A MULTIPARAMETER VARIANT OF THE SALEM-ZYGMUND CENTRAL LIMIT THEOREM ON LACUNARY TRIGONOMETRIC SERIES

BY
MORDECHAY B. LEVIN (Ramat-Gan)

Abstract. We prove the central limit theorem for the multisequence

$$
\sum_{1 \leq n_{1} \leq N_{1}} \ldots \sum_{1 \leq n_{d} \leq N_{d}} a_{n_{1}, \ldots, n_{d}} \cos \left(\left\langle 2 \pi \mathbf{m}, A_{1}^{n_{1}} \ldots A_{d}^{n_{d}} \mathbf{x}\right\rangle\right)
$$

where $\mathbf{m} \in \mathbb{Z}^{s}, a_{n_{1}, \ldots, n_{d}}$ are reals, A_{1}, \ldots, A_{d} are partially hyperbolic commuting $s \times s$ matrices, and \mathbf{x} is a uniformly distributed random variable in $[0,1]^{s}$. The main tool is the S-unit theorem.

1. Introduction. In [SZ], [Z, p. 233], Salem and Zygmund proved the following theorem:

Theorem A. Let $\lambda_{n} \geq 1$ be integers with $\lambda_{n+1} / \lambda_{n} \geq c>1$ for $n=$ $1,2, \ldots$ Moreoover, let a_{n}, ϕ_{n} be reals, $\mathcal{A}_{N}=\left(\frac{1}{2}\left(a_{1}^{2}+\cdots+a_{N}^{2}\right)\right)^{1 / 2} \rightarrow \infty$,

$$
S(N, x)=\frac{1}{\mathcal{A}_{N}} \sum_{n=1}^{N} a_{n} \cos \left(2 \pi \lambda_{n} x+\phi_{n}\right),
$$

and

$$
\max _{1 \leq n \leq N}\left|a_{n}\right| / \mathcal{A}_{N} \rightarrow 0 \quad \text { as } N \rightarrow \infty .
$$

Then over any set D with mes $D>0, S(N, x)$ tends to the Gaussian distribution with mean value 0 and dispersion 1 as $N \rightarrow \infty$.

Let A be an invertible $s \times s$ matrix with integer entries. It generates a surjective endomorphism on the s-dimensional torus $[0,1)^{s}$ which we will denote by the same letter A. We will also denote by A and \mathbf{m} the transpose matrices $A^{(t)}, \mathbf{m}^{(t)}$.

Definition 1. An action \mathcal{A} by surjective endomorphisms A_{1}, \ldots, A_{d} of $[0,1)^{s}$ is called partially hyperbolic if for all $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}$ none of the eigenvalues of the matrix $A_{1}^{n_{1}} \cdots A_{d}^{n_{d}}$ is a root of unity.

[^0]Examples of partially hyperbolic actions:

1. Let \mathbb{I} be the $s \times s$ identity matrix, $q_{1}, \ldots, q_{d} \geq 2$ pairwise coprime integers, $A_{i}=q_{i} \mathbb{I}, i=1, \ldots, d$.
2. Let K be an algebraic number field of degree $s, \eta_{1}, \ldots, \eta_{d}(d \leq s-1)$ a set of fundamental units of $K, \phi_{i}(x)$ the minimal polynomial of η_{i}, and A_{i} the companion matrix of $\phi_{i}(x)(1 \leq i \leq d)$.

In this paper, we prove the following multiparameter variant of the Salem and Zygmund theorem:

Theorem. Let \mathcal{A} be an action by commuting partially hyperbolic endomorphisms A_{1}, \ldots, A_{d} of $[0,1)^{s}$, and \mathbf{x} a uniformly distributed random variable on $[0,1]^{s}$. Let $\mathbf{m} \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\}, \mathbf{N}=\left(N_{1}, \ldots, N_{d}\right), R(\mathbf{N})=\left[1, N_{1}\right] \times \cdots$ $\cdots \times\left[1, N_{d}\right], N_{0}=\max \left(N_{1}, \ldots, N_{d}\right), \mathbf{n}=\left(n_{1}, \ldots, n_{d}\right), a_{\mathbf{n}} \geq 0, \phi_{\mathbf{n}}$ be reals,

$$
\begin{align*}
\mathcal{A}(\mathbf{N})= & \left(\frac{1}{2} \sum_{\mathbf{n} \in R(\mathbf{N})} a_{n}^{2}\right)^{1 / 2} \rightarrow \infty, \quad \rho(\mathbf{N})=\max _{\mathbf{n} \in R(\mathbf{N})} a_{\mathbf{n}} / \mathcal{A}(\mathbf{N}) \xrightarrow{N_{0} \rightarrow \infty} 0, \tag{1.1}\\
1.2) \quad & S(\mathbf{N}, \mathbf{x})=\frac{1}{\mathcal{A}(\mathbf{N})} \sum_{\mathbf{n} \in R(\mathbf{N})} a_{\mathbf{n}} \cos \left(2 \pi\left\langle\mathbf{m}, A_{1}^{n_{1}} \cdots A_{d}^{n_{d}} \mathbf{x}\right\rangle+\phi_{\mathbf{n}}\right) .
\end{align*}
$$

Then over any set $D \subset[0,1]^{s}$ with mes $D>0, S(\mathbf{N}, \mathbf{x})$ tends to the Gaussian distribution with mean value 0 and dispersion 1 as $N_{0} \rightarrow \infty$.

This result was announced in [Le1].

Related questions

1. Central Limit Theorem for \mathbb{Z}_{+}^{d}-actions by toral endomorphisms. In [F], K], Fortet and Kac proved the central limit theorem (abbreviated CLT) for the sum $\sum_{n=0}^{N-1} f\left(q^{n} x\right)$ where $q \geq 2$ is an integer, $x \in[0,1)$ and f is a 1-periodic function. Let $\left(\omega_{q_{1}, \ldots, q_{d}}(n)\right)_{n \geq 1}$ be a so-called Hardy-LittlewoodPólya sequence, consisting of the elements of the multiplicative semigroup generated by a finite set (q_{1}, \ldots, q_{d}) of coprime integers, arranged in increasing order. In [P, FP, Philipp, Fukuyama and Petit obtained limit theorems for the sum $\sum_{n=0}^{N-1} f\left(\omega_{q_{1}}, \ldots, q_{d}(n) x\right)$. In Le2], we proved some limit theorems for $\sum_{n_{1}=0}^{N_{1}-1} \cdots \sum_{n_{d}=0}^{N_{d}-1} f\left(q_{1}^{n_{1}} \cdots q_{d}^{n_{d}} x\right)$ as $N_{1}, \ldots, N_{d} \rightarrow \infty$, where the integers q_{1}, \ldots, q_{d} need not be coprime (see [Le2, Theorem 5]).

In \boxed{L}, Leonov proved CLT for endomorphisms of the s-torus and Hölder continuous functions. In Le2], we extended Leonov's result to the case of \mathbb{Z}_{+}^{d}-actions by endomorphisms of the s-torus and we proved the central limit
theorem for the multisequence

$$
\sum_{n_{1}=1}^{N_{1}} \cdots \sum_{n_{d}=1}^{N_{d}} f\left(A_{1}^{n_{1}} \cdots A_{d}^{n_{d}} \mathbf{x}\right)
$$

where f is a Hölder continuous function, A_{1}, \ldots, A_{d} are partially hyperbolic commuting integer $s \times s$ matrices, and \mathbf{x} is a uniformly distributed random variable in $[0,1]^{s}$.

Note that mixing properties of \mathbb{Z}^{d}-actions by commuting automorphisms of the s-torus were investigated earlier by Schmidt and Ward [SW].
2. Hardy-Littlewood-Pólya (HLP) sequence. In Fu, Furstenberg studied denseness properties of the HLP sequence $\left(\omega_{2,3}(n)\right)_{n \geq 1}$ (see Introduction) from the ergodic point of view. He also asked the celebrated question on ergodic properties of this sequence (see e.g. [EW, p. 7]). In [P], Philipp proved the almost sure invariance principle (ASIP) for the sequence $\left(\cos \left(\omega_{q_{1}, \ldots, q_{d}}(n) x\right)\right)_{n \geq 1}$, and the law of the iterated logarithm (LIL) for the discrepancy of the sequence $\left(\omega_{q_{1}, \ldots, q_{d}}(n) x\right)_{n \geq 1}$ (see also [BPT]). We consider the following s-dimensional variant of HLP sequence:

Let

$$
\begin{align*}
\mathbf{m} \lessdot \mathbf{m}^{\prime} \text { if } & \text { either }|\mathbf{m}|<\left|\mathbf{m}^{\prime}\right| \text {, or }|\mathbf{m}|=\left|\mathbf{m}^{\prime}\right| \text { and there ex- } \tag{1.3}\\
& \text { ists } k \in[0, s) \text { with } m_{1}=m_{1}^{\prime}, \ldots, m_{k}=m_{k}^{\prime} \text { and } \\
& m_{k+1}<m_{k+1}^{\prime}, \text { where }|\mathbf{m}|=\left(m_{1}^{2}+\cdots+m_{s}^{2}\right)^{1 / 2} .
\end{align*}
$$

Let \mathcal{A} be an action by commuting partially hyperbolic endomorphisms A_{1}, \ldots, A_{d} of $[0,1)^{s}$. Denote $A_{1}^{n_{1}} \cdots A_{d}^{n_{d}} \lessdot A_{1}^{\dot{n}_{1}} \cdots A_{d}^{\dot{n}_{d}}$ if $\left(n_{1}, \ldots, n_{d}\right) \lessdot$ $\left(\dot{n}_{1}, \ldots, \dot{n}_{d}\right)$. Let $\left(\Omega_{n}\right)_{n \geq 1}$ consist of the elements of the multiplicative semigroup generated by the finite set $\left(A_{1}, \ldots, A_{d}\right)$, arranged in increasing order. In a forthcoming paper, we will show that the approach of [P] and [BPT] can be applied to prove ASIP for $\left(\cos \left(\Omega_{n} \mathbf{x}\right)\right)_{n \geq 1}$ and to prove LIL for the discrepancy of $\left(\Omega_{n} \mathbf{x}\right)_{n \geq 1}$.

In [PS, Philipp and Stout proved that if for the coefficient a_{N} (see Theorem A) we assume the stronger condition $a_{N}=O\left(A_{N}^{1-\delta}\right)$ for some $\delta>0$, then $S(N, x)$ obeys ASIP.

Let $\left(g_{n}\right)_{n \geq 1}$ consist of the elements of \mathbb{Z}_{+}^{d} arranged in increasing order (see (1.3)). Let
$\dot{\mathcal{A}}(L)=\left(\frac{1}{2} \sum_{1 \leq n \leq L} a_{g_{n}}^{2}\right)^{1 / 2}, \quad \dot{S}_{L}=\frac{1}{\dot{\mathcal{A}}(L)} \sum_{1 \leq n \leq L} a_{g_{n}} \cos \left(2 \pi\left\langle\mathbf{m}, \Omega_{g_{n}} \mathbf{x}\right\rangle+\phi_{g_{n}}\right)$.
In a forthcoming paper, we will show that the approach of [PS] can be applied to prove ASIP for the sequence $\left(\dot{S}_{L}\right)_{L \geq 1}$ whenever $a_{g_{L}}=O\left(\dot{\mathcal{A}}^{1-\delta}(L)\right)$ for some $\delta>0$.
2. Proof of the Theorem. By the moment method, to obtain the Theorem it is sufficient to prove that

$$
\lim _{N_{0} \rightarrow \infty} \frac{1}{\operatorname{mes} D} \int_{D} S(\mathbf{N}, \mathbf{x})^{\hbar} d \mathbf{x}= \begin{cases}\frac{\hbar!}{2^{\hbar / 2}(\hbar / 2)!} & \text { if } \hbar \text { is even } \tag{2.1}\\ 0 & \text { if } \hbar \text { is odd }\end{cases}
$$

We consider the following variant of the S-unit theorem (see [SS, Theorem 1]):

Let K be an algebraic number field of degree $s_{1} \geq 1$. Write K^{*} for its multiplicative group of nonzero elements. We consider the equation

$$
\begin{equation*}
\sum_{i=1}^{h_{1}} P_{i}(\mathbf{n}) \boldsymbol{\vartheta}_{i}^{\mathbf{n}}=0 \tag{2.2}
\end{equation*}
$$

in variables $\mathbf{n}=\left(n_{1}, \ldots, n_{d_{1}}\right) \in \mathbb{Z}^{d_{1}}$, where the P_{i} are polynomials with coefficients in $K, \boldsymbol{\vartheta}_{i}^{\mathbf{n}}=\vartheta_{i, 1}^{n_{1}} \cdots \vartheta_{i, d_{1}}^{n_{d_{1}}}$, and $\vartheta_{i, j} \in K^{*}\left(1 \leq i \leq h_{1}, 1 \leq j \leq d_{1}\right)$.

Let U_{1} be the potential number of nonzero coefficients of the polynomials $P_{1}, \ldots, P_{h_{1}}$, and $U_{2}=\max \left(d_{1}, U_{1}\right)$.

A solution \mathbf{n} of 2.2 is called non-degenerate if $\sum_{i \in I} P_{i}(\mathbf{n}) \boldsymbol{\vartheta}_{i}^{\mathbf{n}} \neq 0$ for every nonempty subset I of all $\left\{1, \ldots, h_{1}\right\}$. Let G be the subgroup of $\mathbb{Z}^{d_{1}}$ consisting of all vectors \mathbf{n} with $\boldsymbol{\vartheta}_{1}^{\mathbf{n}}=\cdots=\boldsymbol{\vartheta}_{h_{1}}^{\mathbf{n}}$.

Theorem B ([SS $)$. Suppose $G=\{\mathbf{0}\}$. Then the number $\mathfrak{U}\left(P_{1}, \ldots, P_{h_{1}}\right)$ of nondegenerate solutions $\mathbf{n} \in \mathbb{Z}^{d_{1}}$ of (2.2) satisfies the estimate

$$
\mathfrak{U}\left(P_{1}, \ldots, P_{h_{1}}\right) \leq U\left(d_{1}, P\right)=2^{35 U_{2}^{3}} s_{1}^{6 U_{2}^{2}}
$$

It is easy to get the following
Corollary. Let $d_{1}=d\left(h_{1}-1\right), \vartheta_{h_{1}, j}=1(j=1, \ldots, d), \vartheta_{i, j+(i-1) d}=$ $\vartheta_{j} \in K^{*}$ and $\vartheta_{i, j+\mu d}=1\left(\mu \in\left[0, h_{1}-2\right], \mu \neq i-1, i=1, \ldots, h_{1}-1\right.$, $j=1, \ldots, d), \overline{\mathbf{n}}=\left(\mathbf{n}_{1}, \ldots, \mathbf{n}_{h_{1}-1}\right), \mathbf{n}_{i}=\left(n_{i, 1}, \ldots, n_{i, d}\right)$ with $i=1, \ldots, h_{1}-1$, $P_{h_{1}}(\overline{\mathbf{n}}) \equiv-1$. Suppose

$$
\vartheta_{1}^{n_{1}} \cdots \vartheta_{d}^{n_{d}}=1 \Leftrightarrow\left(n_{1}, \ldots, n_{d}\right)=\mathbf{0}
$$

Then the number $\mathfrak{U}^{\prime}\left(P_{1}, \ldots, P_{h_{1}-1}\right)$ of nondegenerate solutions $\overline{\mathbf{n}} \in \mathbb{Z}^{d_{1}}$ of the equation

$$
\sum_{i=1}^{h_{1}-1} P_{i}(\overline{\mathbf{n}}) \boldsymbol{\vartheta}_{i}^{\overline{\mathbf{n}}}=\sum_{i=1}^{h_{1}-1} P_{i}(\overline{\mathbf{n}}) \vartheta_{1}^{n_{i, 1}} \cdots \vartheta_{d}^{n_{i, d}}=1
$$

satisfies the estimate

$$
\mathfrak{U}^{\prime}\left(P_{1}, \ldots, P_{h_{1}-1}\right) \leq U\left(d_{1}, P\right)
$$

We consider a sequence of commuting $s \times s$ matrices A_{1}, \ldots, A_{d}. By [Ga, p. 224, Corollary 2] the space \mathbb{C}^{s} can be decomposed into a direct sum
of subspaces invariant under all A_{j} :

$$
\mathbb{C}^{s}=I_{1} \oplus \cdots \oplus I_{w},
$$

such that the minimal polynomial of A_{j} on I_{i} is a power of a linear polynomial, $\left(x-\lambda_{i, j}\right)^{r_{j}}$, over \mathbb{C}. According to this decomposition, the matrices A_{1}, \ldots, A_{d} can be simultaneously brought into the following form with square blocks along the diagonal of sizes $r_{1}, \ldots, r_{w}, r_{1}+\cdots+r_{w}=s$:

$$
\Lambda_{1}=\left(\begin{array}{ccc}
\Lambda_{1,1} & & 0 \\
& \ddots & \\
0 & & \Lambda_{w, 1}
\end{array}\right), \ldots, \Lambda_{d}=\left(\begin{array}{ccc}
\Lambda_{1, d} & & 0 \\
& \ddots & \\
0 & & \Lambda_{w, d}
\end{array}\right)
$$

where all blocks $\Lambda_{i, j}$ have upper-triangular form with $\lambda_{i, j}$ on the diagonal, $1 \leq i \leq w, 1 \leq j \leq d$ (see, e.g., [MM, p. 77, ref. 4.21.1]).

Hence there exists an invertible $s \times s$ matrix T such that $A_{i}=T^{-1} \Lambda_{i} T$, $1 \leq i \leq d$,

$$
A_{1}^{n_{1}} \cdots A_{d}^{n_{d}}=T^{-1} \Lambda(\mathbf{n}) T, \quad \Lambda(\mathbf{n})=\left(\begin{array}{ccc}
\widetilde{\Lambda}_{1}(\mathbf{n}) & & 0 \tag{2.3}\\
& \ddots & \\
0 & & \widetilde{\Lambda}_{w}(\mathbf{n})
\end{array}\right)
$$

where $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right)$, and $\widetilde{\Lambda}_{\nu}(\mathbf{n})$ is an upper-triangular matrix with $\lambda_{\nu, 1}^{n_{1}} \cdots \lambda_{\nu, d}^{n_{d}}$ on the diagonal $(1 \leq \nu \leq w)$. Let $\widetilde{\Lambda}_{\nu}(\mathbf{n})=\left(\widetilde{\lambda}_{j, j^{\prime}}^{(\nu)}(\mathbf{n})\right)_{1 \leq j, j^{\prime} \leq r_{\nu}}$. Using the formula for the degree of Jordan's normal form of the matrices $\Lambda_{i, j}$ (see, e.g., [Ga, pp. 157-158]), we deduce that

$$
\begin{equation*}
\widetilde{\lambda}_{j, j^{\prime}}^{(\nu)}(\mathbf{n})=\lambda_{\nu, 1}^{n_{1}} \cdots \lambda_{\nu, d}^{n_{d}} P_{j, j^{\prime}}^{(\nu)}(\mathbf{n}) \tag{2.4}
\end{equation*}
$$

for some polynomial $P_{j, j^{\prime}}^{(\nu)}$. It is easy to see that

$$
\begin{equation*}
P_{j, j}^{(\nu)}(\mathbf{n})=1 \quad \text { and } \quad P_{j, j^{\prime}}^{(\nu)}(\mathbf{n})=0 \quad \text { for } j>j^{\prime} \tag{2.5}
\end{equation*}
$$

Taking into account that $\lambda_{i, 1}^{n_{1}} \cdots \lambda_{i, d}^{n_{d}}$ is an eigenvalue of $A_{1}^{n_{1}} \cdots A_{d}^{n_{d}}$, we infer from Definition 1 that

$$
\begin{equation*}
\lambda_{i, 1}^{n_{1}} \cdots \lambda_{i, d}^{n_{d}}=1 \Leftrightarrow\left(n_{1}, \ldots, n_{d}\right)=\mathbf{0}, \quad \text { with } \quad i \in[1, r] . \tag{2.6}
\end{equation*}
$$

Let $\hbar \geq 1$ be an integer, $F^{(\hbar)}=\{1, \ldots, \hbar\}, \tau_{1}, \ldots, \tau_{\hbar} \in\{-1,1\}, f=\# F, F=$ $(F(1), \ldots, F(f)) \subseteq F^{(\hbar)}, \overline{\mathbf{n}}^{(F)}=\left(\mathbf{n}_{F(1)}, \ldots, \mathbf{n}_{F(f)}\right), \overline{\mathbf{n}}=\overline{\mathbf{n}}^{\left(F^{(\hbar)}\right)}=\left(\mathbf{n}_{1}, \ldots, \mathbf{n}_{\hbar}\right)$, with $\mathbf{n}_{i}=\left(n_{i, 1}, \ldots, n_{i, d}\right)$. We will denote the transpose matrix $\mathbf{m}^{(t)}$ by the same symbol \mathbf{m}. Let $T \mathbf{m}=\tilde{\mathbf{m}}=\left(\tilde{m}_{1,1}, \ldots, \tilde{m}_{1, r_{1}}, \ldots, \tilde{m}_{w, 1}, \ldots, \tilde{m}_{w, r_{w}}\right)^{(t)}$,

$$
\begin{equation*}
C\left(\overline{\mathbf{n}}^{(F)}\right)=\sum_{\mu \in F} \tau_{\mu} T A_{1}^{n_{\mu, 1}} \cdots A_{d}^{n_{\mu, d}} \mathbf{m} \tag{2.7}
\end{equation*}
$$

and
$C\left(\overline{\mathbf{n}}^{(F)}\right)=\left(C\left(\overline{\mathbf{n}}^{(F)}\right)_{1,1}, \ldots, C\left(\overline{\mathbf{n}}^{(F)}\right)_{1, r_{1}}, \ldots, C\left(\overline{\mathbf{n}}^{(F)}\right)_{w, 1}, \ldots, C\left(\overline{\mathbf{n}}^{(F)}\right)_{w, r_{w}}\right)^{(t)}$.

By (2.4) we get

$$
\begin{equation*}
C\left(\overline{\mathbf{n}}^{(F)}\right)_{\nu, j}=\sum_{\mu \in F} \tau_{\mu} \lambda_{\nu, 1}^{n_{\mu, 1}} \cdots \lambda_{\nu, d}^{n_{\mu, d}} \sum_{j^{\prime}=1}^{r_{\nu}} P_{j, j^{\prime}}^{(\nu)}(\mathbf{n}) \tilde{m}_{\nu, j^{\prime}} \tag{2.8}
\end{equation*}
$$

Since $\tilde{\mathbf{m}} \neq 0$, there exist $\nu_{0} \in[1, w], j_{0} \in\left[1, r_{\nu_{0}}\right]$ with
(2.9) $\quad \tilde{m}_{\nu_{0}, j_{0}} \neq 0 \quad$ and $\quad \tilde{m}_{\nu, j}=0 \quad$ for $\nu>\nu_{0}$ and for $\nu=\nu_{0}, j>j_{0}$.

From 2.5 , we have

$$
\begin{equation*}
P_{j, j^{\prime}}^{\left(\nu_{0}\right)}(\mathbf{n}) \tilde{m}_{\nu_{0}, j^{\prime}}=0 \quad \text { for } j^{\prime} \neq j_{0} \tag{2.10}
\end{equation*}
$$

By (2.5) and (2.8)-2.10), we obtain

$$
\begin{equation*}
C\left(\overline{\mathbf{n}}^{(F)}\right)_{\nu_{0}, j_{0}}=L\left(\overline{\mathbf{n}}^{(F)}, \nu_{0}\right) \tilde{m}_{\nu_{0}, j_{0}} \quad \text { with } \quad L\left(\overline{\mathbf{n}}^{(F)}, \nu\right)=\sum_{\mu \in F} \tau_{\mu} \lambda_{\nu, 1}^{n_{\mu, 1}} \cdots \lambda_{\nu, d}^{n_{\mu, d}} . \tag{2.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
C\left(\overline{\mathbf{n}}^{(F)}\right)=\mathbf{0} \Rightarrow L\left(\overline{\mathbf{n}}^{(F)}, \nu_{0}\right)=0 \tag{2.12}
\end{equation*}
$$

Let

$$
\begin{align*}
\delta(\mathfrak{T}) & = \begin{cases}1 & \text { if } \mathfrak{T} \text { is true }, \\
0 & \text { otherwise },\end{cases} \tag{2.13}\\
R(\mathbf{N}, F, \nu)= & \left\{\left(\mathbf{n}_{F(1)}, \ldots, \mathbf{n}_{F(f)}\right) \in R(\mathbf{N})^{f} \mid\right. \tag{2.14}\\
& \left.\nexists F^{\prime} \subsetneq F^{(\hbar)} \text { with } L\left(\overline{\mathbf{n}}^{\left(F^{\prime}\right)}, \nu\right)=0\right\} .
\end{align*}
$$

We denote

$$
\sum_{\tau_{i} \in\{-1,1\}, i=1, \ldots, \hbar} \text { by } \sum_{\tau}, \text { and } \sum_{\tau_{i} \in\{-1,1\}, i \in F} \text { by } \sum_{\tau, F} \text {. }
$$

Lemma 1. Let $f=\# F$ and

$$
\sigma=\sum_{\left(\mathbf{n}_{F(1)}, \ldots, \mathbf{n}_{F(f)}\right) \in R\left(\mathbf{N}, F, \nu_{0}\right)} \sum_{\tau, F}(2 \mathcal{A}(\mathbf{N}))^{-f} a_{a_{\mathbf{n}_{F(1)}} \cdots a_{\mathbf{n}_{F(f)}} \delta\left(L\left(\overline{\mathbf{n}}^{(F)}, \nu_{0}\right)=\gamma\right) . . ~ . ~} .
$$

Then

$$
\sigma= \begin{cases}0 & \text { if } \gamma=0, f=1 \\ 1 & \text { if } \gamma=0, f=2 \\ O(\rho(\mathbf{N})) & \text { if } \gamma=0, f \geq 3 \\ O(\rho(\mathbf{N})) & \text { if } \gamma \neq 0,\end{cases}
$$

where $\rho(\mathbf{N})=\max _{\mathbf{n} \in R(\mathbf{N})}\left|a_{\mathbf{n}}\right| / \mathcal{A}(\mathbf{N})$ and the O-constants depend only on \hbar.
Proof. Let $\gamma \neq 0$. Bearing in mind Definition 1 and that $\lambda_{i, j}$ are algebraic integers, we can apply the Corollary. We take $h_{1}=\hbar+1, s_{1}=s^{2}, U_{2}=$ $d_{1}=d \hbar$ and $U\left(d_{1}, P\right)=2^{35 U_{2}^{3}} s^{12 U_{2}^{2}}$. From 2.3), 2.11 and 2.14 we get

$$
\sigma \leq U\left(d_{1}, P\right) \rho(\mathbf{N})^{f}
$$

Let $\gamma=0$. We see that there are no solutions of the equation $L\left(\overline{\mathbf{n}}^{(F)}, \nu_{0}\right)$ $=0$ if $f=1$.

Suppose $f=2$. By 2.11, we obtain

$$
\begin{equation*}
-\tau_{1} \tau_{2} \lambda_{\nu_{0}, 1}^{n_{F(1), 1}-n_{F(2), 1}} \cdots \lambda_{\nu_{0}, d}^{n_{F(1), d}-n_{F(2), d}}=1 \tag{2.15}
\end{equation*}
$$

Hence

$$
\lambda_{\nu_{0}, 1}^{2\left(n_{F(1), 1}-n_{F(2), 1}\right)} \cdots \lambda_{\nu_{0}, d}^{2\left(n_{F(1), d}-n_{F(2), d}\right)}=1
$$

Using (2.6), we find that $n_{F(1), i}-n_{F(2), i}=0, i=1, \ldots, d$. By 2.15), we get $\tau_{1}=-\tau_{2}$. We derive from (1.1) that $\sigma=1$.

Suppose $f \geq 3$. We fix $\mathbf{n}_{F(f)}$. Let $n_{F(\mu), i}^{\prime}=n_{F(\mu), i}-n_{F(f), i}(1 \leq \mu<f)$. We see that

$$
\begin{equation*}
-\tau_{f} \sum_{\mu=1}^{f-1} \tau_{\mu} \lambda_{\nu_{0}, 1}^{n_{F(\mu), 1}^{\prime}} \cdots \lambda_{\nu_{0}, d}^{n_{F(\mu), d}^{\prime}}=1 \tag{2.16}
\end{equation*}
$$

Applying the Corollary, we see that the number of solutions of (2.16) is $O(\hbar)$. Let $V(\hbar)$ be the maximum of $\left|n_{F(\mu), i}^{\prime}\right|(\mu=1, \ldots, f-1, i=1, \ldots, d)$ for all solutions of 2.16). Let $W(\hbar)=[-V(\hbar), V(\hbar)]^{d}$. Thus

$$
\begin{aligned}
\sigma & \leq \sum_{\mathbf{n}_{1}^{\prime}, \ldots, \mathbf{n}_{f-1}^{\prime} \in W(\hbar)^{f-1}} \sum_{\substack{\mathbf{n}_{f}, \mathbf{n}_{f}+\mathbf{n}_{i}^{\prime} \in R(\mathbf{N}) \\
i=1, \ldots, f-1}} \sum_{\tau}(2 \mathcal{A}(\mathbf{N}))^{-f} a_{\mathbf{n}_{f}+\mathbf{n}_{1}^{\prime}} \cdots a_{\mathbf{n}_{f}+\mathbf{n}_{f-1}^{\prime}} a_{\mathbf{n}_{f}} \\
& \leq(2 V(\hbar)+1)^{d(f-2)} \rho(\mathbf{N})^{f-2} \sum_{\mathbf{n}_{1}^{\prime} \in W(\hbar)} \sum_{\mathbf{n}_{f}, \mathbf{n}_{f}+\mathbf{n}_{1}^{\prime} \in R(\mathbf{N})} \mathcal{A}(\mathbf{N})^{-2} a_{\mathbf{n}_{f}+\mathbf{n}_{1}^{\prime}} a_{\mathbf{n}_{f}}
\end{aligned}
$$

Bearing in mind that $\left|a_{\mathbf{n}_{f}+\mathbf{n}_{1}^{\prime}} a_{\mathbf{n}_{f}}\right| \leq \frac{1}{2}\left(a_{\mathbf{n}_{f}+\mathbf{n}_{1}^{\prime}}^{2}+a_{\mathbf{n}_{f}}^{2}\right)$, we obtain

$$
\sigma \leq(2 V(\hbar)+1)^{d(f-1)} \rho(\mathbf{N})^{f-2}
$$

Hence Lemma 1 is proved.
Let $\mathcal{F}_{r}=\left(F_{1}, \ldots, F_{r}\right)$ be a partition of $F^{(\hbar)}=\{1, \ldots, \hbar\}$, i.e.

$$
F_{1} \cup \cdots \cup F_{r}=F^{(\hbar)}, \quad F_{i} \cap F_{j}=\emptyset, \quad i \neq j, \quad F_{i}(j)<F_{i}(k) \quad \text { for } j<k
$$

Let $\left(F_{1}, \ldots, F_{r_{1}}\right)=\left(F_{1}^{\prime}, \ldots, F_{r_{2}}^{\prime}\right)$ if $r_{1}=r_{2}$ and for each $i \in\left[1, r_{1}\right]$ there exists $k \in\left[1, r_{1}\right]$ such that $F_{i}(j)=F_{k}^{\prime}(j)$ for all $j \in\left[1, f\left(F_{i}\right)\right]$. We denote by \mathfrak{F}_{\hbar} the set of all nonequivalent partitions of $F^{(\hbar)}$.

Definition 2. Set $\mathfrak{g}(\overline{\mathbf{n}})=1$ if $\hbar=2 \hbar_{1}$ and there exists a partition $\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{\hbar}$ with $\# F_{i}=2, L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0$ and $\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}$ $\left(i=1, \ldots, \hbar_{1}\right)$, and set $\mathfrak{g}(\overline{\mathbf{n}})=0$ otherwise.

Definition 3. Set $\mathfrak{g}_{1}(\overline{\mathbf{n}})=1$ if $\mathfrak{g}(\overline{\mathbf{n}})=1$ and there are no $1 \leq j_{1}<j_{2}<$ $j_{3} \leq \hbar$ with $\mathbf{n}_{j_{1}}=\mathbf{n}_{j_{2}}=\mathbf{n}_{j_{3}}$, and set $\mathfrak{g}_{1}(\overline{\mathbf{n}})=0$ otherwise.

Lemma 2. Define

$$
\sigma_{0}=\sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}})=\mathbf{0}) \delta(\mathfrak{g}(\overline{\mathbf{n}})=0)
$$

Then

$$
\sigma_{0}=O(\rho(\mathbf{N}))
$$

Proof. Suppose $C(\overline{\mathbf{n}})=\mathbf{0}$. By (2.12) and (2.14), there exists a partition $\mathcal{F}_{r}=\left(F_{1}, \ldots, F_{r}\right) \in \mathfrak{F}_{\hbar}$ such that

$$
L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0 \quad \text { and } \quad \overline{\mathbf{n}}^{\left(F_{i}\right)} \in R\left(\mathbf{N}, F_{i}, \nu_{0}\right), \quad i=1, \ldots, r
$$

Using (2.13), we have

$$
\delta(C(\overline{\mathbf{n}})=\mathbf{0}) \leq \sum_{r=1}^{\hbar} \sum_{\mathcal{F}_{r} \in \mathfrak{F}_{\hbar}} \prod_{i=1}^{r} \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0\right) \delta\left(\overline{\mathbf{n}}^{\left(F_{i}\right)} \in R\left(\mathbf{N}, F_{i}, \nu_{0}\right)\right)
$$

Let $f_{i}=\# F_{i}, \mathfrak{f}^{-}=\min _{1 \leq i \leq r} f_{i}$ and $\mathfrak{f}^{+}=\max _{1 \leq i \leq r} f_{i}$. Moreover, define $\mathfrak{F}_{\hbar, 1}=\left\{\mathcal{F}_{r} \in \mathfrak{F}_{\hbar} \mid \mathfrak{f}^{-}=1\right\}$ and

$$
\begin{align*}
& \mathfrak{F}_{\hbar, 2}=\left\{\mathcal{F}_{r} \in \mathfrak{F}_{\hbar} \mid \mathfrak{f}^{-}=\mathfrak{f}^{+}=2\right\}, \quad \mathfrak{F}_{\hbar, 3}=\left\{\mathcal{F}_{r} \in \mathfrak{F}_{\hbar} \mid \mathfrak{f}^{+} \geq 3\right\}, \tag{2.17}\\
& \sigma_{l_{1}, l_{2}, l_{3}}=\sum_{r=1}^{\hbar} \sum_{\mathcal{F}_{r} \in \mathfrak{F}_{\hbar, l_{3}}} \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \tag{2.18}\\
& \times \prod_{i=1}^{r} \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0\right) \delta\left(\overline{\mathbf{n}}^{\left(F_{i}\right)} \in R\left(\mathbf{N}, F_{i}, \nu_{0}\right)\right) \delta\left(\mathfrak{g}(\overline{\mathbf{n}})=l_{1}\right) \delta\left(\mathfrak{g}_{1}(\overline{\mathbf{n}})=l_{2}\right) .
\end{align*}
$$

Changing the order of summation, we obtain

$$
\begin{equation*}
\sigma_{0} \leq \sum_{l_{2} \in\{0,1\}} \sum_{l_{3} \in\{1,2,3\}} \sigma_{0, l_{2}, l_{3}} \tag{2.19}
\end{equation*}
$$

Suppose $\mathfrak{f}^{-}=1$. By 2.11 , there is no solution of the equation $L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0$ with $\# F_{i}=1$. Hence

$$
\begin{equation*}
\sum_{l_{1}, l_{2} \in\{0,1\}} \sigma_{l_{1}, l_{2}, 1}=0 \tag{2.20}
\end{equation*}
$$

Suppose $\mathfrak{f}^{+} \geq 3$. We have

$$
\begin{aligned}
& \quad \sum_{l_{1}, l_{2} \in\{0,1\}} \sigma_{l_{1}, l_{2}, 3} \leq \sum_{r \in[1, \hbar]} \sum_{\mathcal{F}_{r} \in \tilde{\mathfrak{F}}_{\hbar, 3}} \sum_{\tau} 1 \\
& \quad \times \prod_{i \in[1, r]]} \sum_{\overline{\mathbf{n}}^{\left(F_{i}\right)} \in R\left(\mathbf{N}, F_{i}, \nu_{0}\right)}(2 \mathcal{A}(\mathbf{N}))^{-f_{i}} a_{\mathbf{n}_{F_{i}(1)}} \cdots a_{\mathbf{n}_{F_{i}\left(f_{i}\right)}} \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0\right) .
\end{aligned}
$$

Applying Lemma 1, we have

$$
\begin{equation*}
\sum_{l_{1}, l_{2} \in\{0,1\}} \sigma_{l_{1}, l_{2}, 3}=O(\rho(\mathbf{N})) \tag{2.21}
\end{equation*}
$$

Now we consider the case $\mathfrak{f}^{-}=\mathfrak{f}^{+}=2$ and $l_{1}=0$. We see that \hbar is even. Let $\hbar=2 \hbar_{1}$ and $\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{\hbar}$. Suppose $L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0$. By (2.15) and (2.6), we get $\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}$. Using Definition 2, we find that the inner sum in (2.18) is zero. From (2.19)-2.21), we conclude that $\sigma_{0}=O(\rho(\mathbf{N}))$.

Lemma 3. Let

$$
\sigma^{(1)}(\mathbf{N})=\sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}})=\mathbf{0}) e\left(\tau_{1} \phi_{\mathbf{n}_{1}}+\cdots+\tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}\right) .
$$

Then

$$
\sigma^{(1)}(\mathbf{N})= \begin{cases}\frac{\hbar!}{2^{\hbar / 2}(\hbar / 2)!}+O(\rho(\mathbf{N})) & \text { if } \hbar \text { is even } \\ O(\rho(\mathbf{N})) & \text { if } \hbar \text { is odd. }\end{cases}
$$

Proof. Let $l_{1}, l_{2} \in\{0,1\}$, and define

$$
\begin{align*}
& \sigma_{l_{1}}\left(l_{2}\right)=\sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \tag{2.22}\\
& \quad \times e\left(\tau_{1} \phi_{\mathbf{n}_{1}}+\cdots+\tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}\right) \delta(C(\overline{\mathbf{n}})=\mathbf{0}) \delta\left(\mathfrak{g}(\overline{\mathbf{n}})=l_{1}\right) \delta\left(\mathfrak{g}_{1}(\overline{\mathbf{n}})=l_{2}\right) .
\end{align*}
$$

By (2.13),

$$
\begin{equation*}
\sigma^{(1)}(\mathbf{N})=\sigma_{0}(0)+\sigma_{0}(1)+\sigma_{1}(0)+\sigma_{1}(1) . \tag{2.23}
\end{equation*}
$$

From Lemma 2, we have

$$
\left|\sigma_{0}(0)\right|+\left|\sigma_{0}(1)\right| \leq \sigma_{0}=O(\rho(\mathbf{N})) .
$$

Assume $\mathfrak{g}(\overline{\mathbf{n}})=1$. By Definition $2, \hbar$ is even. Write $\hbar=2 \hbar_{1}$, and let $\mathfrak{g}_{1}(\overline{\mathbf{n}})=0$. Using 2.18, (2.20) and 2.21, we get
(2.24) $\left|\sigma_{1}(0)\right| \leq \sigma_{1,0,1}+\sigma_{1,0,2}+\sigma_{1,0,3} \quad$ and $\quad \sigma_{1,0,1}+\sigma_{1,0,3}=O(\rho(\mathbf{N}))$.

Consider $\sigma_{1,0,2}$. For all $\mathcal{F}_{r} \in \mathfrak{F}_{\hbar, 2}$ (see 2.17), we get $r=\hbar_{1}$ and $\mathfrak{f}^{-}=\mathfrak{f}^{+}=2$. By (2.18,

$$
\begin{align*}
& \sigma_{1,0,2} \leq \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{2 \hbar_{1}}} \sum_{\tau} \sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \tilde{\mathfrak{F}}_{2 \hbar_{1}}}(2 \mathcal{A}(\mathbf{N}))^{-2 \hbar_{1}} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{2 \hbar_{1}}} \tag{2.25}\\
& \quad \times \delta\left(\mathfrak{f}^{-}=\mathfrak{f}^{+}=2\right) \delta(\mathfrak{g}(\overline{\mathbf{n}})=1) \delta\left(\mathfrak{g}_{1}(\overline{\mathbf{n}})=0\right) \prod_{i=1}^{r} \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0\right) .
\end{align*}
$$

Applying (2.15) and (2.6), we obtain $\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}\left(i=1, \ldots, \hbar_{1}\right)$. Now we derive from Definition 3 that $\hbar_{1} \geq 2$, and there exist $1 \leq j_{1}<j_{2}<j_{3} \leq \hbar$ with $\mathbf{n}_{j_{1}}=\mathbf{n}_{j_{2}}=\mathbf{n}_{j_{3}}$. Suppose $F_{i}(k)=j_{1}$ for some $i \in\left[1, \hbar_{1}\right]$ and $k \in\{1,2\}$. We see that there exist $\mu \in\left[1, \hbar_{1}\right] \backslash\{i\}$ and $l \in\{2,3\}$ such that $j_{l} \in F_{\mu}$.

Hence $\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}=\mathbf{n}_{F_{\mu}(1)}=\mathbf{n}_{F_{\mu}(2)}$. Therefore

$$
\begin{aligned}
\sigma_{1,0,2} & \leq \sum_{i, \mu \in\left[1, \hbar_{1}\right],, i \neq \mu} \sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}} \sum_{\tau} \delta\left(\mathfrak{f}^{-}=\mathfrak{f}^{+}=2\right) \\
& \times \sum_{\mathbf{n}_{F_{i}(1)} \in R(\mathbf{N})}(2 \mathcal{A}(\mathbf{N}))^{-4} a_{\mathbf{n}_{F_{i}(1)}}^{4} \prod_{l \in\left[1, \hbar_{1}\right], l \neq i, \mu} \sum_{\mathbf{n}_{F_{l}(1)} \in R(\mathbf{N})}(2 \mathcal{A}(\mathbf{N}))^{-2} a_{\mathbf{n}_{F_{l}(1)}}^{2} .
\end{aligned}
$$

By (2.24) and (1.1) we have

$$
\begin{equation*}
\sigma_{1}(0)=O\left(\rho(\mathbf{N})^{2}\left(\sum_{\mathbf{n} \in \mathbf{R}(\mathbf{N})} \mathcal{A}(\mathbf{N})^{2} a_{\mathbf{n}}^{2}\right)^{\hbar_{1}-1}\right)=O\left(\rho(\mathbf{N})^{2}\right) \tag{2.26}
\end{equation*}
$$

Now assume $\mathfrak{g}_{1}(\overline{\mathbf{n}})=1$. We consider $\sigma_{1}(1)$ (see 2.22$)$. From Definitions 2 and 3 , we have

$$
\mathfrak{g}_{1}(\overline{\mathbf{n}})=\sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}, \# F_{i}=2, i=1, \ldots, \hbar_{1}} \mathfrak{g}_{1}(\overline{\mathbf{n}})
$$

Thus

$$
\begin{aligned}
& \sigma_{1}(1)= \\
& \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}, \# F_{i}=2, i=1, \ldots, \hbar_{1}}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}})=\mathbf{0}) \\
& \times e\left(\tau_{1} \phi_{\mathbf{n}_{1}}+\cdots+\tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}\right) \delta\left(\mathfrak{g}_{1}(\overline{\mathbf{n}})=1\right) \prod_{i=1}^{\hbar_{1}} \delta\left(\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}\right) \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0\right) .
\end{aligned}
$$

Assume $L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0$. By 2.15 and 2.6, we get $\tau_{F_{i}(1)}=-\tau_{F_{i}(2)}$. Hence $e\left(\tau_{F_{i}(1)} \phi_{\mathbf{n}_{F_{i}(1)}}+\tau_{F_{i}(2)} \phi_{\mathbf{n}_{F_{i}(2)}}\right)=1$. Thus $\sigma(1)=\dot{\sigma}-\ddot{\sigma}$, where

$$
\begin{align*}
& \dot{\sigma}=\sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}, \# F_{i}=2, i=1, \ldots, \hbar_{1}}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} \tag{2.27}\\
& \times a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \prod_{i=1}^{\hbar_{1}} \delta\left(\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}\right) \delta\left(\tau_{F_{i}(1)}=-\tau_{F_{i}(2)}\right),
\end{align*}
$$

and

$$
\begin{aligned}
& \ddot{\sigma}=\sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}, \# F_{i}=2, i=1, \ldots, \hbar_{1}}(2 \mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \\
& \times \prod_{i=1}^{\hbar_{1}} \delta\left(\mathbf{n}_{F_{i}(1)}=\mathbf{n}_{F_{i}(2)}\right) \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=0\right) \delta\left(\mathfrak{g}_{1}(\overline{\mathbf{n}})=0\right) .
\end{aligned}
$$

From 2.25 and 2.26, we obtain

$$
\begin{equation*}
\ddot{\sigma}=O(\rho(\mathbf{N})) \tag{2.28}
\end{equation*}
$$

By (2.27), we get

$$
\begin{aligned}
\dot{\sigma} & =\sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}, \# F_{i}=2, i=1, \ldots, \hbar_{1}} \prod_{i=1}^{\hbar_{1}} \sum_{\mathbf{n}_{F_{i}(1)} \in R(\mathbf{N})} 2(2 \mathcal{A}(\mathbf{N}))^{-2} a_{\mathbf{n}_{F_{i}(1)}}^{2} \\
& =\sum_{\left(F_{1}, \ldots, F_{\hbar_{1}}\right) \in \mathfrak{F}_{2 \hbar_{1}}, \# F_{i}=2, i=1, \ldots, \hbar_{1}} 1=\frac{1}{\hbar_{1}!}\binom{2 \hbar_{1}}{2}\binom{2 \hbar_{1}-2}{2} \cdots\binom{2}{2}=\frac{\left(2 \hbar_{1}\right)!}{\hbar_{1}!2^{\hbar_{1}}} .
\end{aligned}
$$

Now Lemma 3 follows from (2.23, (2.24) and 2.26-2.28).
Lemma 4. Let $\boldsymbol{\gamma} \neq \mathbf{0}$, and define

$$
\begin{aligned}
& \sigma^{(2)}(\mathbf{N}, \boldsymbol{\gamma})=\sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \mathcal{A}(\mathbf{N})^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \\
& \times \delta(C(\overline{\mathbf{n}})=-T \boldsymbol{\gamma}) e\left(\tau_{1} \phi_{\mathbf{n}_{1}}+\cdots+\tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\sigma^{(2)}(\mathbf{N}, \gamma)=O(\rho(\mathbf{N})) \tag{2.29}
\end{equation*}
$$

with the O-constant depending only on \hbar.
Proof. Let $-T \gamma=\left(\gamma_{1,1}, \ldots, \gamma_{1, r_{1}}, \ldots, \gamma_{w, 1}, \ldots, \gamma_{w, r_{w}}\right)$ and define $\nu_{1}=$ $\max \left\{\nu \in[1, w] \mid\left(\gamma_{\nu, 1}, \ldots, \gamma_{\nu, r_{\nu}}\right) \neq \mathbf{0}\right\}$. Assume $\gamma_{\nu_{1}, j_{1}} \neq 0$, and $\gamma_{\nu_{1}, j}=0$ for $j>j_{1}$.

Suppose $\left(\tilde{m}_{\nu_{1}, 1}, \ldots, \tilde{m}_{\nu_{1}, r_{\nu_{1}}}\right)=\mathbf{0}$. By (2.8), the equation $C(\overline{\mathbf{n}})_{\nu_{1}, j_{1}}=\gamma_{\nu_{1}, j_{1}}$ has no solution, and the assertion is proved in this case.

Now suppose $\left(\tilde{m}_{\nu_{1}, 1}, \ldots, \tilde{m}_{\nu_{1}, r_{\nu_{1}}}\right) \neq \mathbf{0}$ and $\tilde{m}_{\nu_{1}, j_{2}} \neq 0, \tilde{m}_{\nu_{1}, j}=0$ for $j>j_{2}$. By (2.8) and (2.9), $\nu_{1} \leq \nu_{0}$. Suppose $\nu_{1}=\nu_{0}$ and $j_{1}>j_{0}$. By (2.10), $P_{j_{1}, j^{\prime}}^{\left(\nu_{0}\right)}(\mathbf{n}) \tilde{m}_{\nu_{0}, j^{\prime}}=0$ for $j^{\prime} \neq j_{1}$. By 2.8 and 2.11, $C(\overline{\mathbf{n}})_{\nu_{0}, j_{1}}=0$. Thus the equation $C(\overline{\mathbf{n}})_{\nu_{0}, j_{1}}=\gamma_{\nu_{0}, j_{1}}=\gamma_{\nu_{1}, j_{1}} \neq 0$ has no solution.

Let $\nu_{1}=\nu_{0}$ and $j_{1}=j_{2}=j_{0}$. From 2.3-2.11) we deduce that $L\left(\overline{\mathbf{n}}, \nu_{0}\right)=\gamma_{\nu_{0}, j_{0}} / \tilde{m}_{\nu_{0}, j_{0}} \neq 0$. Analogously to the proof of Lemma 2, we obtain 2.29) from Lemma 1.

Consider the case $\nu_{1}<\nu_{0}$ or $\nu_{1}=\nu_{0}, j_{1}<j_{0}$. By 2.4, 2.7) and 2.11, we find that if $C(\overline{\mathbf{n}})=-T \gamma$, then

$$
\begin{equation*}
C(\overline{\mathbf{n}})_{\nu_{0}, j_{0}}=\gamma_{\nu_{0}, j_{0}}=0=L\left(\overline{\mathbf{n}}, \nu_{0}\right) \quad \text { and } \quad C(\overline{\mathbf{n}})_{\nu_{1}, j_{1}}=\gamma_{\nu_{1}, j_{1}} \neq 0 \tag{2.30}
\end{equation*}
$$

It is easy to see that there exists a set $F_{0} \subseteq F^{(\hbar)}$ with

$$
C\left(\overline{\mathbf{n}}^{\left(F_{0}\right)}\right)_{\nu_{1}, j_{1}}=\gamma_{\nu_{1}, j_{1}}, \quad C\left(\overline{\mathbf{n}}^{\left(F^{\prime}\right)}\right)_{\nu_{1}, j_{1}} \neq 0 \quad \forall F^{\prime} \subset F_{0}
$$

Define

$$
\begin{aligned}
R^{*}(\mathbf{N}, F)=\left\{\overline{\mathbf{n}}^{(F)} \in R(\mathbf{N})^{f} \mid C\left(\overline{\mathbf{n}}^{(F)}\right)_{\nu_{1}, j_{1}}=\right. & \gamma_{\nu_{1}, j_{1}} \\
& \left.\nexists F^{\prime} \subsetneq F \text { with } C\left(\overline{\mathbf{n}}^{\left(F^{\prime}\right)}\right)_{\nu_{1}, j_{1}}=0\right\} .
\end{aligned}
$$

Applying 2.8, 2.6) and the Corollary, we get

$$
\begin{equation*}
\# R^{*}\left(\mathbf{N}, F_{0}\right)=O(1) \tag{2.31}
\end{equation*}
$$

with the O-constant depending only on \hbar. If $F_{0}=F^{(\hbar)}$, then 2.29 easily follows from (1.1).

Now assume $F_{0} \neq F^{(\hbar)}$ and $\overline{\mathbf{n}}_{0}^{\left(F_{0}\right)} \in R^{*}\left(\mathbf{N}, F_{0}\right)$. Let F^{\perp} be the subset of $F^{(\hbar)}$ with $F \cup F^{\perp}=F^{(\hbar)}$ and $F \cap F^{\perp}=\emptyset$. We derive from 2.14 and 2.30 that there exists a partition $\left(F_{1}, \ldots, F_{r}\right)$ of F_{0}^{\perp} such that

$$
L\left(\overline{\mathbf{n}}_{0}^{\left(F_{i}\right)}, \nu_{0}\right)=\gamma^{(i)} \quad \text { and } \quad \overline{\mathbf{n}}_{0}^{\left(F_{i}\right)} \in R\left(\mathbf{N}, F_{i}, \nu_{0}\right),
$$

where $\gamma^{(1)}=\cdots=\gamma^{(r-1)}=0$ and $\gamma^{(r)}=-L\left(\overline{\mathbf{n}}_{0}^{\left(F_{0}\right)}, \nu_{0}\right) \tilde{m}_{\nu_{0}, j_{0}}$. Applying Lemma 1, we get

$$
\begin{aligned}
& \sigma^{(3)}\left(\mathbf{N}, \gamma, \overline{\mathbf{n}}_{0}^{\left(F_{0}\right)}\right):=\sum_{r=1}^{\hbar-1} \sum_{\left(F_{1}, \ldots, F_{r}, F_{0}\right) \in \tilde{\mathfrak{F}}_{\hbar}} \sum_{\tau} 1 \\
& \quad \times \prod_{i=1}^{r} \sum_{\overline{\mathbf{n}}^{\left(F_{i}\right)} \in R\left(\mathbf{N}, F_{i}, \nu_{0}\right)} \mathcal{A}(\mathbf{N})^{-f_{i}} a_{\mathbf{n}_{F_{i}(1)}} \cdots a_{\mathbf{n}_{F_{i}\left(f_{i}\right)}} \delta\left(L\left(\overline{\mathbf{n}}^{\left(F_{i}\right)}, \nu_{0}\right)=\gamma^{(i)}\right)=O(1) .
\end{aligned}
$$

By (1.1), 2.30 and (2.31, we obtain

$$
\begin{aligned}
& \left|\sigma^{(2)}(\mathbf{N}, \gamma)\right| \leq \sum_{F_{0} \subsetneq F^{(\hbar)}} \sum_{\tau} 1 \\
& \quad \times \sum_{\overline{\mathbf{n}}_{0}^{\left(F_{0}\right)} \in R\left(\mathbf{N}, F_{0}\right)} \mathcal{A}(\mathbf{N})^{-f_{0}} a_{\mathbf{n}_{0, F_{0}(1)}} \cdots a_{\mathbf{n}_{0, F_{0}\left(f_{0}\right)}} \sigma^{(3)}\left(\mathbf{N}, \gamma, \overline{\mathbf{n}}_{0}^{\left(F_{0}\right)}\right)=O\left(\rho(\mathbf{N})^{f_{0}}\right) .
\end{aligned}
$$

Thus, Lemma 4 is proved.
Let

$$
f(\mathbf{x})=\sum_{\boldsymbol{\gamma} \in \mathbb{Z}^{s}} c_{\boldsymbol{\gamma}} e(2 \pi\langle\boldsymbol{\gamma}, \mathbf{x}\rangle)
$$

be an absolutely convergent trigonometric series.
Lemma 5. With the above notations, we have

$$
\lim _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} f(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{\hbar} d \mathbf{x}= \begin{cases}\frac{\hbar!}{2^{\hbar / 2}(\hbar / 2)!} c_{\mathbf{0}} & \text { if } \hbar \text { is even } \\ 0 & \text { if } \hbar \text { is odd }\end{cases}
$$

Proof. By (1.2), we get

$$
\begin{aligned}
& f(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{\hbar}=\sum_{\gamma \in \mathbb{Z}^{s}} c_{\gamma} \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \mathcal{A}(\mathbf{N})^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \\
& \times e\left(2 \pi\left\langle\gamma+C\left(\overline{\mathbf{n}}^{(F)}\right), \mathbf{x}\right\rangle+\phi_{\mathbf{n}_{1}}+\cdots+\phi_{\mathbf{n}_{\hbar}}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{[0,1]^{s}} f(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{\hbar} d \mathbf{x} \\
&=\sum_{\gamma \in \mathbb{Z}^{s}} c_{\gamma} \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \mathcal{A}(\mathbf{N})^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \delta\left(C\left(\overline{\mathbf{n}}^{(F)}\right)=-\gamma\right) \\
&=c_{\mathbf{0}} \sigma^{(1)}(\mathbf{N})+\sum_{\gamma \in \mathbb{Z}^{s} \backslash\{0\}} c_{\boldsymbol{\gamma}} \sigma^{(2)}(\mathbf{N}, \boldsymbol{\gamma}) .
\end{aligned}
$$

Using Lemmas 3 and 4, we obtain the assertion.
2.1. End of the proof of the Theorem. It is sufficient to prove the Theorem for a box $D=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right] \subset(0,1)^{s}$. Let $\chi_{D}(\cdot)$ be the indicator function of $D, D^{-}=\prod_{1 \leq i \leq s}\left[a_{i}+\epsilon, b_{i}-\epsilon\right]$, and $D^{+}=$ $\prod_{1 \leq i \leq s}\left[a_{i}-\epsilon, b_{i}+\epsilon\right] \subset(0,1)^{s}$.

We fix a nonnegative function $\omega(x), x \in \mathbb{R}$, of class C^{∞}, supported inside the interval $|x| \leq 1$, such that $\int_{\mathbb{R}} \omega(x) d x=1$. Let $\omega_{1}(\mathbf{x})=\omega\left(x_{1}\right) \cdots \omega\left(x_{s}\right)$, $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$. The Fourier transform $\hat{\omega}_{1}(\mathbf{y})=\int_{\mathbb{R}^{s}} \omega_{1}(\mathbf{x}) e(2 \pi\langle\mathbf{x}, \mathbf{y}\rangle) d \mathbf{x}$ of $\omega_{1}(\mathbf{x})$ satisfies

$$
\begin{equation*}
\hat{\omega}_{1}(\mathbf{y})=O\left((1+|\mathbf{y}|)^{-10 s}\right) . \tag{2.32}
\end{equation*}
$$

Let $\omega_{\epsilon}(\mathbf{x})=\epsilon^{-s} \omega_{1}\left(\epsilon^{-1} \mathbf{x}\right)$. We consider the convolution of the indicator function $\chi_{D^{ \pm}}(\cdot)$ with $\omega_{\epsilon}(\cdot)$:

$$
\begin{equation*}
\chi_{D^{ \pm}, \epsilon}(\mathbf{y})=\int_{[0,1]^{s}} \chi_{D^{ \pm}}(\mathbf{x}) \omega_{\epsilon}(\mathbf{x}-\mathbf{y}) d \mathbf{x} \tag{2.33}
\end{equation*}
$$

Hence $\hat{\chi}_{D^{ \pm}, \epsilon}(\mathbf{y})=\hat{\chi}_{D^{ \pm}}(\mathbf{y}) \hat{\omega}_{\epsilon}(\mathbf{y})$. By 2.32 , the Fourier series of $\chi_{D^{-}, \epsilon}(\mathbf{y})$ and of $\chi_{D^{+}, \epsilon}(\mathbf{y})$ are absolutely convergent. It is easy to verify that

$$
\begin{equation*}
\chi_{D^{-}, \epsilon}(\mathbf{y}) \leq \chi_{D}(\mathbf{y}) \leq \chi_{D^{+}, \epsilon}(\mathbf{y}) \tag{2.34}
\end{equation*}
$$

and that

$$
\begin{equation*}
\prod_{i=1}^{s}\left(b_{i}-a_{i}-4 \epsilon\right) \leq \hat{\chi}_{D^{-}, \epsilon}(\mathbf{0}) \leq \operatorname{mes} D, \quad \operatorname{mes} D \leq \hat{\chi}_{D^{+}, \epsilon}(\mathbf{0}) \leq \prod_{i=1}^{s}\left(b_{i}-a_{i}+4 \epsilon\right) \tag{2.35}
\end{equation*}
$$

Using Lemma 5 and (2.34), we obtain

$$
\begin{aligned}
& \frac{\left(2 \hbar_{1}\right)!}{2^{\hbar_{1}}\left(\hbar_{1}\right)!} \hat{\chi}_{D^{-}, \epsilon}(\mathbf{0})=\lim _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} \chi_{D^{-}, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}} d \mathbf{x} \\
& \quad \leq \lim _{N_{0} \rightarrow \infty} \inf _{[0,1]^{s}} \chi_{D}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}} d \mathbf{x} \leq \limsup _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} \chi_{D}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}} d \mathbf{x} \\
& \quad \leq \lim _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} \chi_{D^{+}, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}} d \mathbf{x}=\frac{\left(2 \hbar_{1}\right)!}{2^{\hbar_{1}}\left(\hbar_{1}\right)!} \hat{D}_{D^{+}, \epsilon}(\mathbf{0})
\end{aligned}
$$

Bearing in mind that the liminf and limsup in the middle do not depend on ϵ, from (2.35) we have

$$
\frac{1}{\operatorname{mes} D} \lim _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} \chi_{D}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}} d \mathbf{x}=\frac{\left(2 \hbar_{1}\right)!}{2^{\hbar_{1}}\left(\hbar_{1}\right)!}
$$

Hence (2.1) is proved for \hbar even. Consider the case of \hbar odd. We see that

$$
\begin{aligned}
\int_{[0,1]^{s}} \chi_{D}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x}= & \int_{[0,1]^{s}} \chi_{D^{+}, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x} \\
& +\int_{[0,1]^{s}}\left(\chi_{D}(\mathbf{x})-\chi_{D^{+}, \epsilon}(\mathbf{x})\right) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x} .
\end{aligned}
$$

Applying the Cauchy-Schwarz inequality, we get

$$
\begin{aligned}
& \left(\int_{[0,1]^{s}}\left(\chi_{D}(\mathbf{x})-\chi_{D^{+}, \epsilon}(\mathbf{x})\right) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x}\right)^{2} \\
& \quad \leq \int_{[0,1]^{s}}\left(\chi_{D}(\mathbf{x})-\chi_{D^{+}, \epsilon}(\mathbf{x})\right)^{2} d \mathbf{x} \int_{[0,1]^{s}} S(\mathbf{N}, \mathbf{x})^{4 \hbar_{1}+2} d \mathbf{x}
\end{aligned}
$$

and
(2.36)

$$
\begin{aligned}
\left(\int_{[0,1]^{s}} \chi_{D}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x}\right)^{2} & \leq 2\left(\int_{[0,1]^{s}} \chi_{D^{+}, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x}\right)^{2} \\
& +2\left(\int_{[0,1]^{s}}\left(\chi_{D}(\mathbf{x})-\chi_{D^{+}, \epsilon}(\mathbf{x})\right) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x}\right)^{2}
\end{aligned}
$$

By 2.33, we obtain $0 \leq \chi_{D^{+}, \epsilon}(\mathbf{x}) \leq 1$ for all \mathbf{x}, and

$$
\begin{equation*}
\int_{[0,1]^{s}}\left(\chi_{D}(\mathbf{x})-\chi_{D^{+}, \epsilon}(\mathbf{x})\right)^{2} d \mathbf{x} \leq \prod_{i=1}^{s}\left(b_{i}-a_{i}+4 \epsilon\right)-\prod_{i=1}^{s}\left(b_{i}-a_{i}\right)=O(\epsilon) . \tag{2.37}
\end{equation*}
$$

Using Lemma 5, we get

$$
\lim _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} \chi_{D^{+}, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \kappa_{1}+1} d \mathbf{x}=O(\epsilon), \quad \int_{[0,1]^{s}} S(\mathbf{N}, \mathbf{x})^{4 \hbar_{1}+2} d \mathbf{x}=O(1) .
$$

From (2.36) and (2.37) we have

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \int_{[0,1]^{s}} \chi_{D}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2 \hbar_{1}+1} d \mathbf{x}=O(\epsilon) . \tag{2.38}
\end{equation*}
$$

Taking into account that the left hand side of (2.38) does not depend on ϵ, we find that $(\sqrt{2.1})$ is true for \hbar odd. Hence, the Theorem is proved.

Acknowledgments. I am grateful to the referee for suggestions which improved this paper.

REFERENCES

[BPT] I. Berkes, W. Philipp, and R. Tichy, Empirical processes in probabilistic number theory: the LIL for the discrepancy of $\left(n_{k} \omega\right)$ mod 1, Illinois J. Math. 50 (2006), 107-145.
[EW] M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011.
[F] R. Fortet, Sur une suite également répartie, Studia Math. 9 (1940), 54-70.
[FP] K. Fukuyama et B. Petit, Le théorè̀me limite central pour les suites de R. C. Baker, Ergodic Theory Dynam. Systems 21 (2001), 479-492.
[Fu] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967) 1-49.
[Ga] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea Publ., New York, 1960.
[K] M. Kac, On the distribution of values of sums of the type $f\left(2^{k} t\right)$, Ann. of Math. (2) 47 (1946), 33-49.
[L] V. P. Leonov, On the central limit theorem for ergodic endomorphisms of compact commutative groups, Dokl. Akad. Nauk SSSR 135 (1960), 258-261 (in Russian).
[Le1] M. B. Levin, On low discrepancy sequences and low discrepancy ergodic transformations of the multidimensional unit cube, Israel J. Math. 178 (2010), 61-106.
[Le2] M. B. Levin, Central Limit Theorem for \mathbb{Z}_{+}^{d}-actions by toral endomorphisms, Electron. J. Probab. 18 (2013), no. 35, 42 pp.
[MM] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover Publ., New York, 1992.
[P] W. Philipp, Empirical distribution functions and strong approximation theorems for dependent random variables. A problem of Baker in probabilistic number theory, Trans. Amer. Math. Soc. 345 (1994), 705-727.
[PS] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 2 (1975), no. 161.
[SZ] R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333-338.
[SS] H. P. Schlickewei and W. M. Schmidt, The number of solutions of polynomialexponential equations, Compos. Math. 120 (2000), 193-225.
[SW] K. Schmidt and T. Ward, Mixing automorphisms of compact groups and a theorem of Schlickewei, Invent. Math. 111 (1993), 69-76.
[Z] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, New York, 1959.

Mordechay B. Levin
Department of Mathematics
Bar-Ilan University
Ramat-Gan, 5290002, Israel
E-mail: mlevin@math.biu.ac.il

[^0]: 2010 Mathematics Subject Classification: Primary 60F15; Secondary 42A55, 42B.
 Key words and phrases: central limit theorem, lacunary trigonometric series, partially hyperbolic systems.

