VOL. 131 2013 NO. 1

A MULTIPARAMETER VARIANT OF THE SALEM-ZYGMUND CENTRAL LIMIT THEOREM ON LACUNARY TRIGONOMETRIC SERIES

BY

MORDECHAY B. LEVIN (Ramat-Gan)

Abstract. We prove the central limit theorem for the multisequence

$$\sum_{1 \le n_1 \le N_1} \cdots \sum_{1 \le n_d \le N_d} a_{n_1, \dots, n_d} \cos(\langle 2\pi \mathbf{m}, A_1^{n_1} \dots A_d^{n_d} \mathbf{x} \rangle)$$

where $\mathbf{m} \in \mathbb{Z}^s$, a_{n_1,\dots,n_d} are reals, A_1,\dots,A_d are partially hyperbolic commuting $s \times s$ matrices, and \mathbf{x} is a uniformly distributed random variable in $[0,1]^s$. The main tool is the S-unit theorem.

1. Introduction. In [SZ], [Z, p. 233], Salem and Zygmund proved the following theorem:

THEOREM A. Let $\lambda_n \geq 1$ be integers with $\lambda_{n+1}/\lambda_n \geq c > 1$ for $n = 1, 2, \ldots$ Moreover, let a_n, ϕ_n be reals, $A_N = \left(\frac{1}{2}(a_1^2 + \cdots + a_N^2)\right)^{1/2} \to \infty$,

$$S(N,x) = \frac{1}{A_N} \sum_{n=1}^{N} a_n \cos(2\pi \lambda_n x + \phi_n),$$

and

$$\max_{1 \le n \le N} |a_n| / \mathcal{A}_N \to 0 \quad as \ N \to \infty.$$

Then over any set D with mes D > 0, S(N, x) tends to the Gaussian distribution with mean value 0 and dispersion 1 as $N \to \infty$.

Let A be an invertible $s \times s$ matrix with integer entries. It generates a surjective endomorphism on the s-dimensional torus $[0,1)^s$ which we will denote by the same letter A. We will also denote by A and **m** the transpose matrices $A^{(t)}$, $\mathbf{m}^{(t)}$.

DEFINITION 1. An action \mathcal{A} by surjective endomorphisms A_1, \ldots, A_d of $[0,1)^s$ is called *partially hyperbolic* if for all $(n_1,\ldots,n_d)\in\mathbb{Z}^d\setminus\{\mathbf{0}\}$ none of the eigenvalues of the matrix $A_1^{n_1}\cdots A_d^{n_d}$ is a root of unity.

²⁰¹⁰ Mathematics Subject Classification: Primary 60F15; Secondary 42A55, 42B. Key words and phrases: central limit theorem, lacunary trigonometric series, partially hyperbolic systems.

Examples of partially hyperbolic actions:

- 1. Let \mathbb{I} be the $s \times s$ identity matrix, $q_1, \ldots, q_d \geq 2$ pairwise coprime integers, $A_i = q_i \mathbb{I}$, $i = 1, \ldots, d$.
- 2. Let K be an algebraic number field of degree $s, \eta_1, \ldots, \eta_d$ $(d \le s 1)$ a set of fundamental units of K, $\phi_i(x)$ the minimal polynomial of η_i , and A_i the companion matrix of $\phi_i(x)$ $(1 \le i \le d)$.

In this paper, we prove the following multiparameter variant of the Salem and Zygmund theorem:

THEOREM. Let \mathcal{A} be an action by commuting partially hyperbolic endomorphisms A_1, \ldots, A_d of $[0, 1)^s$, and \mathbf{x} a uniformly distributed random variable on $[0, 1]^s$. Let $\mathbf{m} \in \mathbb{Z}^s \setminus \{\mathbf{0}\}$, $\mathbf{N} = (N_1, \ldots, N_d)$, $R(\mathbf{N}) = [1, N_1] \times \cdots \times [1, N_d]$, $N_0 = \max(N_1, \ldots, N_d)$, $\mathbf{n} = (n_1, \ldots, n_d)$, $a_{\mathbf{n}} \geq 0$, $\phi_{\mathbf{n}}$ be reals, (1.1)

$$\mathcal{A}(\mathbf{N}) = \left(\frac{1}{2} \sum_{\mathbf{n} \in R(\mathbf{N})} a_n^2\right)^{1/2} \to \infty, \quad \rho(\mathbf{N}) = \max_{\mathbf{n} \in R(\mathbf{N})} a_{\mathbf{n}} / \mathcal{A}(\mathbf{N}) \xrightarrow{N_0 \to \infty} 0,$$

(1.2)
$$S(\mathbf{N}, \mathbf{x}) = \frac{1}{\mathcal{A}(\mathbf{N})} \sum_{\mathbf{n} \in R(\mathbf{N})} a_{\mathbf{n}} \cos(2\pi \langle \mathbf{m}, A_1^{n_1} \cdots A_d^{n_d} \mathbf{x} \rangle + \phi_{\mathbf{n}}).$$

Then over any set $D \subset [0,1]^s$ with mes D > 0, $S(\mathbf{N}, \mathbf{x})$ tends to the Gaussian distribution with mean value 0 and dispersion 1 as $N_0 \to \infty$.

This result was announced in [Le1].

Related questions

1. Central Limit Theorem for \mathbb{Z}^d_+ -actions by toral endomorphisms. In [F], [K], Fortet and Kac proved the central limit theorem (abbreviated CLT) for the sum $\sum_{n=0}^{N-1} f(q^n x)$ where $q \geq 2$ is an integer, $x \in [0,1)$ and f is a 1-periodic function. Let $(\omega_{q_1,\ldots,q_d}(n))_{n\geq 1}$ be a so-called Hardy–Littlewood–Pólya sequence, consisting of the elements of the multiplicative semigroup generated by a finite set (q_1,\ldots,q_d) of coprime integers, arranged in increasing order. In [P], [FP], Philipp, Fukuyama and Petit obtained limit theorems for the sum $\sum_{n=0}^{N-1} f(\omega_{q_1,\ldots,q_d}(n)x)$. In [Le2], we proved some limit theorems for $\sum_{n_1=0}^{N_1-1} \cdots \sum_{n_d=0}^{N_d-1} f(q_1^{n_1} \cdots q_d^{n_d}x)$ as $N_1,\ldots,N_d \to \infty$, where the integers q_1,\ldots,q_d need not be coprime (see [Le2, Theorem 5]).

In [L], Leonov proved CLT for endomorphisms of the s-torus and Hölder continuous functions. In [Le2], we extended Leonov's result to the case of \mathbb{Z}_+^d -actions by endomorphisms of the s-torus and we proved the central limit

theorem for the multisequence

$$\sum_{n_1=1}^{N_1} \cdots \sum_{n_d=1}^{N_d} f(A_1^{n_1} \cdots A_d^{n_d} \mathbf{x})$$

where f is a Hölder continuous function, A_1, \ldots, A_d are partially hyperbolic commuting integer $s \times s$ matrices, and \mathbf{x} is a uniformly distributed random variable in $[0, 1]^s$.

Note that mixing properties of \mathbb{Z}^d -actions by commuting automorphisms of the s-torus were investigated earlier by Schmidt and Ward [SW].

2. Hardy–Littlewood–P'olya (HLP) sequence. In [Fu], Furstenberg studied denseness properties of the HLP sequence $(\omega_{2,3}(n))_{n\geq 1}$ (see Introduction) from the ergodic point of view. He also asked the celebrated question on ergodic properties of this sequence (see e.g. [EW, p. 7]). In [P], Philipp proved the almost sure invariance principle (ASIP) for the sequence $(\cos(\omega_{q_1,\ldots,q_d}(n)x))_{n\geq 1}$, and the law of the iterated logarithm (LIL) for the discrepancy of the sequence $(\omega_{q_1,\ldots,q_d}(n)x)_{n\geq 1}$ (see also [BPT]). We consider the following s-dimensional variant of HLP sequence:

Let

(1.3)
$$\mathbf{m} \lessdot \mathbf{m}'$$
 if either $|\mathbf{m}| < |\mathbf{m}'|$, or $|\mathbf{m}| = |\mathbf{m}'|$ and there exists $k \in [0, s)$ with $m_1 = m'_1, \dots, m_k = m'_k$ and $m_{k+1} < m'_{k+1}$, where $|\mathbf{m}| = (m_1^2 + \dots + m_s^2)^{1/2}$.

Let \mathcal{A} be an action by commuting partially hyperbolic endomorphisms A_1, \ldots, A_d of $[0,1)^s$. Denote $A_1^{n_1} \cdots A_d^{n_d} \leqslant A_1^{\dot{n}_1} \cdots A_d^{\dot{n}_d}$ if $(n_1, \ldots, n_d) \leqslant (\dot{n}_1, \ldots, \dot{n}_d)$. Let $(\Omega_n)_{n\geq 1}$ consist of the elements of the multiplicative semigroup generated by the finite set (A_1, \ldots, A_d) , arranged in increasing order. In a forthcoming paper, we will show that the approach of [P] and [BPT] can be applied to prove ASIP for $(\cos(\Omega_n \mathbf{x}))_{n\geq 1}$ and to prove LIL for the discrepancy of $(\Omega_n \mathbf{x})_{n\geq 1}$.

In [PS], Philipp and Stout proved that if for the coefficient a_N (see Theorem A) we assume the stronger condition $a_N = O(A_N^{1-\delta})$ for some $\delta > 0$, then S(N, x) obeys ASIP.

Let $(g_n)_{n\geq 1}$ consist of the elements of \mathbb{Z}^d_+ arranged in increasing order (see (1.3)). Let

$$\dot{\mathcal{A}}(L) = \left(\frac{1}{2} \sum_{1 \le n \le L} a_{g_n}^2\right)^{1/2}, \quad \dot{S}_L = \frac{1}{\dot{\mathcal{A}}(L)} \sum_{1 \le n \le L} a_{g_n} \cos(2\pi \langle \mathbf{m}, \Omega_{g_n} \mathbf{x} \rangle + \phi_{g_n}).$$

In a forthcoming paper, we will show that the approach of [PS] can be applied to prove ASIP for the sequence $(\dot{S}_L)_{L\geq 1}$ whenever $a_{g_L} = O(\dot{\mathcal{A}}^{1-\delta}(L))$ for some $\delta > 0$.

2. Proof of the Theorem. By the moment method, to obtain the Theorem it is sufficient to prove that

(2.1)
$$\lim_{N_0 \to \infty} \frac{1}{\text{mes } D} \int_D S(\mathbf{N}, \mathbf{x})^{\hbar} d\mathbf{x} = \begin{cases} \frac{\hbar!}{2^{\hbar/2} (\hbar/2)!} & \text{if } \hbar \text{ is even,} \\ 0 & \text{if } \hbar \text{ is odd.} \end{cases}$$

We consider the following variant of the S-unit theorem (see [SS, Theorem 1]):

Let K be an algebraic number field of degree $s_1 \geq 1$. Write K^* for its multiplicative group of nonzero elements. We consider the equation

(2.2)
$$\sum_{i=1}^{h_1} P_i(\mathbf{n}) \boldsymbol{\vartheta}_i^{\mathbf{n}} = 0$$

in variables $\mathbf{n} = (n_1, \dots, n_{d_1}) \in \mathbb{Z}^{d_1}$, where the P_i are polynomials with coefficients in K, $\vartheta_i^{\mathbf{n}} = \vartheta_{i,1}^{n_1} \cdots \vartheta_{i,d_1}^{n_{d_1}}$, and $\vartheta_{i,j} \in K^*$ $(1 \le i \le h_1, 1 \le j \le d_1)$.

Let U_1 be the potential number of nonzero coefficients of the polynomials P_1, \ldots, P_{h_1} , and $U_2 = \max(d_1, U_1)$.

A solution **n** of (2.2) is called *non-degenerate* if $\sum_{i \in I} P_i(\mathbf{n}) \vartheta_i^{\mathbf{n}} \neq 0$ for every nonempty subset I of all $\{1, \ldots, h_1\}$. Let G be the subgroup of \mathbb{Z}^{d_1} consisting of all vectors **n** with $\vartheta_1^{\mathbf{n}} = \cdots = \vartheta_{h_1}^{\mathbf{n}}$.

THEOREM B ([SS]). Suppose $G = \{0\}$. Then the number $\mathfrak{U}(P_1, \ldots, P_{h_1})$ of nondegenerate solutions $\mathbf{n} \in \mathbb{Z}^{d_1}$ of (2.2) satisfies the estimate

$$\mathfrak{U}(P_1,\ldots,P_{h_1}) \leq U(d_1,P) = 2^{35U_2^3} s_1^{6U_2^2}.$$

It is easy to get the following

COROLLARY. Let $d_1 = d(h_1 - 1)$, $\vartheta_{h_1,j} = 1$ (j = 1, ..., d), $\vartheta_{i,j+(i-1)d} = \vartheta_j \in K^*$ and $\vartheta_{i,j+\mu d} = 1$ $(\mu \in [0, h_1 - 2], \ \mu \neq i - 1, \ i = 1, ..., h_1 - 1, j = 1, ..., d)$, $\overline{\mathbf{n}} = (\mathbf{n}_1, ..., \mathbf{n}_{h_1-1})$, $\mathbf{n}_i = (n_{i,1}, ..., n_{i,d})$ with $i = 1, ..., h_1 - 1, P_{h_1}(\overline{\mathbf{n}}) \equiv -1$. Suppose

$$\vartheta_1^{n_1}\cdots\vartheta_d^{n_d}=1 \iff (n_1,\ldots,n_d)=\mathbf{0}.$$

Then the number $\mathfrak{U}'(P_1,\ldots,P_{h_1-1})$ of nondegenerate solutions $\overline{\mathbf{n}} \in \mathbb{Z}^{d_1}$ of the equation

$$\sum_{i=1}^{h_1-1} P_i(\overline{\mathbf{n}}) \vartheta_i^{\overline{\mathbf{n}}} = \sum_{i=1}^{h_1-1} P_i(\overline{\mathbf{n}}) \vartheta_1^{n_{i,1}} \cdots \vartheta_d^{n_{i,d}} = 1$$

satisfies the estimate

$$\mathfrak{U}'(P_1,\ldots,P_{h_1-1}) \le U(d_1,P).$$

We consider a sequence of commuting $s \times s$ matrices A_1, \ldots, A_d . By [Ga, p. 224, Corollary 2] the space \mathbb{C}^s can be decomposed into a direct sum

of subspaces invariant under all A_j :

$$\mathbb{C}^s = I_1 \oplus \cdots \oplus I_w,$$

such that the minimal polynomial of A_j on I_i is a power of a linear polynomial, $(x - \lambda_{i,j})^{r_j}$, over \mathbb{C} . According to this decomposition, the matrices A_1, \ldots, A_d can be simultaneously brought into the following form with square blocks along the diagonal of sizes $r_1, \ldots, r_w, r_1 + \cdots + r_w = s$:

$$\Lambda_1 = \begin{pmatrix} \Lambda_{1,1} & 0 \\ & \ddots & \\ 0 & & \Lambda_{w,1} \end{pmatrix}, \dots, \Lambda_d = \begin{pmatrix} \Lambda_{1,d} & 0 \\ & \ddots & \\ 0 & & \Lambda_{w,d} \end{pmatrix}$$

where all blocks $\Lambda_{i,j}$ have upper-triangular form with $\lambda_{i,j}$ on the diagonal, $1 \le i \le w$, $1 \le j \le d$ (see, e.g., [MM, p. 77, ref. 4.21.1]).

Hence there exists an invertible $s \times s$ matrix T such that $A_i = T^{-1}\Lambda_i T$, $1 \le i \le d$,

(2.3)
$$A_1^{n_1} \cdots A_d^{n_d} = T^{-1} \Lambda(\mathbf{n}) T, \quad \Lambda(\mathbf{n}) = \begin{pmatrix} \widetilde{\Lambda}_1(\mathbf{n}) & 0 \\ & \ddots & \\ 0 & \widetilde{\Lambda}_w(\mathbf{n}) \end{pmatrix},$$

where $\mathbf{n} = (n_1, \dots, n_d)$, and $\widetilde{\Lambda}_{\nu}(\mathbf{n})$ is an upper-triangular matrix with $\lambda_{\nu,1}^{n_1} \cdots \lambda_{\nu,d}^{n_d}$ on the diagonal $(1 \leq \nu \leq w)$. Let $\widetilde{\Lambda}_{\nu}(\mathbf{n}) = (\widetilde{\lambda}_{j,j'}^{(\nu)}(\mathbf{n}))_{1 \leq j,j' \leq r_{\nu}}$. Using the formula for the degree of Jordan's normal form of the matrices $\Lambda_{i,j}$ (see, e.g., [Ga, pp. 157–158]), we deduce that

(2.4)
$$\widetilde{\lambda}_{j,j'}^{(\nu)}(\mathbf{n}) = \lambda_{\nu,1}^{n_1} \cdots \lambda_{\nu,d}^{n_d} P_{j,j'}^{(\nu)}(\mathbf{n})$$

for some polynomial $P_{i,j'}^{(\nu)}$. It is easy to see that

(2.5)
$$P_{j,j}^{(\nu)}(\mathbf{n}) = 1$$
 and $P_{j,j'}^{(\nu)}(\mathbf{n}) = 0$ for $j > j'$.

Taking into account that $\lambda_{i,1}^{n_1} \cdots \lambda_{i,d}^{n_d}$ is an eigenvalue of $A_1^{n_1} \cdots A_d^{n_d}$, we infer from Definition 1 that

(2.6)
$$\lambda_{i,1}^{n_1} \cdots \lambda_{i,d}^{n_d} = 1 \iff (n_1, \dots, n_d) = \mathbf{0}, \text{ with } i \in [1, r].$$

Let $\hbar \geq 1$ be an integer, $F^{(\hbar)} = \{1, \dots, \hbar\}, \tau_1, \dots, \tau_{\hbar} \in \{-1, 1\}, f = \#F, F = (F(1), \dots, F(f)) \subseteq F^{(\hbar)}, \overline{\mathbf{n}}^{(F)} = (\mathbf{n}_{F(1)}, \dots, \mathbf{n}_{F(f)}), \overline{\mathbf{n}} = \overline{\mathbf{n}}^{(F^{(\hbar)})} = (\mathbf{n}_1, \dots, \mathbf{n}_{\hbar}),$ with $\mathbf{n}_i = (n_{i,1}, \dots, n_{i,d})$. We will denote the transpose matrix $\mathbf{m}^{(t)}$ by the same symbol \mathbf{m} . Let $T\mathbf{m} = \tilde{\mathbf{m}} = (\tilde{m}_{1,1}, \dots, \tilde{m}_{1,r_1}, \dots, \tilde{m}_{w,1}, \dots, \tilde{m}_{w,r_w})^{(t)}$,

(2.7)
$$C(\overline{\mathbf{n}}^{(F)}) = \sum_{\mu \in F} \tau_{\mu} T A_1^{n_{\mu,1}} \cdots A_d^{n_{\mu,d}} \mathbf{m},$$

and

$$C(\overline{\mathbf{n}}^{(F)}) = (C(\overline{\mathbf{n}}^{(F)})_{1,1}, \dots, C(\overline{\mathbf{n}}^{(F)})_{1,r_1}, \dots, C(\overline{\mathbf{n}}^{(F)})_{w,1}, \dots, C(\overline{\mathbf{n}}^{(F)})_{w,r_w})^{(t)}.$$

By (2.4) we get

(2.8)
$$C(\overline{\mathbf{n}}^{(F)})_{\nu,j} = \sum_{\mu \in F} \tau_{\mu} \lambda_{\nu,1}^{n_{\mu,1}} \cdots \lambda_{\nu,d}^{n_{\mu,d}} \sum_{j'=1}^{r_{\nu}} P_{j,j'}^{(\nu)}(\mathbf{n}) \tilde{m}_{\nu,j'}.$$

Since $\tilde{\mathbf{m}} \neq 0$, there exist $\nu_0 \in [1, w], j_0 \in [1, r_{\nu_0}]$ with

(2.9)
$$\tilde{m}_{\nu_0, j_0} \neq 0$$
 and $\tilde{m}_{\nu, j} = 0$ for $\nu > \nu_0$ and for $\nu = \nu_0, j > j_0$.

From (2.5), we have

(2.10)
$$P_{j,j'}^{(\nu_0)}(\mathbf{n})\tilde{m}_{\nu_0,j'} = 0 \quad \text{for } j' \neq j_0.$$

By (2.5) and (2.8)-(2.10), we obtain

$$C(\overline{\mathbf{n}}^{(F)})_{\nu_0,j_0} = L(\overline{\mathbf{n}}^{(F)},\nu_0)\tilde{m}_{\nu_0,j_0} \quad \text{with} \quad L(\overline{\mathbf{n}}^{(F)},\nu) = \sum_{\mu \in F} \tau_{\mu} \lambda_{\nu,1}^{n_{\mu,1}} \cdots \lambda_{\nu,d}^{n_{\mu,d}}.$$

Hence

(2.12)
$$C(\overline{\mathbf{n}}^{(F)}) = \mathbf{0} \implies L(\overline{\mathbf{n}}^{(F)}, \nu_0) = 0.$$

Let

(2.13)
$$\delta(\mathfrak{T}) = \begin{cases} 1 & \text{if } \mathfrak{T} \text{ is true,} \\ 0 & \text{otherwise,} \end{cases}$$

(2.14)
$$R(\mathbf{N}, F, \nu) = \{(\mathbf{n}_{F(1)}, \dots, \mathbf{n}_{F(f)}) \in R(\mathbf{N})^f \mid \exists F' \subset F^{(\hbar)} \text{ with } L(\overline{\mathbf{n}}^{(F')}, \nu) = 0\}.$$

We denote

$$\sum_{\tau_i \in \{-1,1\}, i=1,\dots,\hbar} \quad \text{by} \quad \sum_{\tau}, \quad \text{and} \quad \sum_{\tau_i \in \{-1,1\}, i \in F} \quad \text{by} \quad \sum_{\tau,F}.$$

Lemma 1. Let f = #F and

$$\sigma = \sum_{(\mathbf{n}_{F(1)}, \dots, \mathbf{n}_{F(f)}) \in R(\mathbf{N}, F, \nu_0)} \sum_{\tau, F} (2\mathcal{A}(\mathbf{N}))^{-f} a_{\mathbf{n}_{F(1)}} \cdots a_{\mathbf{n}_{F(f)}} \delta(L(\overline{\mathbf{n}}^{(F)}, \nu_0) = \gamma).$$

Then

$$\sigma = \begin{cases} 0 & \text{if } \gamma = 0, \ f = 1, \\ 1 & \text{if } \gamma = 0, \ f = 2, \\ O(\rho(\mathbf{N})) & \text{if } \gamma = 0, \ f \ge 3, \\ O(\rho(\mathbf{N})) & \text{if } \gamma \ne 0, \end{cases}$$

where $\rho(\mathbf{N}) = \max_{\mathbf{n} \in R(\mathbf{N})} |a_{\mathbf{n}}| / \mathcal{A}(\mathbf{N})$ and the O-constants depend only on \hbar .

Proof. Let $\gamma \neq 0$. Bearing in mind Definition 1 and that $\lambda_{i,j}$ are algebraic integers, we can apply the Corollary. We take $h_1 = \hbar + 1$, $s_1 = s^2$, $U_2 = d_1 = d\hbar$ and $U(d_1, P) = 2^{35U_2^3} s^{12U_2^2}$. From (2.3), (2.11) and (2.14) we get

$$\sigma \leq U(d_1, P)\rho(\mathbf{N})^f$$
.

Let $\gamma = 0$. We see that there are no solutions of the equation $L(\overline{\mathbf{n}}^{(F)}, \nu_0) = 0$ if f = 1.

Suppose f = 2. By (2.11), we obtain

$$(2.15) -\tau_1 \tau_2 \lambda_{\nu_0,1}^{n_{F(1),1} - n_{F(2),1}} \cdots \lambda_{\nu_0,d}^{n_{F(1),d} - n_{F(2),d}} = 1.$$

Hence

$$\lambda_{\nu_0,1}^{2(n_{F(1),1}-n_{F(2),1})}\cdots\lambda_{\nu_0,d}^{2(n_{F(1),d}-n_{F(2),d})}=1.$$

Using (2.6), we find that $n_{F(1),i} - n_{F(2),i} = 0$, i = 1, ..., d. By (2.15), we get $\tau_1 = -\tau_2$. We derive from (1.1) that $\sigma = 1$.

Suppose $f \geq 3$. We fix $\mathbf{n}_{F(f)}$. Let $n'_{F(\mu),i} = n_{F(\mu),i} - n_{F(f),i} \ (1 \leq \mu < f)$. We see that

(2.16)
$$-\tau_f \sum_{\mu=1}^{f-1} \tau_{\mu} \lambda_{\nu_0,1}^{n'_{F(\mu),1}} \cdots \lambda_{\nu_0,d}^{n'_{F(\mu),d}} = 1.$$

Applying the Corollary, we see that the number of solutions of (2.16) is $O(\hbar)$. Let $V(\hbar)$ be the maximum of $|n'_{F(\mu),i}|$ $(\mu=1,\ldots,f-1,i=1,\ldots,d)$ for all solutions of (2.16). Let $W(\hbar)=[-V(\hbar),V(\hbar)]^d$. Thus

$$\sigma \leq \sum_{\substack{\mathbf{n}_1', \dots, \mathbf{n}_{f-1}' \in W(\hbar)^{f-1}}} \sum_{\substack{\mathbf{n}_f, \mathbf{n}_f + \mathbf{n}_i' \in R(\mathbf{N}) \\ i = 1, \dots, f-1}} \sum_{\tau} (2\mathcal{A}(\mathbf{N}))^{-f} a_{\mathbf{n}_f + \mathbf{n}_1'} \cdots a_{\mathbf{n}_f + \mathbf{n}_{f-1}'} a_{\mathbf{n}_f}$$

$$\leq (2V(\hbar)+1)^{d(f-2)}\rho(\mathbf{N})^{f-2}\sum_{\mathbf{n}_1'\in W(\hbar)}\sum_{\mathbf{n}_f,\mathbf{n}_f+\mathbf{n}_1'\in R(\mathbf{N})}\mathcal{A}(\mathbf{N})^{-2}a_{\mathbf{n}_f+\mathbf{n}_1'}a_{\mathbf{n}_f}.$$

Bearing in mind that $|a_{\mathbf{n}_f+\mathbf{n}_1'}a_{\mathbf{n}_f}| \leq \frac{1}{2}(a_{\mathbf{n}_f+\mathbf{n}_1'}^2 + a_{\mathbf{n}_f}^2)$, we obtain

$$\sigma \le (2V(\hbar) + 1)^{d(f-1)} \rho(\mathbf{N})^{f-2}$$

Hence Lemma 1 is proved. ■

Let $\mathcal{F}_r = (F_1, \dots, F_r)$ be a partition of $F^{(\hbar)} = \{1, \dots, \hbar\}$, i.e.

$$F_1 \cup \cdots \cup F_r = F^{(\hbar)}, \quad F_i \cap F_j = \emptyset, \quad i \neq j, \quad F_i(j) < F_i(k) \quad \text{for } j < k.$$

Let $(F_1, \ldots, F_{r_1}) = (F'_1, \ldots, F'_{r_2})$ if $r_1 = r_2$ and for each $i \in [1, r_1]$ there exists $k \in [1, r_1]$ such that $F_i(j) = F'_k(j)$ for all $j \in [1, f(F_i)]$. We denote by \mathfrak{F}_{\hbar} the set of all nonequivalent partitions of $F^{(\hbar)}$.

DEFINITION 2. Set $\mathfrak{g}(\overline{\mathbf{n}}) = 1$ if $\hbar = 2\hbar_1$ and there exists a partition $(F_1, \ldots, F_{\hbar_1}) \in \mathfrak{F}_{\hbar}$ with $\#F_i = 2$, $L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0$ and $\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)}$ $(i = 1, \ldots, \hbar_1)$, and set $\mathfrak{g}(\overline{\mathbf{n}}) = 0$ otherwise.

DEFINITION 3. Set $\mathfrak{g}_1(\overline{\mathbf{n}}) = 1$ if $\mathfrak{g}(\overline{\mathbf{n}}) = 1$ and there are no $1 \leq j_1 < j_2 < j_3 \leq \hbar$ with $\mathbf{n}_{j_1} = \mathbf{n}_{j_2} = \mathbf{n}_{j_3}$, and set $\mathfrak{g}_1(\overline{\mathbf{n}}) = 0$ otherwise.

Lemma 2. Define

$$\sigma_0 = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} (2\mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}}) = \mathbf{0}) \delta(\mathfrak{g}(\overline{\mathbf{n}}) = 0).$$

Then

$$\sigma_0 = O(\rho(\mathbf{N})).$$

Proof. Suppose $C(\overline{\mathbf{n}}) = \mathbf{0}$. By (2.12) and (2.14), there exists a partition $\mathcal{F}_r = (F_1, \dots, F_r) \in \mathfrak{F}_{\hbar}$ such that

$$L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0$$
 and $\overline{\mathbf{n}}^{(F_i)} \in R(\mathbf{N}, F_i, \nu_0), \quad i = 1, \dots, r.$

Using (2.13), we have

$$\delta(C(\overline{\mathbf{n}}) = \mathbf{0}) \le \sum_{r=1}^{\hbar} \sum_{\mathcal{F}_r \in \mathfrak{F}_h} \prod_{i=1}^r \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0) \delta(\overline{\mathbf{n}}^{(F_i)} \in R(\mathbf{N}, F_i, \nu_0)).$$

Let $f_i = \#F_i$, $\mathfrak{f}^- = \min_{1 \leq i \leq r} f_i$ and $\mathfrak{f}^+ = \max_{1 \leq i \leq r} f_i$. Moreover, define $\mathfrak{F}_{\hbar,1} = \{\mathcal{F}_r \in \mathfrak{F}_{\hbar} \mid \mathfrak{f}^- = 1\}$ and

$$\mathfrak{F}_{\hbar,2} = \{ \mathcal{F}_r \in \mathfrak{F}_{\hbar} \mid \mathfrak{f}^- = \mathfrak{f}^+ = 2 \}, \quad \mathfrak{F}_{\hbar,3} = \{ \mathcal{F}_r \in \mathfrak{F}_{\hbar} \mid \mathfrak{f}^+ \ge 3 \},$$

$$(2.18) \sigma_{l_1, l_2, l_3} = \sum_{r=1}^{\hbar} \sum_{\mathcal{F}_r \in \mathfrak{F}_{\hbar, l_2}} \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} (2\mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}}$$

$$\times \prod_{i=1}^{r} \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0) \delta(\overline{\mathbf{n}}^{(F_i)} \in R(\mathbf{N}, F_i, \nu_0)) \delta(\mathfrak{g}(\overline{\mathbf{n}}) = l_1) \delta(\mathfrak{g}_1(\overline{\mathbf{n}}) = l_2).$$

Changing the order of summation, we obtain

(2.19)
$$\sigma_0 \le \sum_{l_2 \in \{0,1\}} \sum_{l_3 \in \{1,2,3\}} \sigma_{0,l_2,l_3}.$$

Suppose $\mathfrak{f}^-=1$. By (2.11), there is no solution of the equation $L(\overline{\mathbf{n}}^{(F_i)},\nu_0)=0$ with $\#F_i=1$. Hence

(2.20)
$$\sum_{l_1, l_2 \in \{0, 1\}} \sigma_{l_1, l_2, 1} = 0.$$

Suppose $\mathfrak{f}^+ \geq 3$. We have

$$\begin{split} \sum_{l_1, l_2 \in \{0, 1\}} \sigma_{l_1, l_2, 3} &\leq \sum_{r \in [1, \hbar]} \sum_{\mathcal{F}_r \in \mathfrak{F}_{\hbar, 3}} \sum_{\tau} 1 \\ &\times \prod_{i \in [1, r]} \sum_{\overline{\mathbf{n}}^{(F_i)} \in R(\mathbf{N}, F_i, \nu_0)} (2\mathcal{A}(\mathbf{N}))^{-f_i} a_{\mathbf{n}_{F_i(1)}} \cdots a_{\mathbf{n}_{F_i(f_i)}} \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0). \end{split}$$

Applying Lemma 1, we have

(2.21)
$$\sum_{l_1, l_2 \in \{0,1\}} \sigma_{l_1, l_2, 3} = O(\rho(\mathbf{N})).$$

Now we consider the case $\mathfrak{f}^- = \mathfrak{f}^+ = 2$ and $l_1 = 0$. We see that \hbar is even. Let $\hbar = 2\hbar_1$ and $(F_1, \ldots, F_{\hbar_1}) \in \mathfrak{F}_{\hbar}$. Suppose $L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0$. By (2.15) and (2.6), we get $\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)}$. Using Definition 2, we find that the inner sum in (2.18) is zero. From (2.19)–(2.21), we conclude that $\sigma_0 = O(\rho(\mathbf{N}))$.

Lemma 3. Let

$$\sigma^{(1)}(\mathbf{N}) = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} (2\mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}}) = \mathbf{0}) e(\tau_1 \phi_{\mathbf{n}_1} + \cdots + \tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}).$$

Then

$$\sigma^{(1)}(\mathbf{N}) = \begin{cases} \frac{\hbar!}{2^{\hbar/2}(\hbar/2)!} + O(\rho(\mathbf{N})) & \text{if } \hbar \text{ is even,} \\ O(\rho(\mathbf{N})) & \text{if } \hbar \text{ is odd.} \end{cases}$$

Proof. Let $l_1, l_2 \in \{0, 1\}$, and define

(2.22)
$$\sigma_{l_1}(l_2) = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} (2\mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \\
\times e(\tau_1 \phi_{\mathbf{n}_1} + \cdots + \tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}) \delta(C(\overline{\mathbf{n}}) = \mathbf{0}) \delta(\mathfrak{g}(\overline{\mathbf{n}}) = l_1) \delta(\mathfrak{g}_1(\overline{\mathbf{n}}) = l_2).$$

By (2.13),

(2.23)
$$\sigma^{(1)}(\mathbf{N}) = \sigma_0(0) + \sigma_0(1) + \sigma_1(0) + \sigma_1(1).$$

From Lemma 2, we have

$$|\sigma_0(0)| + |\sigma_0(1)| \le \sigma_0 = O(\rho(\mathbf{N})).$$

Assume $\mathfrak{g}(\overline{\mathbf{n}}) = 1$. By Definition 2, \hbar is even. Write $\hbar = 2\hbar_1$, and let $\mathfrak{g}_1(\overline{\mathbf{n}}) = 0$. Using (2.18), (2.20) and (2.21), we get

$$(2.24) \quad |\sigma_1(0)| \le \sigma_{1,0,1} + \sigma_{1,0,2} + \sigma_{1,0,3} \quad \text{and} \quad \sigma_{1,0,1} + \sigma_{1,0,3} = O(\rho(\mathbf{N})).$$

Consider $\sigma_{1,0,2}$. For all $\mathcal{F}_r \in \mathfrak{F}_{\hbar,2}$ (see (2.17)), we get $r = \hbar_1$ and $\mathfrak{f}^- = \mathfrak{f}^+ = 2$. By (2.18),

$$(2.25) \quad \sigma_{1,0,2} \leq \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{2\hbar_1}} \sum_{\tau} \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}} (2\mathcal{A}(\mathbf{N}))^{-2\hbar_1} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{2\hbar_1}}$$
$$\times \delta(\mathfrak{f}^- = \mathfrak{f}^+ = 2) \delta(\mathfrak{g}(\overline{\mathbf{n}}) = 1) \delta(\mathfrak{g}_1(\overline{\mathbf{n}}) = 0) \prod_{i=1}^r \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0).$$

Applying (2.15) and (2.6), we obtain $\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)}$ $(i = 1, ..., \hbar_1)$. Now we derive from Definition 3 that $\hbar_1 \geq 2$, and there exist $1 \leq j_1 < j_2 < j_3 \leq \hbar$ with $\mathbf{n}_{j_1} = \mathbf{n}_{j_2} = \mathbf{n}_{j_3}$. Suppose $F_i(k) = j_1$ for some $i \in [1, \hbar_1]$ and $k \in \{1, 2\}$. We see that there exist $\mu \in [1, \hbar_1] \setminus \{i\}$ and $\ell \in \{2, 3\}$ such that $j_\ell \in F_\mu$.

Hence $\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)} = \mathbf{n}_{F_u(1)} = \mathbf{n}_{F_u(2)}$. Therefore

$$\sigma_{1,0,2} \leq \sum_{i,\mu \in [1,\hbar_1], i \neq \mu} \sum_{(F_1,\dots,F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}} \sum_{\tau} \delta(\mathfrak{f}^- = \mathfrak{f}^+ = 2)$$

$$\times \sum_{\mathbf{n}_{F_i(1)} \in R(\mathbf{N})} (2\mathcal{A}(\mathbf{N}))^{-4} a_{\mathbf{n}_{F_i(1)}}^4 \prod_{l \in [1,\hbar_1], l \neq i,\mu} \sum_{\mathbf{n}_{F_i(1)} \in R(\mathbf{N})} (2\mathcal{A}(\mathbf{N}))^{-2} a_{\mathbf{n}_{F_l(1)}}^2.$$

By (2.24) and (1.1) we have

(2.26)
$$\sigma_1(0) = O\left(\rho(\mathbf{N})^2 \left(\sum_{\mathbf{n} \in \mathbf{R}(\mathbf{N})} \mathcal{A}(\mathbf{N})^2 a_{\mathbf{n}}^2\right)^{h_1 - 1}\right) = O(\rho(\mathbf{N})^2).$$

Now assume $\mathfrak{g}_1(\overline{\mathbf{n}}) = 1$. We consider $\sigma_1(1)$ (see (2.22)). From Definitions 2 and 3, we have

$$\mathfrak{g}_1(\overline{\mathbf{n}}) = \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}, \#F_i = 2, i = 1, \dots, \hbar_1} \mathfrak{g}_1(\overline{\mathbf{n}}).$$

Thus

$$\sigma_1(1) = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}, \#F_i = 2, i = 1, \dots, \hbar_1} (2\mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}}) = \mathbf{0})$$

$$\times e(\tau_1 \phi_{\mathbf{n}_1} + \dots + \tau_{\hbar} \phi_{\mathbf{n}_{\hbar}}) \delta(\mathfrak{g}_1(\overline{\mathbf{n}}) = 1) \prod_{i=1}^{\hbar_1} \delta(\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)}) \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0).$$

Assume $L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0$. By (2.15) and (2.6), we get $\tau_{F_i(1)} = -\tau_{F_i(2)}$. Hence $e(\tau_{F_i(1)}\phi_{\mathbf{n}_{F_i(1)}} + \tau_{F_i(2)}\phi_{\mathbf{n}_{F_i(2)}}) = 1$. Thus $\sigma_1(1) = \dot{\sigma} - \ddot{\sigma}$, where

(2.27)
$$\dot{\sigma} = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}, \#F_i = 2, i = 1, \dots, \hbar_1} (2\mathcal{A}(\mathbf{N}))^{-\hbar} \times a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \prod_{i=1}^{\hbar_1} \delta(\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)}) \delta(\tau_{F_i(1)} = -\tau_{F_i(2)}),$$

and

$$\ddot{\sigma} = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}, \#F_i = 2, i = 1, \dots, \hbar_1} (2\mathcal{A}(\mathbf{N}))^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}}$$

$$\times \prod_{i=1}^{\hbar_1} \delta(\mathbf{n}_{F_i(1)} = \mathbf{n}_{F_i(2)}) \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = 0) \delta(\mathfrak{g}_1(\overline{\mathbf{n}}) = 0).$$

From (2.25) and (2.26), we obtain

(2.28)
$$\ddot{\sigma} = O(\rho(\mathbf{N})).$$

By (2.27), we get

$$\dot{\sigma} = \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}, \#F_i = 2, i = 1, \dots, \hbar_1} \prod_{i=1}^{\hbar_1} \sum_{\mathbf{n}_{F_i(1)} \in R(\mathbf{N})} 2(2\mathcal{A}(\mathbf{N}))^{-2} a_{\mathbf{n}_{F_i(1)}}^2 \\
= \sum_{(F_1, \dots, F_{\hbar_1}) \in \mathfrak{F}_{2\hbar_1}, \#F_i = 2, i = 1, \dots, \hbar_1} 1 = \frac{1}{\hbar_1!} \binom{2\hbar_1}{2} \binom{2\hbar_1 - 2}{2} \cdots \binom{2}{2} = \frac{(2\hbar_1)!}{\hbar_1! 2^{\hbar_1}}.$$

Now Lemma 3 follows from (2.23), (2.24) and (2.26)–(2.28).

LEMMA 4. Let $\gamma \neq 0$, and define

$$\sigma^{(2)}(\mathbf{N}, \boldsymbol{\gamma}) = \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \mathcal{A}(\mathbf{N})^{-\hbar} a_{\mathbf{n}_{1}} \cdots a_{\mathbf{n}_{\hbar}} \times \delta(C(\overline{\mathbf{n}}) = -T\boldsymbol{\gamma}) e(\tau_{1}\phi_{\mathbf{n}_{1}} + \cdots + \tau_{\hbar}\phi_{\mathbf{n}_{\hbar}}).$$

Then

(2.29)
$$\sigma^{(2)}(\mathbf{N}, \boldsymbol{\gamma}) = O(\rho(\mathbf{N})),$$

with the O-constant depending only on \hbar .

Proof. Let $-T\boldsymbol{\gamma} = (\gamma_{1,1}, \dots, \gamma_{1,r_1}, \dots, \gamma_{w,1}, \dots, \gamma_{w,r_w})$ and define $\nu_1 = \max\{\nu \in [1, w] \mid (\gamma_{\nu,1}, \dots, \gamma_{\nu,r_{\nu}}) \neq \mathbf{0}\}$. Assume $\gamma_{\nu_1, j_1} \neq 0$, and $\gamma_{\nu_1, j} = 0$ for $j > j_1$.

Suppose $(\tilde{m}_{\nu_1,1},\ldots,\tilde{m}_{\nu_1,r_{\nu_1}}) = \mathbf{0}$. By (2.8), the equation $C(\overline{\mathbf{n}})_{\nu_1,j_1} = \gamma_{\nu_1,j_1}$ has no solution, and the assertion is proved in this case.

Now suppose $(\tilde{m}_{\nu_1,1},\ldots,\tilde{m}_{\nu_1,r_{\nu_1}}) \neq \mathbf{0}$ and $\tilde{m}_{\nu_1,j_2} \neq 0$, $\tilde{m}_{\nu_1,j} = 0$ for $j > j_2$. By (2.8) and (2.9), $\nu_1 \leq \nu_0$. Suppose $\nu_1 = \nu_0$ and $j_1 > j_0$. By (2.10), $P_{j_1,j'}^{(\nu_0)}(\mathbf{n})\tilde{m}_{\nu_0,j'} = 0$ for $j' \neq j_1$. By (2.8) and (2.11), $C(\overline{\mathbf{n}})_{\nu_0,j_1} = 0$. Thus the equation $C(\overline{\mathbf{n}})_{\nu_0,j_1} = \gamma_{\nu_0,j_1} = \gamma_{\nu_1,j_1} \neq 0$ has no solution.

Let $\nu_1 = \nu_0$ and $j_1 = j_2 = j_0$. From (2.3)–(2.11) we deduce that $L(\overline{\mathbf{n}}, \nu_0) = \gamma_{\nu_0, j_0}/\tilde{m}_{\nu_0, j_0} \neq 0$. Analogously to the proof of Lemma 2, we obtain (2.29) from Lemma 1.

Consider the case $\nu_1 < \nu_0$ or $\nu_1 = \nu_0$, $j_1 < j_0$. By (2.4), (2.7) and (2.11), we find that if $C(\overline{\mathbf{n}}) = -T\gamma$, then

(2.30)
$$C(\overline{\mathbf{n}})_{\nu_0, j_0} = \gamma_{\nu_0, j_0} = 0 = L(\overline{\mathbf{n}}, \nu_0)$$
 and $C(\overline{\mathbf{n}})_{\nu_1, j_1} = \gamma_{\nu_1, j_1} \neq 0$.

It is easy to see that there exists a set $F_0 \subseteq F^{(\hbar)}$ with

$$C(\overline{\mathbf{n}}^{(F_0)})_{\nu_1,j_1} = \gamma_{\nu_1,j_1}, \quad C(\overline{\mathbf{n}}^{(F')})_{\nu_1,j_1} \neq 0 \quad \forall F' \subset F_0.$$

Define

$$R^*(\mathbf{N}, F) = \{ \overline{\mathbf{n}}^{(F)} \in R(\mathbf{N})^f \mid C(\overline{\mathbf{n}}^{(F)})_{\nu_1, j_1} = \gamma_{\nu_1, j_1}, \\ \nexists F' \subsetneq F \text{ with } C(\overline{\mathbf{n}}^{(F')})_{\nu_1, j_1} = 0 \}.$$

Applying (2.8), (2.6) and the Corollary, we get

$$(2.31) #R^*(\mathbf{N}, F_0) = O(1),$$

with the O-constant depending only on \hbar . If $F_0 = F^{(\hbar)}$, then (2.29) easily follows from (1.1).

Now assume $F_0 \neq F^{(\hbar)}$ and $\overline{\mathbf{n}}_0^{(F_0)} \in R^*(\mathbf{N}, F_0)$. Let F^{\perp} be the subset of $F^{(\hbar)}$ with $F \cup F^{\perp} = F^{(\hbar)}$ and $F \cap F^{\perp} = \emptyset$. We derive from (2.14) and (2.30) that there exists a partition (F_1, \ldots, F_r) of F_0^{\perp} such that

$$L(\overline{\mathbf{n}}_0^{(F_i)}, \nu_0) = \gamma^{(i)}$$
 and $\overline{\mathbf{n}}_0^{(F_i)} \in R(\mathbf{N}, F_i, \nu_0),$

where $\gamma^{(1)} = \cdots = \gamma^{(r-1)} = 0$ and $\gamma^{(r)} = -L(\overline{\mathbf{n}}_0^{(F_0)}, \nu_0) \tilde{m}_{\nu_0, j_0}$. Applying Lemma 1, we get

$$\sigma^{(3)}(\mathbf{N}, \boldsymbol{\gamma}, \overline{\mathbf{n}}_0^{(F_0)}) := \sum_{r=1}^{\hbar-1} \sum_{(F_1, \dots, F_r, F_0) \in \mathfrak{F}_{\hbar}} \sum_{\tau} 1$$

$$\times \prod_{r} \sum_{\mathbf{A}(\mathbf{N})^{-f_i} a_{\mathbf{n}_{F_i(1)}} \cdots a_{\mathbf{n}_{F_i(f_i)}} \delta(L(\overline{\mathbf{n}}^{(F_i)}, \nu_0) = \gamma^{(i)}) = O(1).$$

By (1.1), (2.30) and (2.31), we obtain

$$\begin{split} |\sigma^{(2)}(\mathbf{N}, \boldsymbol{\gamma})| &\leq \sum_{F_0 \subsetneq F^{(\hbar)}} \sum_{\tau} 1 \\ &\times \sum_{\overline{\mathbf{n}}_0^{(F_0)} \in R(\mathbf{N}, F_0)} \mathcal{A}(\mathbf{N})^{-f_0} a_{\mathbf{n}_{0, F_0(1)}} \cdots a_{\mathbf{n}_{0, F_0(f_0)}} \sigma^{(3)}(\mathbf{N}, \boldsymbol{\gamma}, \overline{\mathbf{n}}_0^{(F_0)}) = O(\rho(\mathbf{N})^{f_0}). \end{split}$$

Thus, Lemma 4 is proved.

Let

$$f(\mathbf{x}) = \sum_{\gamma \in \mathbb{Z}^s} c_{\gamma} e(2\pi \langle \gamma, \mathbf{x} \rangle)$$

be an absolutely convergent trigonometric series.

Lemma 5. With the above notations, we have

$$\lim_{N_0\to\infty} \int\limits_{[0,1]^s} f(\mathbf{x}) S(\mathbf{N},\mathbf{x})^\hbar \, d\mathbf{x} = \begin{cases} \frac{\hbar!}{2^{\hbar/2} (\hbar/2)!} c_{\mathbf{0}} & \text{if \hbar is even,} \\ 0 & \text{if \hbar is odd.} \end{cases}$$

Proof. By (1.2), we get

$$f(\mathbf{x})S(\mathbf{N}, \mathbf{x})^{\hbar} = \sum_{\gamma \in \mathbb{Z}^s} c_{\gamma} \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \mathcal{A}(\mathbf{N})^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \times e(2\pi \langle \gamma + C(\overline{\mathbf{n}}^{(F)}), \mathbf{x} \rangle + \phi_{\mathbf{n}_1} + \cdots + \phi_{\mathbf{n}_{\hbar}}).$$

Hence

$$\int_{\mathbf{p}(0,1]^s} f(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{\hbar} d\mathbf{x}$$

$$= \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^s} c_{\boldsymbol{\gamma}} \sum_{\overline{\mathbf{n}} \in R(\mathbf{N})^{\hbar}} \sum_{\tau} \mathcal{A}(\mathbf{N})^{-\hbar} a_{\mathbf{n}_1} \cdots a_{\mathbf{n}_{\hbar}} \delta(C(\overline{\mathbf{n}}^{(F)}) = -\boldsymbol{\gamma})$$

$$= c_{\mathbf{0}} \sigma^{(1)}(\mathbf{N}) + \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^s \setminus \{\mathbf{0}\}} c_{\boldsymbol{\gamma}} \sigma^{(2)}(\mathbf{N}, \boldsymbol{\gamma}).$$

Using Lemmas 3 and 4, we obtain the assertion.

2.1. End of the proof of the Theorem. It is sufficient to prove the Theorem for a box $D = [a_1, b_1] \times \cdots \times [a_s, b_s] \subset (0, 1)^s$. Let $\chi_D(\cdot)$ be the indicator function of D, $D^- = \prod_{1 \leq i \leq s} [a_i + \epsilon, b_i - \epsilon]$, and $D^+ = \prod_{1 \leq i \leq s} [a_i - \epsilon, b_i + \epsilon] \subset (0, 1)^s$.

We fix a nonnegative function $\omega(x)$, $x \in \mathbb{R}$, of class C^{∞} , supported inside the interval $|x| \leq 1$, such that $\int_{\mathbb{R}} \omega(x) dx = 1$. Let $\omega_1(\mathbf{x}) = \omega(x_1) \cdots \omega(x_s)$, $\mathbf{x} = (x_1, \dots, x_s)$. The Fourier transform $\hat{\omega}_1(\mathbf{y}) = \int_{\mathbb{R}^s} \omega_1(\mathbf{x}) e(2\pi \langle \mathbf{x}, \mathbf{y} \rangle) d\mathbf{x}$ of $\omega_1(\mathbf{x})$ satisfies

(2.32)
$$\hat{\omega}_1(\mathbf{y}) = O((1+|\mathbf{y}|)^{-10s}).$$

Let $\omega_{\epsilon}(\mathbf{x}) = \epsilon^{-s}\omega_1(\epsilon^{-1}\mathbf{x})$. We consider the convolution of the indicator function $\chi_{D^{\pm}}(\cdot)$ with $\omega_{\epsilon}(\cdot)$:

(2.33)
$$\chi_{D^{\pm},\epsilon}(\mathbf{y}) = \int_{[0,1]^s} \chi_{D^{\pm}}(\mathbf{x}) \omega_{\epsilon}(\mathbf{x} - \mathbf{y}) d\mathbf{x}.$$

Hence $\hat{\chi}_{D^{\pm},\epsilon}(\mathbf{y}) = \hat{\chi}_{D^{\pm}}(\mathbf{y})\hat{\omega}_{\epsilon}(\mathbf{y})$. By (2.32), the Fourier series of $\chi_{D^{-},\epsilon}(\mathbf{y})$ and of $\chi_{D^{+},\epsilon}(\mathbf{y})$ are absolutely convergent. It is easy to verify that

(2.34)
$$\chi_{D^{-},\epsilon}(\mathbf{y}) \le \chi_{D}(\mathbf{y}) \le \chi_{D^{+},\epsilon}(\mathbf{y}),$$

and that

(2.35)

$$\prod_{i=1}^{s} (b_i - a_i - 4\epsilon) \le \hat{\chi}_{D^-, \epsilon}(\mathbf{0}) \le \operatorname{mes} D, \quad \operatorname{mes} D \le \hat{\chi}_{D^+, \epsilon}(\mathbf{0}) \le \prod_{i=1}^{s} (b_i - a_i + 4\epsilon).$$

Using Lemma 5 and (2.34), we obtain

$$\frac{(2\hbar_{1})!}{2^{\hbar_{1}}(\hbar_{1})!}\hat{\chi}_{D^{-},\epsilon}(\mathbf{0}) = \lim_{N_{0}\to\infty} \int_{[0,1]^{s}} \chi_{D^{-},\epsilon}(\mathbf{x})S(\mathbf{N},\mathbf{x})^{2\hbar_{1}} d\mathbf{x}$$

$$\leq \liminf_{N_{0}\to\infty} \int_{[0,1]^{s}} \chi_{D}(\mathbf{x})S(\mathbf{N},\mathbf{x})^{2\hbar_{1}} d\mathbf{x} \leq \limsup_{N_{0}\to\infty} \int_{[0,1]^{s}} \chi_{D}(\mathbf{x})S(\mathbf{N},\mathbf{x})^{2\hbar_{1}} d\mathbf{x}$$

$$\leq \lim_{N_{0}\to\infty} \int_{[0,1]^{s}} \chi_{D^{+},\epsilon}(\mathbf{x})S(\mathbf{N},\mathbf{x})^{2\hbar_{1}} d\mathbf{x} = \frac{(2\hbar_{1})!}{2^{\hbar_{1}}(\hbar_{1})!}\hat{\chi}_{D^{+},\epsilon}(\mathbf{0}).$$

Bearing in mind that the \liminf and \limsup in the middle do not depend on ϵ , from (2.35) we have

$$\frac{1}{\text{mes } D} \lim_{N_0 \to \infty} \int_{[0,1]^s} \chi_D(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2\hbar_1} d\mathbf{x} = \frac{(2\hbar_1)!}{2^{\hbar_1} (\hbar_1)!}.$$

Hence (2.1) is proved for \hbar even. Consider the case of \hbar odd. We see that

$$\int_{[0,1]^s} \chi_D(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x} = \int_{[0,1]^s} \chi_{D^+, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x}
+ \int_{[0,1]^s} (\chi_D(\mathbf{x}) - \chi_{D^+, \epsilon}(\mathbf{x})) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x}.$$

Applying the Cauchy–Schwarz inequality, we get

$$\left(\int_{[0,1]^s} (\chi_D(\mathbf{x}) - \chi_{D^+,\epsilon}(\mathbf{x})) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x}\right)^2$$

$$\leq \int_{[0,1]^s} (\chi_D(\mathbf{x}) - \chi_{D^+,\epsilon}(\mathbf{x}))^2 d\mathbf{x} \int_{[0,1]^s} S(\mathbf{N}, \mathbf{x})^{4\hbar_1 + 2} d\mathbf{x}$$

and

$$\left(\int_{[0,1]^s} \chi_D(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x}\right)^2 \le 2 \left(\int_{[0,1]^s} \chi_{D^+, \epsilon}(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x}\right)^2
+ 2 \left(\int_{[0,1]^s} (\chi_D(\mathbf{x}) - \chi_{D^+, \epsilon}(\mathbf{x})) S(\mathbf{N}, \mathbf{x})^{2\hbar_1 + 1} d\mathbf{x}\right)^2.$$

By (2.33), we obtain $0 \le \chi_{D^+,\epsilon}(\mathbf{x}) \le 1$ for all \mathbf{x} , and

$$(2.37) \int_{[0,1]^s} (\chi_D(\mathbf{x}) - \chi_{D^+,\epsilon}(\mathbf{x}))^2 d\mathbf{x} \le \prod_{i=1}^s (b_i - a_i + 4\epsilon) - \prod_{i=1}^s (b_i - a_i) = O(\epsilon).$$

Using Lemma 5, we get

$$\lim_{N_0\to\infty}\int\limits_{[0,1]^s}\chi_{D^+,\epsilon}(\mathbf{x})S(\mathbf{N},\mathbf{x})^{2\hbar_1+1}\,d\mathbf{x}=O(\epsilon),\qquad \int\limits_{[0,1]^s}S(\mathbf{N},\mathbf{x})^{4\hbar_1+2}\,d\mathbf{x}=O(1).$$

From (2.36) and (2.37) we have

(2.38)
$$\lim_{N_0 \to \infty} \int_{[0,1]^s} \chi_D(\mathbf{x}) S(\mathbf{N}, \mathbf{x})^{2h_1 + 1} d\mathbf{x} = O(\epsilon).$$

Taking into account that the left hand side of (2.38) does not depend on ϵ , we find that (2.1) is true for \hbar odd. Hence, the Theorem is proved.

Acknowledgments. I am grateful to the referee for suggestions which improved this paper.

REFERENCES

- [BPT] I. Berkes, W. Philipp, and R. Tichy, Empirical processes in probabilistic number theory: the LIL for the discrepancy of $(n_k\omega)$ mod 1, Illinois J. Math. 50 (2006), 107-145.
- [EW] M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011.
- [F] R. Fortet, Sur une suite également répartie, Studia Math. 9 (1940), 54–70.
- [FP] K. Fukuyama et B. Petit, Le théorème limite central pour les suites de R. C. Baker, Ergodic Theory Dynam. Systems 21 (2001), 479–492.
- [Fu] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967) 1–49.
- [Ga] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea Publ., New York, 1960.
- [K] M. Kac, On the distribution of values of sums of the type $f(2^k t)$, Ann. of Math. (2) 47 (1946), 33–49.
- V. P. Leonov, On the central limit theorem for ergodic endomorphisms of compact commutative groups, Dokl. Akad. Nauk SSSR 135 (1960), 258–261 (in Russian).
- [Le1] M. B. Levin, On low discrepancy sequences and low discrepancy ergodic transformations of the multidimensional unit cube, Israel J. Math. 178 (2010), 61–106.
- [Le2] M. B. Levin, Central Limit Theorem for \mathbb{Z}^d_+ -actions by toral endomorphisms, Electron. J. Probab. 18 (2013), no. 35, 42 pp.
- [MM] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover Publ., New York, 1992.
- [P] W. Philipp, Empirical distribution functions and strong approximation theorems for dependent random variables. A problem of Baker in probabilistic number theory, Trans. Amer. Math. Soc. 345 (1994), 705–727.
- [PS] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 2 (1975), no. 161.
- [SZ] R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333–338.
- [SS] H. P. Schlickewei and W. M. Schmidt, The number of solutions of polynomialexponential equations, Compos. Math. 120 (2000), 193–225.
- [SW] K. Schmidt and T. Ward, Mixing automorphisms of compact groups and a theorem of Schlickewei, Invent. Math. 111 (1993), 69–76.
- [Z] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, New York, 1959.

Mordechay B. Levin Department of Mathematics Bar-Ilan University Ramat-Gan, 5290002, Israel E-mail: mlevin@math.biu.ac.il