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A MULTIPARAMETER VARIANT OF THE
SALEM-ZYGMUND CENTRAL LIMIT THEOREM ON
LACUNARY TRIGONOMETRIC SERIES

BY

MORDECHAY B. LEVIN (Ramat-Gan)

Abstract. We prove the central limit theorem for the multisequence
Z e Z Any ... ng cOS((2mm, ATY ... Al7x))
1<n; <Ny 1<ng<Ng

where m € Z°, an,,....n, are reals, Ai,..., Aq are partially hyperbolic commuting s x s
matrices, and x is a uniformly distributed random variable in [0, 1]°. The main tool is the
S-unit theorem.

1. Introduction. In [SZ], [Z, p. 233], Salem and Zygmund proved the
following theorem:
THEOREM A. Let \, > 1 be integers with Apy1/Ap > ¢ > 1 forn =
1,2,.... Moreoover, let a,, ¢, be reals, Ay = (%(a% + a%v))l/z — 00,
;N
S(N,x) = An 1; ap coS(2T A + &),

and

max_|an|/Ax — 0 as N — oo.
1<n<N

Then over any set D with mes D > 0, S(N,x) tends to the Gaussian distri-
bution with mean value 0 and dispersion 1 as N — oo.

Let A be an invertible s x s matrix with integer entries. It generates a
surjective endomorphism on the s-dimensional torus [0,1)® which we will
denote by the same letter A. We will also denote by A and m the transpose
matrices A®, m®,

DEFINITION 1. An action A by surjective endomorphisms Aq,..., Ay of
[0,1)* is called partially hyperbolic if for all (ni,...,ng) € Z%\ {0} none of
the eigenvalues of the matrix A" --- A’? is a root of unity.
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Examples of partially hyperbolic actions:

1. Let T be the s x s identity matrix, ¢1,...,qq > 2 pairwise coprime
integers, A; = ¢, i =1,...,d.

2. Let K be an algebraic number field of degree s, ny,...,1mq (d < s—1)
a set of fundamental units of K, ¢;(x) the minimal polynomial of 7,
and A; the companion matrix of ¢;(z) (1 <i < d).

In this paper, we prove the following multiparameter variant of the Salem
and Zygmund theorem:

THEOREM. Let A be an action by commuting partially hyperbolic endo-
morphisms Ay, ..., Aq of [0,1)°, and x a uniformly distributed random vari-
able on [0,1]°. Let m € Z*\ {0}, N = (Ny,...,Ng), R(N) = [1, N7] x - --
<o X [1, Ng], No = max(Ni,...,Ng), n = (n1,...,nq), an > 0, ¢n be reals,

(1.1)
1/2
A(N):(1 > ai) o0, p(N)= max an/A(N) =2,

neR(N) neR(N)

(12) S(N,X) = .A(l].\I) Z an COS(27T<m’ A?l .. 'AZdX> + ¢n)
neR(N)

Then over any set D C [0,1]® with mes D > 0, S(N, x) tends to the Gaussian
distribution with mean value 0 and dispersion 1 as Ny — oo.

This result was announced in [Lel].

Related questions

1. Central Limit Theorem for Zi-actz’ons by toral endomorphisms. In
[E], [K], Fortet and Kac proved the central limit theorem (abbreviated CLT)
for the sum 27]:[:_01 f(q¢"x) where ¢ > 2 is an integer, x € [0,1) and f is
a 1-periodic function. Let (wg,,...q,(n))n>1 be a so-called Hardy-Littlewood—
Pélya sequence, consisting of the elements of the multiplicative semigroup
generated by a finite set (g1, ..., qq) of coprime integers, arranged in increas-
ing order. In [P], [EP], Philipp, Fukuyama and Petit obtained limit theorems
for the sum SN f(wy,.. g0 (n)2). In [Le2], we proved some limit theorems

for 2112711:—01 e ijj;ol f(g ---q)"x) as Ny, ..., Ng — oo, where the integers
q1,---,qq need not be coprime (see [Le2, Theorem 5]).

In [L], Leonov proved CLT for endomorphisms of the s-torus and Hélder
continuous functions. In [Le2|, we extended Leonov’s result to the case of

Zjl_-actions by endomorphisms of the s-torus and we proved the central limit
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theorem for the multisequence

N, Ny
Z Z FIATY - Aldx)

ni=1 ng=1

where f is a Holder continuous function, A1, ..., Ay are partially hyperbolic
commuting integer s X s matrices, and x is a uniformly distributed random
variable in [0, 1]*.

Note that mixing properties of Z%actions by commuting automorphisms
of the s-torus were investigated earlier by Schmidt and Ward [SW].

2. Hardy-Littlewood—Pdlya (HLP) sequence. In [Ful, Furstenberg stud-
ied denseness properties of the HLP sequence (w3 3(n))n>1 (see Introduc-
tion) from the ergodic point of view. He also asked the celebrated ques-
tion on ergodic properties of this sequence (see e.g. [EW, p. 7]). In [P],
Philipp proved the almost sure invariance principle (ASIP) for the sequence
(cos(wgy,....qq(n)x))n>1, and the law of the iterated logarithm (LIL) for the
discrepancy of the sequence (wg, ... q,(n)x)n>1 (see also [BPT]). We consider
the following s-dimensional variant of HLP sequence:

Let

(1.3) m<m' if either |m| < |m'|, or |/m| = |m’| and there ex-
ists k € [0,s) with m; = m],...,m; = m) and
mi41 < mj_ ., where [m| = (mf +- - + m2)1/2,

Let A be an action by commuting partially hyperbolic endomorphisms
Ai,...,Aq of [0,1)°. Denote A7*---Al? < AP - AN if (n1,...,ng) <
(n1,...,nq). Let (£2,)n>1 consist of the elements of the multiplicative semi-
group generated by the finite set (A1,..., Ay), arranged in increasing order.
In a forthcoming paper, we will show that the approach of [P] and [BPT]
can be applied to prove ASIP for (cos({2,x)),>1 and to prove LIL for the
discrepancy of (£2,X)p>1.

In [PS], Philipp and Stout proved that if for the coefficient an (see
Theorem A) we assume the stronger condition ay = O(A}V_‘s) for some
d > 0, then S(N,x) obeys ASIP.

Let (gn)n>1 consist of the elements of Zi arranged in increasing order

(see (|1.3))). Let

' 1 , 1/2 . 1

A(L) = (2 Z agn> , SpL= AL Z ag,, cos(2m(m, 2, x)+dg, ).
1<n<L 1<n<L

In a forthcoming paper, we will show that the approach of [PS] can be

applied to prove ASIP for the sequence (S1,)1>1 whenever a,, = O(A'79(L))

for some § > 0.
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2. Proof of the Theorem. By the moment method, to obtain the
Theorem it is sufficient to prove that

R
. i ) ———— if hiseven,
(2.1) N}:Lnoo —D S S(N,x)"dx = { 2h/2(1/2)! o
D 0 if 7 is odd.
We consider the following variant of the S-unit theorem (see [SS, Theo-

rem 1)):
Let K be an algebraic number field of degree s; > 1. Write K* for its
multiplicative group of nonzero elements. We consider the equation

h1
(2.2) > Pim)d} =0
=1

in variables n = (ni,...,nq,) € Z%, where the P; are polynomials with
coefficients in K, 97 =91+ -9, 5, and ¥;; € K* (1 <i<hy, 1<j<d).

Let Uy be the potential number of nonzero coefficients of the polynomials
P, ..., Py, and Uz = max(dy, Uy).

A solution n of is called non-degenerate if ), ; P;(n)97 # 0 for
every nonempty subset I of all {1,...,h1}. Let G be the subgroup of Z%
consisting of all vectors n with 97" =--- =9y .

THEOREM B ([SS]). Suppose G = {0}. Then the number \(P, ..., Py,)
of nondegenerate solutions n € Z™ of (2.2) satisfies the estimate

. 2
U(Py,..., Py) <U(dy, P) = 25503502
It is easy to get the following

COROLLARY. Letdy =d(hy —1), Up, ;=1 =1,...,d), ¥ j1(i—1ya =
19]‘ € K* and 19i’j+“d =1 (,u S [O,hl —2], wFEi—1,41i=1,...,hy — 1,

j= 1,...,d),ﬁ: (nl,...,nhl,l), n; = (niyl,...,ni,d) withi=1,...,h1—1,
Py, (m) = —1. Suppose
It 0 =1 & (ng,...,ng) =0.

Then the number W (Py,..., Py, —1) of nondegenerate solutions I € 7" of
the equation

hi—1 h1—1

> P@OF =Y B@OT 0 =1

i=1 i=1

satisfies the estimate
W(Py,..., Py 1) <U(dy, P).

We consider a sequence of commuting s x s matrices Aj,...,Ay. By
[Gal, p. 224, Corollary 2] the space C* can be decomposed into a direct sum
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of subspaces invariant under all A;:
(CS:IIEB"'@I’Lw

such that the minimal polynomial of A; on I; is a power of a linear poly-
nomial, (z — A;;)7, over C. According to this decomposition, the matri-

ces Ay,..., Ay can be simultaneously brought into the following form with
square blocks along the diagonal of sizes ri,...,7y, 71 + -+ + Ty = s:
Aia 0 Mg 0
Al — . y ey Ad - t.
0 Aw71 0 Aw,d

where all blocks A; ; have upper-triangular form with A; ; on the diagonal,
1<i<w,1<j<d (see, e.g., MM, p. 77, ref. 4.21.1]).

Hence there exists an invertible s x s matrix 7" such that A; = T~ A;T,
1 <i<d,

Ay (n) 0
(2.3) AP AN =T 'A(n)T, A(n)= )
0 Ay(n)
where n = (nq,...,nq), and A,(n) is an upper-triangular matrix with

Ay )\nd on the diagonal (1 < v < w). Let A,(n) = (X;Z)/(n))lgj,j’gr,,-
Using the formula for the degree of Jordan’s normal form of the matrices A; ;
(see, e.g., [Gal, pp. 157-158]), we deduce that

(2.4) X)) = A NP ()
for some polynomial P](l;g It is easy to see that
(2.5) P](’;)(n) =1 and Pj(l;?(n) =0 forj>j.

Taking into account that 7'} --- A4 is an eigenvalue of A" --- A4, w
infer from Definition 1 that

(2.6) Ni-Ag=1 4 (n1,...,ng) =0, with 4€[lr].
Let h>1 be an integer, F" ={1,...,h}, 71,..., Tﬁe{ 1,1}, f=#F,F =
(FQ)..... F(£) € FO 5O = (npqr. ... mpep), n=nF") = (my, . ),
with n; = (n;1,...,n54). We will denote the transpose matrix m®) by the
same symbol m. Let Tm =t = (1.1, ..., M1y, s M1y -« s Mgy, ),
(2.7) =" m AP Alm,

peF
and

c@y = @)y y,...,c@y,,,...,c@Ny1,...,C@)y, D,

)
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By (24) we get
(28) n VJ_ZT'U’ nul nudZP’]

nEF
Since m # 0, there exist vy € [1,w], jo € [1,7",,0] with

(2.9) My jo 70 and m,; =0 for v > 1y and for v = vy, j > jo.

From (2.5)), we have

(2.10) P )iy, =0 for j' # jo.
By (2.5) and 7-, we obtain
(2.11)
c@*),, 5o = LAY vo)iin, 4o with  L(@ =) A AT
peF
Hence
(2.12) ca =0 = r@",y) =o0.
Let
1 if T is true,
(2.13) I(%T) = { 1218 'rue
0 otherwise,

(2.14)  R(N,F,v) = {(npq),. -, np(p) € RIN)/ |
AF' ¢ F® with L@, v) = 0}.

We denote
Z by Za and Z by Z .
Tie{_lvl}vizlv"-vh T TiE{—Ll},’ieF T, F
LEMMA 1. Let f = #F and
0= 2(2"4( )) anF(l) anF(f)(S(L(ﬁ(F)v VO) = '7)'
(mp@)y-npp)) ERN,Fg) T
Then
1 if v =0, f=2,

O(p(N)) if v=0, f=3,
O(p(N)) if v #0,
where p(N) = maxpep(w) |an|/A(N) and the O-constants depend only on h.

Proof. Let v # 0. Bearing in mind Definition 1 and that \; ; are algebraic
integers, we can apply the Corollary. We take hy = i+ 1, s; = 5%, Uy =
dy = dh and U(dy, P) = 23503 51203 From (2.3), (2.11) and (2.14) we get

o < U(dy, P)p(N)/ .
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Let v = 0. We see that there are no solutions of the equation L(@®), vp)
=0if f=1.
Suppose f = 2. By (2.11)), we obtain

PR(1),17MF(2),1 MF(1),d="F(2),d _
(2.15) = TIT2A, 1 e Ad =1.

Hence

2(np@),1—"F2),1) 2(np@),d—"r2),d)
)\VOJ .“)\uo,d =1

Using (22.6), we find that np); — npe); =0, i = 1,...,d. By (2.15), we

get 71 = —71o. We derive from (1.1} that o = 1.
Suppose f > 3. We fix np(y). Let n’F(#)’i =N —Nr)s (1< p<f).
We see that

F() F( )d
(2.16) —erTM DR R

Applying the Corollary, we see that the number of solutions of (2.16) is O(h)
Let V (k) be the maximum of |an(u) Jw=1,....f=1i=1,...,d) for all
solutions of (2.16). Let W (h) = [~V (h), V(h)]d. Thus

S Z Z Z (2AN a’ﬂfﬂ1 ©Ongin) Oy

n,..n  €W(R)I~1 ng, nf+n GR(N) T
=

(3]

< V() + DUD )2 Y S AN Zay, an,.

nj €W (k) nyny;+n) €R(N)

Bearing in mind that [ay,, 1n;an,| < +(a? ny4ng T a? ;), we obtain

o < 2V (h) + 1) Yp(N) 2,
Hence Lemma 1 is proved. =
Let F, = (F1,..., F,) be a partition of F") = {1,... A}, i.e.
FU---UF,=F"  EnF=0, i#j F(j)<Fk) forj<k.

Let (Fi,...,F.) = (F{,...,F],) if 1 = ry and for each ¢ € [1,7] there
exists k € [1,71] such that F;(j) = F/(j) for all j € [1, f(F;)]. We denote by
§r the set of all nonequivalent partitions of F,

DEFINITION 2. Set g(n) = 1 if A = 2h; and there exists a partition

(F,....Fp) € §p with #F, = 2, L@, 1) = 0 and ngq) = ng)
(i=1,...,h), and set g(n) = 0 otherwise.

DEFINITION 3. Set g1(n) = 1if g(n) = 1 and there are no 1 < j; < jos <
J3 < h with nj, =nj, = nj,, and set g;(n) = 0 otherwise.
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LEMMA 2. Define

Z Z (2AN -+ an, 6(C(M) = 0)5(g(@) = 0).

neR(N
Then
o0 = O(p(N)).

Proof. Suppose C(n) = 0. By (2.12) and (2.14]), there exists a partition
Fr = (F1,...,F,) € §p such that

L(ﬁ(Fi),l/o) =0 and n' e R(N, Fy,v), i=1,...,7
Using ( -, we have
§(C(m) = 0) <Z > Ha = 0)6(@f) € R(N, Fy, 1p)).

r=1 Fr€Fp i=1

Let f; = #F;, = = mini<;<, f; and ft = maxi<j<r fi. Moreover, define
Sﬁd = {]: € §n | - = 1} and
(2.17) {f eSnlf =1"=2}, Fnz={Fednli" >3},

(218) o1y 05 = Z >y Z2A <y,

r=1 F, €35, nER(N)"
x Ha — 0)3(E") € R(N, Fi,10))0(3(R) = 11)3(g1 () = L2).

Changmg the order of summation, we obtain
(2.19) op < Z Z 00,l2,l3+

126{0 1} l3€{1 2 3}
Suppose f~=1. By (2 , there is no solution of the equation L(n (£3) ,v9) =0
with #F; = 1. Hence
(2.20) > o1 =0.

llyl2e{071}

Suppose T > 3. We have

PR ATED DD

Ih,l2€{0,1} re[Lh] Fredns T
< 1] > (2AMN)) Frang, ) - ang , S(LET), 1) = 0).
i€[l,r] aF) e R(N, Fy,v0)
Applying Lemma 1, we have

(2.21) Y. s =O0(p(N)).

ll,lQE{O,l}
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Now we consider the case f~ = ¥ = 2 and I; = 0. We see that 7 is even.
Let h = 2hy and (FY,..., Fy) € § . Suppose L") 1) = 0. By (2

and 1.' we get np, (1) = Np,(2). Using Definition 2, we find that the inner
sum in (2.18)) is zero. From “ 2.19)-(2.21), we conclude that og = O(p(N)). =

LEMMA 3. Let

Z Z (2A(N < an, 6(C(M) = 0)e(T1Pn,+  + TPy )-
neR(N
Then
Al
cM(N) = W + O(p(N)) if his even,
O(p(N)) if B is odd.

Proof. Let l1,1ls € {0,1}, and define

(2.22) oy, (ly) = Z Z2A (ny,

neR(N
X e(Tign, + -+ + Thdn,)0(C (M) = 0)0(g(m) = 11)0(g1 (M) = I2).
By [2.13),
(2.23) e (N) = 64(0) 4 00(1) 4 01(0) + o1(1).
From Lemma 2, we have
l70(0)] + [o0(1)] < 00 = O(p(N)).

Assume g(m) = 1. By Definition 2, & is even. Write 7 = 2k, and let
g1(n) = 0. Using (2.18)), (2.20) and (2.21)), we get

(2.24)  |o1(0)] < o101+ 0102+ 0103 and o101+ 01,03 = O(p(N)).
Consider o1 9 2. For all ;. € Fp.2 (see (2.17))), we get r = hy and §f~ = i =2.

By @19,
(225) o102 > > > (2AN)) *May, - - an,,,

neR(N)?M T (F1,....Fyy )€F2ny
x 3(f~ =T =2)d(g(n) = Hé =0).

Applying and , we obtain ng, (1) = np,9) (i = 1,...,f1). Now we
derive from Definition 3 that h; > 2, and there exist 1 < j; < jo < j3 < h
with n;, = nj, = nj,. Suppose F;(k) = j; for some i € [1, 1] and k € {1,2}.
We see that there exist p € [1,74] \ {i} and | € {2,3} such that j; € Fj.
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Hence np,(1) = ng,2) = np, (1) = Ng,(2). Therefore

ol02< Y > > s

Zvue[lvfilLZ#M (F17"'7Fh1)632r1 T

< Y eAN)ah T S RAN) 2,

np,(1)€R(N) le[l,m], I#4,pn np1)€R(N)
By (2.24) and we have
hi—1
(2.26) 51(0) = ( ( Z AN 2(12) )ZO(p(N)2).

neR(N

Now assume g;(n) = 1. We consider o1(1) (see (2.22)). From Defini-
tions 2 and 3, we have

g1(m) = Z g1 ().

(Fiyees Friy ) €S20y, #F3=2,0=1,...,lu

Thus
o1(1) =
Z Z > (2A(N))"an, - - an,6(C(m) = 0)
nGR T (Fl,...7Fﬁ1)E§2ﬁ17#Fi:2,7;:1,...,h1
hi1
X e(T1n, + -+ Thon, )0 H5 (05,1 =1 (2))S (LAY, 1) = 0).

Assume L(n(F) v) = 0. By and q, we get Tp,(1) = —Tp,(2)- Hence
e(Tr ¢nF w T TR ¢HF 2) = 1 Thus 01(1) = ¢ — &, where

(227) o= > > > (2AN)) "

AER(N) T (F1,...,Fp) )ESan, , #Fi=2,i=1,....ln
hy
X Qny - Gny H‘S(nFi(l) = nFi(Q))(S(TFi(l) = —TFi(2))7

and

Z Z 3 (2A(N)) ", - -

neR(N)" 7T (Fi,...Fp )€Fon,, #Fi=2,i=1,....ln

h1
X Hé(nFi(l) = np,(2))d(LAET 1) = 0)5(g1 () = 0).

i=1
From ([2.25)) and ([2.26]), we obtain
(2.28) g =0(p(N)).
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By , we get
h1
6= Z H Z 2(2A(N)) - iF (1)

(F1ye Fry )E€S2ny » #1:1=2,4=1,.. . i=1np 1) ER(N)

- > ()0 G) -

(Flv"'thl)GSQﬁl» #F;=2,i=1,...,h

Now Lemma 3 follows from (2.23)), (2.24)) and (2.26)—(2.28). =

LEMMA 4. Let v # 0, and define

(2)N'7 Z ZA any,

neR(N)~

x 0(C(m) = =T)e(T1¢n, + - - + Thdny)-
Then
(2:29) P (N,7) = O(p(N)),
with the O-constant depending only on h.

Proof. Let =T = (V1,1,---sV1r1s--sYw,1s -+ Ywre) and define vy =
max{v € [1,w] | (V,1,---,Vw,r,) # 0}. Assume 7, ;, # 0, and ~,, ; = 0 for
J >t

Suppose (M, 1, - - - ,ﬁlyhml) =0. By 1} the equation C(1),, j; =Y,
has no solution, and the assertion is proved in this case.

Now suppose (M 150y My, ) # 0 and My, 5, # 0, My, ; = 0 for

Jj > jo. By (2.8) and ( ., 1 < vg. Suppose v; = vy and j1 > jo. By -,
Pj(l'y(n)mm,], =0 for j/ # ji. By (2.8) and (2.11), C(@)y,,j, = 0. Thus the
equation C(1)yy j, = Yuo.j1 = Yon,ju 7 0 has no solution.

Let v1 = vy and j1 = jo = jo. From (2.3)—(2.11) we deduce that
LM, 10) = Yup,jo/Mwe,jo # 0. Analogously to the proof of Lemma 2, we

obtain (2.29) from Lemma 1.

Consider the case 11 < vy or v = 1y, j1 < jo. By (2.4)), (2.7) and (2.11)),
we find that if C(m) = —Ty, then

(2.30) C(ﬁ)lfo,jo = Yvo,jo =0 = L(n,vp) and C(ﬁ)m,jl = Tv1,5 # 0.
It is easy to see that there exists a set Fy C F(" with
C(H(FO))VLJi = Yvr,g1s C(ﬁ(Fl))Vmi # 0 VF' C Fy.

Define
R*(N7F) = {ﬁ(F) € R(N)f ‘ C(ﬁ(F))l/l,jl = V1,415
BF' C F with c@"™),, ;, = 0}.
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Applying (2.8)), (2.6) and the Corollary, we get
(2.31) #1"(N, Ip) = O(1),
with the O-constant depending only on A. If Fy = F("_ then 1) easily

follows from (|1.1]).

Now assume Fy # F( and ﬁéFO) € R*(N, Fp). Let F* be the subset of
F with FUFLY = F and FNFL = (. We derive from (2.14)) and .
that there exists a partition (Fy,..., F,) of F5 such that

L(ﬁéFi),Vo) =~ and ﬁ(()Fi) € R(N, F, 1),

where 7)) = ... = A1) = 0 and v = L(n(() 0) L 1V0) My jo- Applying
Lemma 1, we get

o (N, 05" i—ﬁi > 2t

r=1(Fy,...Fr,F0)EFr T

% H Z A(N)_fianFia) .. .anFi(fi)(;(L(ﬁ(Fi)7 V) = V(i)) =0(1).

=1 75(F) c R(N,F; 1)

By , and , we obtain
PN Y D1

FogF(ﬁ) T
_ F
X Z ‘A(N) foano,Fou) "'ano,FO(fo) ( )(N 7,0 ( 0)) = O(p(N)fO)'
00 e R(N,Fy)

Thus, Lemma 4 is proved.

Let

F0) =Y eve(2m(v,x))
YEZL®
be an absolutely convergent trigonometric series.
LEMMA 5. With the above notations, we have
h!
lim | f(x)S(N,x)"dx = ¢ 2//2(h/2)!
N()HOO

(0,1) 0 if his odd.
Proof. By 1) we get

(x) =D & Z ZA O,

YEZS  meR(N
x e(27r<’y + (@), %) 4 ¢y + -+ + bny)-

co if his even,
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Hence

| f(x)S(N,x)"dx

[0,1] = Z Cy Z Z.A anﬁé(c(ﬁ(F)) =)
YEZ*  meR(N)h T
= oo (N) + Z ey o@D (N, ).
~v€Z*\{0}

Using Lemmas 3 and 4, we obtain the assertion. m

2.1. End of the proof of the Theorem. It is sufficient to prove
the Theorem for a box D = [aj,b1] X -+ X [as,bs] C (0,1)%. Let xp(+)
be the indicator function of D, D™ = [[,c;«.la; + €,b; — €], and Dt =
[li<icslai —€,bi + €] C (0,1)°. o

We fix a nonnegative function w(z), x € R, of class C*°, supported inside

the interval |z| < 1, such that {p w(z)dr = 1. Let wi(x) = w(zy) - - - w(zs),

X = (x1,...,xs). The Fourier transform &, (y) = (g, wi(x)e(27(x,y)) dx of
w1 (x) satisfies
(2.32) w1(y) = O((1 + ly[) ™).

Let we(x) = € %wi (e 'x). We consider the convolution of the indicator func-
tion x p=(-) with w(-):

(2.33) Xpte(y) = | xp=(®we(x —y) dx.
0,1)°

Hence Xp+ (y) = Xp=(¥)@e(y)- By (2.32), the Fourier series of xp- .(y)
and of xp+ ((y) are absolutely convergent. It is easy to verify that

(2.34) XD-e(¥) < xD(¥) < XD+ (¥),
and that
(2.35)
H(bi—ai—lle) <Xp-¢(0) <mesD, mesD < xp+ (0) < H(bi—ai+4e).
i=1 ]
Using Lemma 5 and (2.34)), we obtain
(2ﬁ1)' R o . 2h1
271 (ﬁl)' XD— e (0) - N%Jlgloo 0 Sl]s XD— e (X)S(N7 X) dx
< liminf S xp(x)S(N,x)?™ dx < limsup S xp(x)S(N,x)%" dx
No—o0 No—o0
[0,1]¢ [0,1]¢
- o (2h1)!
< N})lgloo S XD+ e ( )S(N X) tdx 251 <ﬁ1>!XD+,e(O)'

[0,1]¢
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Bearing in mind that the liminf and limsup in the middle do not depend

on €, from (2.35) we have

: i 2h _
mes D NELHOO S xp(x)S(N,x)“" dx =
[0,1)°
Hence is proved for f even. Consider the case of i odd. We see that
S xp(x)S(N,x)?1+! dx = S X+ (%) S(N, x)21+ dx
[0,1]° [0.1]
] n60) = e () SN, )1 .
(0,1)°

(27n)!
2h (ﬁl)' .

Applying the Cauchy—Schwarz inequality, we get

S (xp(x) — x,;yr,g(x)).S’(N,x)%lle dx>2

[0,1]°
< | () —xpe )Pdx | SMNLx) dx
[0.1)° [0,1]°
and
(2.36)
? 2
S XD(X)S(N,X)%H-ldx) §2< S XD+,E(X)S(N,X)2h’1+1dX)
0.1 [0,1)s
oMt g\ 2
+2( ] (en(x) = xp+ (3)S(N, %)+ dx )
[0,1]°

By ([2.33), we obtain 0 < xp+ ((x) < 1 for all x, and

S

(2.37) | (xp(x) = xp+(x)?dx < [[(bi—ai+4e) = [ (b —ai) = O(e).
[0,1]¢ i=1 i=1

Using Lemma 5, we get

lim | xpr ()S(N,x)"™dx=0(), | SINx)"™ dx=0(1).

No—o0
[0,1]¢ [0,1]°
From ([2.36)) and (2.37) we have
(2.38) i [ xpx)SON,x)?+ dx = O(e).
[0,1]¢

Taking into account that the left hand side of ([2.38]) does not depend on ¢,
we find that (2.1)) is true for A odd. Hence, the Theorem is proved. =
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