
COLLOQU IUM MATHEMAT ICUM
VOL. 131 2013 NO. 1

A NOTE ON THE DIOPHANTINE EQUATION P (z) = n! +m!

BY

MACIEJ GAWRON (Kraków)

Abstract. We consider the Brocard–Ramanujan type Diophantine equation P (z) =
n! + m!, where P is a polynomial with rational coefficients. We show that the ABC
Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2
and P (z) = adz

d + ad−3z
d−3 + · · ·+ a1x+ a0.

1. Introduction. In this paper, we consider the Diophantine equation

P (z) = m! + n!,

where P (x) = adx
d + ad−3x

d−3 + · · · + a1x + a0 ∈ Q[X] is any polynomial
of degree d ≥ 2 of this form. We prove that under the ABC Conjecture, this
equation has only finitely many integer solutions. This is a generalization
of Luca’s result [7], who proved the same for the equation P (x) = n! where
P ∈ Z[X] is any polynomial of degree d ≥ 2. Our result depends on the ABC
Conjecture, which we recall later. If we do not assume the ABC Conjecture,
the problem is still unsolved, even for the equation

x2 − 1 = n!,

which is the well-known Brocard–Ramanujan equation [3], [8]. Berndt and
Galway showed by numerical computations that this equation has only three
solutions with n ≤ 109 [2]. One can also consult an interesting paper of
Dąbrowski [4] related to the more general Diophantine equation of the form
y2 = x! + A, where A is given integer, and a recent papers of Ulas [9]
and Dąbrowski and Ulas [5], concerning some computational results for the
equation studied by Dąbrowski.

We assume that the coefficients ad−1, ad−2 are missing in P . Note that if
P ∈ Q[X] is any polynomial of degree d, then by a standard trick, one can
find integers a, b and a polynomial Q ∈ Q[X] such that P (x) = Q(ax − b)
and the coefficient of xd−1 is missing in Q. So, in general, one can assume
that ad−1 = 0.
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In our paper, p is always a prime number. Moreover we will use ϑ to
denote the Chebyshev function ϑ(x) =

∑
p≤x ln p. We will also use the fact

that ϑ(x) ∼ x as x → ∞, which is a consequence of the prime number
theorem. The integer vp(x) is the exponent of p in the factorization of the
nonzero rational number x. We also use the well-known elementary estimate∏
p≤n p < 4n. Finally, M,M1,Mε,Mθ, . . . are always positive constants.

2. Preliminaries. Let us recall the ABC Conjecture.

Definition 2.1. For n ∈ Z \ {0} we define the radical of n to be the
product of all primes that divide n,

rad(n) =
∏
p|n

p.

Conjecture 2.2 (ABC Conjecture). For each ε > 0, there existsMε>0
such that whenever a, b, c ∈ Z \ {0} satisfy the conditions

gcd(a, b, c) = 1 and a+ b+ c = 0,

then
max{|a|, |b|, |c|} ≤Mε rad(abc)

1+ε.

We will use the following useful lemma, for triples (a, b, c) of integers with
gcd(a, b, c) > 1.

Lemma 2.3. Under the ABC Conjecture the following statement is true.
For each ε > 0, there exists Mε > 0 such that whenever a, b, c are positive
integers with a+ b = c, then

c ≤Mε(a rad(bc))
1+ε.

Proof. Let d = gcd(a, b, c). Then we can apply the ABC Conjecture to
the triple (a/d, b/d, c/d) to get

c

d
≤Mε rad

(
abc

d3

)1+ε

≤Mε

(
a

d
rad(bc)

)1+ε

,

and the conclusion follows.

Let us recall Luca’s result, which we will use in our considerations.

Theorem 2.4 (Luca [7]). Under the ABC Conjecture, for every polyno-
mial P ∈ Z[X] of degree d ≥ 2, the equation

P (m) = n!

has only finitely many integer solutions.

Note 2.5. We can take P ∈ Q[X] in the previous theorem as well.

We also formulate a strong conjecture about this type of Diophantine
equations, which may be an object of further research.
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Conjecture 2.6. For every polynomial P ∈ Z[X] of degree d ≥ 2 and
every integer k > 0, the equation

P (z) = x1! + x2! + · · ·+ xk!

has only finitely many integer solutions.

3. The main result. First, we prove our result for polynomials of the
form P (x) = xd.

Theorem 3.1. Under the ABC Conjecture, for any integers d ≥ 2 and
c > 0, the equation

zd = c(m! + n!)

has only finitely many integer solutions.

Proof. From Theorem 2.4, we know that for fixedm the equation has only
finitely many solutions. So we can assume that n ≥ m > 2c. Let p ∈ (m/2,m]
be a prime. Then

d | vp(zd) = vp(c(m! + n!)) = vp

(
m!

(
n!

m!
+ 1

))
= 1 + vp

(
n!

m!
+ 1

)
,

and therefore vp( n!m! + 1) ≥ d− 1 ≥ 1. Hence
n!

m!
+ 1 ≥

∏
p∈(m/2,m]

p = eϑ(m)−ϑ(m/2).

So, for sufficiently large n,m,

(n−m) lnn+ 1 ≥ ln

(
n!

m!
+ 1

)
≥ ϑ(m)− ϑ

(
m

2

)
≥ 3

4
m− 5

8
m =

1

8
m.

Therefore,
n−m ≥ m

9 lnn
.

On the other hand, from the prime gap bound [1], we know that for suffi-
ciently large m, there exists a prime p ∈ [m/2,m/2 + (m/2)0.525]. We have
2p > n, because otherwise vp(n!/m! + 1) = 0. So,

2m > m+ 2

(
m

2

)0.525

> 2p > n.

We have

2

(
m

2

)0.525

≥ n−m ≥ m

9 lnn
.

Thus,
18 lnn > m0.475

for sufficiently large m,n, which contradicts the fact that n < 2m.
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Note 3.2. We learned from F. Luca (personal communication) that the
above equation with c = 1 was investigated by Erdős and Oblath [6]. More-
over, note that in essence we proved (independently of the ABC Conjecture)
that there exists a constant M such that the equation zd = c(m! + n!) has
no integer solutions with min{m,n} > M .

Now we can consider the general situation.

Theorem 3.3. Let P (z) = adz
d+ad−3z

d−3+ad−4z
d−4+· · ·+a1z+a0 be a

polynomial of degree d with rational coefficients. Under the ABC Conjecture,
the equation

P (z) = m! + n!

has only finitely many integer solutions.

Proof. We multiply out by the denominators to get

P1(z) = C1(m! + n!),

where P1 ∈ Z[X] and C1 is some integer. Let P1(z) = bdz
d + l.o.t. We

multiply the above equation by bd−1d and set w := bdz to obtain

P2(w) = C2(m! + n!),

where P2 is a monic polynomial with integer coefficients and C2 is some
integer. We assume that m ≤ n. Fix some ε < 1/(3d). We will look at
solutions satisfying the additional condition

m! < n!(d−1)/d−ε.

Then, for all sufficiently large w, we have

(1) 2wd > P2(w) = C(m! + n!) > n!.

Raising both sides to the power (d− 1)/d− ε, we get

Mwd−1−dε > n!(d−1)/d−ε > m!,

where M = 2(d−1)/d−ε. Moreover, from 2wd > n!, we have

(2) wε > (n!/2)ε/d > 4n

for sufficiently large n. Write P2(w) = wd+R(w), where degR ≤ d−3. Now
our equation is

wd + (R(w)− Cm!) = Cn!.

From Theorem 2.4, we have R(w)−Cm! = Cn!−wd 6= 0 for all but finitely
many pairs n,w. So, we can use Lemma 2.3 for a small positive number θ to
be fixed later and get

wd ≤Mθ|R(w)−Cm!|1+θ rad(Cn!wd)1+θ < Mθ(4Cw
d−1−dε)1+θ4n(1+θ)w1+θ.

Therefore,
wd < Sθw

(d−1−dε+ε+1)(1+θ)
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for some constant Sθ. Because d+ (1− d)ε < d, we can take θ such that
d > (d+ (1− d)ε)(1 + θ),

so w is bounded.
Now we consider solutions with the additional conditionm! > n!(d−2)/d+ε.

From (1) and (2), we get

wε > 4n ≥ 4m and n!1/d < 2w.

We have

rad(m! + n!) ≤ 4m
(
n!

m!
+ 1

)
≤ wε(n!2/d−ε + 1) ≤ 8wε+2−dε.

Because deg(R) = d− 3, for all sufficiently large w we have
|R(w)| < M1w

d−3,

where M1 is some constant which depends on P . We write our equation as
wd + R(w) = C(m! + n!). If R(w) ≡ 0, then we use the previous theorem
and we are done. Otherwise R(w) 6= 0 for all but finitely many w. We can
use Lemma 2.3 for some small positive θ to be fixed later again and get

wd ≤Mθ|R(w)|1+θ rad(C(m! + n!)wd)1+θ ≤ Sθw(d−3+2+(1−d)ε+1)(1+θ)

for some constant Sθ. We can choose θ such that
d > (d+ (1− d)ε)(1 + θ),

therefore w is bounded.
Above, all solutions have been considered, because otherwise

n!(d−2)/d+ε ≥ m! ≥ n!(d−1)/d−ε

and therefore ε > 1/(2d), a contradiction.
Corollary 3.4 (from the proof). Let P (z) be a polynomial of degree d

with rational coefficients, and ε > 0. Under the ABC Conjecture, the equation
P (z) = m! + n!

has only finitely many integer solutions with m! /∈ [n!(d−1)/d−ε, n!(d−1)/d+ε].
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