Proof. (i) Let p ∈ Spec(R̂). We have the following isomorphisms:

Hom
R̂

(Hom
R̂

(M,E)p, E) ∼= Hom
R̂

(Hom
R̂

(M,E)⊗
R̂
R̂p, E)

∼= Hom
R̂

(
R̂p,Hom

R̂
(Hom

R̂
(M,E), E)

) ∼= Hom
R̂

(R̂p,M).

Therefore the result is a consequence of Remark 2.3.
(ii) Let p ∈ Spec(R̂) and i ≥ 0. Then (i) and Remark 2.6(i) yield

Tor
R̂p

i (k(p),Hom
R̂

(R̂p, E)) ∼= Tor
R̂p

i

(
k(p),Hom

R̂
(Hom

R̂
(M,E)p, E)

)
∼= Hom

R̂

(
Exti

R̂p
(k(p), (Hom

R̂
(M,E))p, E)

)
.

Hence the assertion follows by definitions.

Remark 2.9. In the situation of Proposition 2.8, the arguments used in
the proof also show that

πi(m,M) = 0 if and only if µi(mR̂,Hom
R̂

(M,E)) = 0.

We recall from [29, Definition 2.12] the following:

Definition 2.10. Assume that (R,m) is a local ring and that M is a
non-zero Artinian R-module. Then M is called a co-Cohen–Macaulay mod-
ule if

cogrademM = KdimRM.

Following [15, p. 420], we denote by U = {Ui : i ∈ N} a chain of triangular
subsets on R. Then each Ui leads to a module of generalized fractions U−ii R
(see [23]) and we can, in fact, arrange these modules into the complex

C(U , R) : 0→ R→ U−11 R→ U−22 R→ · · · → U−ii R
di−→ U−i−1i+1 R→ · · · .
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Note that the following theorem, proved in [29], is concerned with the
exactness of the induced complex HomR(C(U , R),M).

Theorem 2.11. Let M be an Artinian R-module. Then in the above
notation, HomR(C(U , R),M) is exact if and only if, for all n ∈ N, each
element of Un is a poor M -cosequence in the sense of [29, p. 2175].

Proof. See [29, Theorem 3.3].

3. Co-Cohen–Macaulay and co-Gorenstein modules. Let M be
a non-zero finitely generated R-module. Following [20, Theorem 3.6], M is
defined to be Gorenstein if, for all p ∈ SuppR(M), µi(p,M) is zero if and
only if dimRp Mp 6= i.

Next we recall the definitions of dual of a Gorenstein module introduced
in [11].

Definition 3.1. Let R be a Noetherian ring and M be an R-module.
M is called a co-Gorenstein R-module if has the following property: the
dual Bass number πi(p,M) is non-zero if and only if i = cohtM p for any
p ∈ cosuppR(M).

Proposition 3.2. Let (R,m) be a Noetherian local ring. A Noetherian
R-module M is a Gorenstein R-module if and only if HomR(M,E) is a
co-Gorenstein R-module.

Proof. By [10, Lemma 1.15], M is a Noetherian R-module if and only
if HomR(M,E) is an Artinian R-module. By Remark 2.6, there exists an
isomorphism

Tor
Rp

i

(
k(p),HomR(Rp,HomR(M,E))

) ∼= HomR

(
ExtiRp

(k(p),Mp), E
)
.

Hence the result follows from Remark 2.3(iii) and Definition 3.1.

The following two propositions, which establish characterizations of
co-Gorenstein modules, are proved in [11].

Proposition 3.3. Let R be a U -ring and M be an Artinian R-module.
The following conditions are equivalent:

(i) M is a co-Gorenstein R-module.
(ii) HomR(Rp,M) is a co-GorensteinRp-module for any p∈cosuppR(M).

(iii) HomR(Rm,M) is a co-Gorenstein Rm-module for any maximal ideal
m in cosuppR(M).

(iv) πi(m,M) 6= 0 if and only if i = cohtM m for any maximal ideal m
in cosuppR(M).

Proposition 3.4. Let R be a local U -ring and M be an Artinian R-
module. Then the following conditions are equivalent:

(i) M is a co-Gorenstein R-module.
(ii) M is a co-Cohen–Macaulay R-module and codimRM = flatdimRM.
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Proposition 3.5. Let (R,m) be a local U -ring and M be an Artinian
R-module. Then M is a co-Gorenstein R-module if and only if Hom

R̂
(M,E)

is a Gorenstein R̂-module.

Proof. (⇒) Let M be co-Gorenstein. By Lemmas 2.4 and 2.7, we have

cogrademM ≤ depth
R̂

Hom
R̂

(M,E) ≤ dim
R̂

Hom
R̂

(M,E) ≤ codimRM.

On the other hand, by Proposition 3.4,M is a co-Cohen–MacaulayR-module
and codimRM = flatdimRM . Let codimRM = n. In view of Remark 2.3(ii),

for M regarded as an R̂-module, there exists a flat resolution of length n,

0→ Fn → · · · → F1 → F0 →M → 0.

By [8, Theorem 3.2.9], applying the exact functor Hom
R̂

(−, E), we obtain
the injective resolution

0→ Hom
R̂

(M,E)→ Hom
R̂

(F0, E)→ · · · → Hom
R̂

(Fn, E)→ 0.

Therefore inj.dim
R̂

Hom
R̂

(M,E) ≤ n. On the other hand, Hom
R̂

(M,E) is a

finitely generated R̂-module. So, [3, Theorem 3.1.17] yields

n = codimRM = dim
R̂

Hom
R̂

(M,E) ≤ inj.dim
R̂

Hom
R̂

(M,E) ≤ n.
Hence

n = cogrademM = codimRM,

and finally we obtain

dim
R̂

Hom
R̂

(M,E) = depth
R̂

Hom
R̂

(M,E)

= inj.dim
R̂

Hom
R̂

(M,E) = depth R̂.

Consequently, by [20, Theorem 3.11], Hom
R̂

(M,E) is a Gorenstein R̂-module.

(⇐) By Remark 2.9, µi(mR̂,Hom
R̂

(M,E)) = 0 if and only if πi(m,M)

= 0 for all i ≥ 0. Since Hom
R̂

(M,E) is a Gorenstein R̂-module, we have

inj.dim
R̂

Hom
R̂

(M,E) = htHom
R̂
(M,E)mR̂ = n

for some integer n. Let

0→ Hom
R̂

(M,E)→ E0 → E1 → · · · → En → 0

be an injective resolution for Hom
R̂

(M,E). By [8, Theorem 3.2.16],

Hom
R̂

(Ei, E) is a flat R̂-module for all 0 ≤ i ≤ n. Therefore we have the
following flat resolution for M :

0→ Hom
R̂

(En, E)→ · · · → Hom
R̂

(E1, E)→ Hom
R̂

(E0, E)→M → 0.

Hence flatdimRM ≤ n.
On the other hand, by [12, Corollary 5.11], codimRM ≤ flatdimRM ≤ n.

Thus by Lemma 2.7, cohtM m = htHom
R̂
(M,E)mR̂. Hence the result follows

from Remark 2.9 and Proposition 3.3.
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Corollary 3.6. Let R be a local U -ring and M be a co-Gorenstein
R-module. Then AnnR(M) = 0, R is a Cohen–Macaulay ring and dimR =
codimM = flatdimRM.

Proof. Apply [20, Theorem 4.12], [2, Remark 10.2.2(ii)] and Proposi-
tion 3.5.

Proposition 3.7. Let (R,m) be a local U -ring and M be an Artinian
R-module. Then M is a co-Gorenstein R-module if and only if M is a co-
Gorenstein R̂-module.

Proof. (⇒) Let M be a co-Gorenstein R-module. Then by Propositions

2.8(i) and 3.5, Hom
R̂

(M,E) is a Gorenstein R̂-module and

Spec(R̂) = Supp
R̂

(Hom
R̂

(M,E)) = cosupp
R̂

(M).

Hence the result follows from Proposition 2.8(ii) and Definition 3.1.

(⇐) Let M be a co-Gorenstein R̂-module. Then by definition we have
πi(p,M) 6= 0 if and only if ht p = i for any i ≥ 0 and any p ∈ cosupp

R̂
(M).

Therefore by Proposition 2.8(ii), µi(p,Hom
R̂

(M,E)) 6= 0 if and only if
ht p = i, for any i ≥ 0 and any p ∈ cosupp

R̂
(M) = Supp

R̂
(Hom

R̂
(M,E)).

Consequently, by [20, Theorem 3.11],Hom
R̂

(M,E) is a Gorenstein R̂-module,
and by Proposition 3.5, M is a co-Gorenstein R-module.

Now we recall the notion of the Cousin complex, due to Sharp [19].

Definition 3.8. Let (R,m) be a Noetherian local ring and M be an
R-module.

(a) A filtration of Spec(R) is a descending sequence F = (Fi)i≥0 of
subsets of Spec(R) with the property that for every i ≥ 0, each
member of ∂Fi = Fi \ Fi+1 is a minimal member of Fi with respect
to inclusion. We say that the filtration F admits an R-module M if
SuppR(M) ⊆ F0.

(b) Let F = (Fi)i≥0 be a filtration of Spec(R) which admits an R-mod-
ule M . An obvious modification of the construction given in [19, §2]
defines the complex

C(F ,M) : 0→M
d−1

−−→M0 d0−→M1 → · · · →M i di−→Mi+1 → · · · ,

called the Cousin complex for M with respect to F , where M0 =⊕
p∈∂F0

Mp and M i =
⊕

p∈∂Fi
(Coker di−2)p for all i > 0; for m ∈M

and p ∈ ∂F0, the component of d1(m) in Mp is m/1; and for i > 0,
x ∈M i−1 and q ∈ ∂Fi, the component of di−1(x) in (Coker di−2)q is
π(x)/1, where π : M i−1 → Coker di−2 is the canonical epimorphism.
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(c) If M is an R-module then H(M) = (Hi)i≥0 denotes the M -height fil-
tration of Spec(R), defined by Hi = {p ∈ SuppR(M) : htM p ≥ i} for
i ≥ 0. We denote by C(M) the Cousin complex for M with respect
to H(M).

(d) Denote by C(D(R),M) the Cousin complex of M with respect to the
dimension filtrationD(R) = (Di)i≥0 of the spectrum of a local ringR,
where Di = {p ∈ Spec(R) : dim(R/p)≤ dimR− i} for all i ≥ 0.

Now we state the main result of this section:

Theorem 3.9. Let R be a local U -ring with dimR = d and M be an
Artinian R-module. Then M is a co-Gorenstein R-module if and only if
Hom

R̂
(C(U , R̂),M) is a minimal flat resolution of M over the ring R̂, where

U = {Un : n ∈ N} and Un = {(x1, . . . , xn) : there exists j ≥ 0 such that

{x1, . . . , xj} is a subset of a system of parameters for R̂, and xj+1 = xj+2 =
· · · = xn = 1}.

Proof. (⇒) Let M be a co-Gorenstein R-module. Then, by Proposition

3.5, Hom
R̂

(M,E) is a Gorenstein R̂-module. Hence, by [20, Theorem 4.12],

Ann
R̂

(Hom
R̂

(M,E)) = 0,

so that Supp
R̂

(Hom
R̂

(M,E)) = Spec(R̂). By Corollary 3.6, R̂ is Cohen–
Macaulay and, by [22, Theorem 1.7], we have

C
R̂

(R̂)⊗Hom
R̂

(M,E) ∼= CR̂(Hom
R̂

(M,E)),

where C
R̂

(R̂) and C
R̂

(Hom
R̂

(M,E)) are Cousin complexes of, respectively,

R̂ and Hom
R̂

(M,E) with respect to the height filtration. Notice that in this

case ht p = htHom
R̂
(M,E) p for all p ∈ Spec(R̂).

Since Hom
R̂

(M,E) is Gorenstein, C
R̂

(Hom
R̂

(M,E)) is a minimal injec-
tive resolution for Hom

R̂
(M,E) (see [20, §3]). Now, applying the exact func-

tor Hom
R̂

(−, E) on C
R̂

(Hom
R̂

(M,E)), we get the following isomorphisms of
complexes:

Hom
R̂

(
C
R̂

(Hom
R̂

(M,E)), E
) ∼= Hom

R̂

(
C
R̂

(R̂)⊗Hom
R̂

(M,E), E
)

∼= Hom
R̂

(
C
R̂

(R̂),Hom
R̂

(Hom
R̂

(M,E), E)
) ∼= Hom

R̂
(C
R̂

(R̂),M).

Therefore the complex Hom
R̂

(C
R̂

(R̂),M) is exact.

On the other hand, since C
R̂

(Hom
R̂

(M,E)) is a minimal injective

resolution of the Gorenstein R̂-module Hom
R̂

(M,E), the ith term

Hom
R̂

(
⊕

ht p=i(Coker di−2)p, E) of Hom
R̂

(C
R̂

(Hom
R̂

(M,E)), E) is a flat pre-

cover of Im di for all i ≥ 0, where di = Hom
R̂

(di−1, E) and di−1 is the ith dif-
ferentiation of the Cousin complex C

R̂
(Hom

R̂
(M,E)). Therefore

Hom
R̂

(C
R̂

(Hom
R̂

(M,E)), E) is a flat resolution for M as an R̂-module. Since
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⊕
ht p=i(Coker di−2)p is an injective R̂-module, [20, Theorem 3.11] yields⊕

ht p=i

(Coker di−2)p ∼=
⊕
ht p=i

µi
(
p,Hom

R̂
(M,E)

)
E(R̂/p).

Hence we derive the isomorphism

Hom
R̂

(⊕
ht p=i

(Coker di−2)p, E
)
∼=
∏

ht p=i

Hom
R̂

(
E(R̂/p), E

)µi(p,Hom
R̂
(M,E))

.

Since

Hom
R̂

(E(R̂/p), E) ∼= Hom
R̂

(E(R̂/p)⊗
R̂

R̂p, E)

∼= Hom
R̂

(
E(R̂/p),Hom

R̂
(R̂p, E)

)
and Hom

R̂
(R̂p, E) is an R̂p-injective module, we see that Hom

R̂
(R̂p, E) ∼=⊕

q⊆p γ(q)E
R̂

(R̂/q), where γ(q) ∈ N ∪ {0}. We set Hom
R̂

(R̂p, E) ∼= A ⊕ B,

where A =
⊕

q=pER̂(R̂/q) and B =
⊕

q6=p, q⊂pER̂(R̂/q).

Note that if q 6= p and q ⊂ p, then Hom
R̂

(E(R̂/p), E(R̂/q)) = 0 and

therefore Hom
R̂

(E(R̂/p),
∏

q⊂p, q 6=pE(R̂/q)) = 0. Since B is a direct sum-

mand of
∏

q⊂p, q6=pE(R̂/q), it follows that Hom
R̂

(E(R̂/p), B) = 0, and hence

Hom
R̂

(E(R̂/p), E) ∼= Hom
R̂

(E(R̂/p), A) ∼= Hom
R̂

(E(R̂/p), E(R̂/p)X)

for some set X. Since µi(p,Hom
R̂

(M,E)) is finite, for each prime ideal p

of R̂ with ht p = i there exists a set Xp such that

Hom
R̂

(E(R̂/p), E)µ
i(p,Hom

R̂
(M,E)) ∼= Hom

R̂
(E(R̂/p), E(R̂/p)Xp) = Tp.

Consequently, we get an isomorphism Hom
R̂

(
⊕

ht p=i(Coker di−2)p, E) ∼=∏
ht p=i Tp.

Hence, using [30, Theorem 4.1.15 and Proposition 3.1.2], we conclude
that, for all i ≥ 0, the modules Hom

R̂
(
⊕

ht p=i(Coker di−2)p, E) and Im di
are cotorsion. Therefore, by [30, Lemma 5.2.6] and the above arguments,
Hom

R̂
(
⊕

ht p=i(Coker di−2)p, E) is a flat cover of Im di for any i ≥ 0.

So, by [30, Definition 5.2.1], the complex Hom
R̂

(C
R̂

(Hom
R̂

(M,E)), E)

is a minimal flat resolution of M , viewed as an R̂-module. Consequently,
by the first part of the proof, Hom

R̂
(C
R̂

(R̂),M) is a minimal flat resolution

of M , viewed as an R̂-module.

On the other hand, since Supp
R̂

(Hom
R̂

(M,E)) = Spec(R̂) and R̂ is

Cohen–Macaulay, we have ht p+dim(R̂/p) = dim R̂ = dim Hom
R̂

(M,E) for

all prime ideals p of R. Hence ht p ≥ i if and only if dim(R̂/p) ≤ dim R̂− i;
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so C
R̂

(R̂) ∼= CR̂(D(R̂), R̂). Note that, by [16, Example 3.8], C
R̂

(D(R̂), R̂) ∼=
C
R̂

(V, R̂), where V = {Vi : i ∈ N} and

Vi =
{

(v1, . . . , vi) : ∀j = 1, . . . , i,

j∑
k=1

R̂vk * p for all p ∈ Spec(R̂)

for which dim(R̂/p) = dim R̂− (i− 1)
}
.

Since R̂ is Cohen–Macaulay, it is easy to see that the R̂-modules V −ii R̂

and U−ii R̂ are isomorphic for all i ≥ 1. Therefore by [16, Examples 3.7 and
3.8] we have the isomorphisms of complexes

C
R̂

(D(R̂), R̂) ∼= CR̂(R̂) ∼= CR̂(V, R̂) ∼= CR̂(U , R̂).

It follows that Hom
R̂

(C
R̂

(U , R̂),M) is a minimal flat resolution of M , viewed

as an R̂-module.

(⇐) Let Hom
R̂

(C
R̂

(U , R̂),M) be a minimal flat resolution for M , viewed

as an R̂-module. Then flatdim
R̂
M = dim R̂ = d and, by [29, Theorem 3.3

and 3.10], M is co-Cohen–Macaulay and, for all i ≥ 1, each element of Ui is a
poor M -cosequence. So, by the same argument as in the proof of Lemma 2.7,
we get

dim R̂ = d ≤ codepth
R̂
M = Kdim

R̂
M = dim

R̂
Hom

R̂
(M,E) ≤ dim R̂.

Hence, by Propositions 3.4 and 3.7, M is a co-Gorenstein R-module.

Lemma 3.10. Let R be a local U -ring and M be a non-zero Artinian R-
module. If M is co-Gorenstein R-module then a sequence x = {x1, . . . , xn}
of elements of R is an R-sequence if and only if x is an M -cosequence.

Proof. Apply Proposition 3.5, [20, Corollary 4.13] and Lemma 2.4.

Proposition 3.11. Let R be a local U–ring and M be an Artinian R-
module. Then the following conditions are equivalent:

(i) M is a co-Gorenstein R-module.
(ii) For every (equivalently, for some) sequence x = {x1, . . . , xn} of ele-

ments of R̂ which is maximal with respect to the property of being both
an M -cosequence and an R̂-sequence, the R̂/xR̂-module (0 :M x)
is flat.

Proof. (i)⇒(ii). In view of Lemma 3.10, there is a sequencex={x1, . . . ,xn}
of elements of R̂ which is maximal with respect to the property of being
both an M -cosequence and an R̂-sequence. Hence, by Proposition 3.5 and
[20, Theorem 3.11(ix)], Hom

R̂
(M,E)/xHom

R̂
(M,E) is an injective R̂/xR̂-

module. Therefore
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Hom
R̂

((0 : Mx), E) ∼= Hom
R̂

(Hom
R̂

(R̂/xR̂,M), E)

∼= R̂/xR̂⊗
R̂

Hom
R̂

(M,E)

∼= Hom
R̂

(M,E)/xHom
R̂

(M,E)

is an injective R̂/xR̂-module. Hence

(0 :M x) ∼= Hom
R̂

(Hom
R̂

((0 :M x), E), E)

∼= Hom
R̂/xR̂

(
Hom

R̂
((0 :M x), E),Hom

R̂
(R̂/xR̂, E)

)
∼= Hom

R̂/xR̂

(
Hom

R̂
((0 :M x), E), E

R̂/xR̂
(R̂/mR̂)

)
is a flat R̂/xR̂-module.

(ii)⇒(i). Suppose that x = {x1, . . . , xn} is a sequence maximal with

respect to the property of being both an R̂-sequence and an M -cosequence,
and that (0 :M x) is a flat R̂/xR̂-module. Therefore Hom

R̂/xR̂
((0 :M x),

E
R̂/xR̂

(R̂/mR̂)) is an injective R̂/xR̂-module. But

Hom
R̂/xR̂

(
(0 :M x), E

R̂/xR̂
(R̂/mR̂)

)∼= Hom
R̂/xR̂

(
(0 :M x),Hom

R̂
(R̂/xR̂, E)

)
∼= Hom

R̂
((0 :M x), E) ∼= Hom

R̂
(M,E)/xHom

R̂
(M,E).

Therefore Hom
R̂

(M,E)/xHom
R̂

(M,E) is an injective R̂/xR̂-module. By
Lemma 2.4, x is a sequence maximal with respect to the property of being
both an R̂-sequence and a Hom

R̂
(M,E)-sequence. Hence by [20, Theorem

3.11(ix)] and Proposition 3.5, M is a co-Gorenstein R-module.

We give some characterizations of co-Gorenstein modules over a Cohen–
Macaulay local U -ring that are dual to the characterization of a Gorenstein
module over a complete Cohen–Macaulay local ring established in [21].

Proposition 3.12. Let (R,m) be a Noetherian local ring. For each in-
teger n ≥ 1, the following two statements are equivalent:

(i) R is a Cohen–Macaulay ring of Krull dimension n.
(ii) flatdimRH

n
m(R) = n.

Proof. Since Hn
m(R) is an Artinian R-module, it has natural structure

of an R̂-module. Thus Hom
R̂

(Hn
m(R), E) is a non-zero finitely generated

R̂-module.
(i)⇒(ii). By [3, 2.1.8(b), 3.3.8], R̂ is a Cohen–Macaulay local ring with

a canonical module ω
R̂

. Hence by [3, Theorem 3.5.8], flatdim
R̂
Hn

m(R) =
inj.dim

R̂
ω
R̂

= n.
(ii)⇒(i). Assume that flatdim

R̂
Hn

m(R) = n. Then Hom
R̂

(Hn
m(R), E) is

a non-zero finitely generated R̂-module of finite injective dimension; hence
R̂ is a Cohen–Macaulay ring. Therefore R is a Cohen–Macaulay ring and so
H i

m(R) = 0 for all i 6= dimR. Since Hn
m(R) 6= 0, it follows that n = dimR.
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Corollary 3.13. Let (R,m) be a local U -ring. For each integer n ≥ 1,
the following two conditions are equivalent:

(i) R is a Cohen–Macaulay ring of Krull dimension n.
(ii) Hn

m(R) is a co-Gorenstein R-module.

Moreover, πn(m, Hn
m(R)) = 1.

Proof. (ii)⇒(i). Apply Corollary 3.6.

(i)⇒(ii). Let R be a Cohen–Macaulay ring of dimension n. By [28,
Proposition 2.6], Hn

m(R) is a co-Cohen–Macaulay R-module of Krull dimen-
sion n. On the other hand, Proposition 3.12 and Lemma 2.5 yield

flatdimRH
n
m(R) = n = KdimRH

n
m(R) = codimRH

n
m(R).

Hence, by Proposition 3.4, Hn
m(R) is a co-Gorenstein R-module.

Now we show πn(m, Hn
m(R)) = 1. For all i ≥ 0 we have πi(m, H

n
m(R)) =

dimk TorRi (k,Hn
m(R)). By Remark 2.6, there exist the isomorphisms

TorRi (k,Hn
m(R)) ∼= Hom

R̂

(
ExtiR(k,Hom

R̂
(Hn

m(R), E), E)
)

∼= Hom
R̂

(
ExtiR(k ⊗

R̂
R̂,Hom

R̂
(Hn

m(R), E)), E
)

∼= Hom
R̂

(
Exti

R̂
(k,HomR(R̂,Hom

R̂
(Hn

m(R), E))), E
)

∼= Hom
R̂

(
Exti

R̂
(k,Hom

R̂
(Hn

m(R), E)), E
)
.

Since Exti
R̂

(k,Hom
R̂

(H i
m(R), E)) is a finitely generated R̂-module and is a

vector space over R̂/mR̂, we see that for a positive integer r, there is an
isomorphism

Exti
R̂

(k,Hom
R̂

(H i
m(R), E)) ∼= kr,

and hence

Hom
R̂

(
Exti

R̂
(k,Hom

R̂
(H i

m(R), E)), E
)

∼= Hom
R̂

( r⊕
t=1

k,E
)
∼=

r⊕
t=1

Hom
R̂

(k,E) ∼= kr.

Therefore dimk TorRi (k,Hn
m(R)) = dimk Exti

R̂
(k,Hom

R̂
(H i

m(R), E)).

Consequently, for all i ≥ 0, πi(m, H
n
m(R)) = µi(mR̂,Hom

R̂
(Hn

m(R), E)),
and by [21, Corollary 1.6], we get

πi(m, H
i
m(R)) =

{
1, i = n,

0, i 6= n.

Corollary 3.14. Let (R,m) be a Cohen–Macaulay local U -ring with
dimR = n. Then any co-Gorenstein R-module is M isomorphic to the
direct sum of a finite number of copies of H i

m(R); more precisely, M ∼=
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⊕
πn(m,M)Hn

m(R). Furthermore, if h 6= t > 0, then
⊕
tHn

m(R) and⊕
hHn

m(R) are non-isomorphic co-Gorenstein R-modules.

Proof. Assume that M is a co-Gorenstein R-module. By Proposition 3.5
and [21, Corollary 2.7], we have

Hom
R̂

(M,E) ∼=
⊕

µn(mR̂,Hom
R̂

(M,E)) Hom
R̂

(Hn
m(R), E).

Therefore
M ∼=

⊕
µn(mR̂,Hom

R̂
(M,E))Hn

m(R).

Since, by an argument used in the proof of Corollary 3.13, we get

µn(mR̂,Hom
R̂

(M,E)) = πn(m,M),

it follows that M ∼=
⊕
πn(m,M)Hn

m(R).
Now suppose that h, t are two positive integers such that

⊕
hHn

m(R) ∼=⊕
tHn

m(R). Then h = t by [21, 1.6, 2.1, 2.7] and the above arguments.
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