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A NOTE ON THE DIOPHANTINE EQUATION P(z) =n!+m!

MACIEJ GAWRON (Krakéow)

Abstract. We consider the Brocard-Ramanujan type Diophantine equation P(z) =
n! + m!, where P is a polynomial with rational coefficients. We show that the ABC
Conjecture implies that this equation has only finitely many integer solutions when d > 2
and P(z) = agz® + ag_32""3 + -+ a1z + ao.

1. Introduction. In this paper, we consider the Diophantine equation
P(z) =m!+nl,

where P(z) = agz? + ag_3x% + - + ayx + ap € Q[X] is any polynomial
of degree d > 2 of this form. We prove that under the ABC Conjecture, this
equation has only finitely many integer solutions. This is a generalization
of Luca’s result [7], who proved the same for the equation P(z) = n! where
P € Z[X] is any polynomial of degree d > 2. Our result depends on the ABC
Conjecture, which we recall later. If we do not assume the ABC Conjecture,
the problem is still unsolved, even for the equation

2 —1=nl,

which is the well-known Brocard-Ramanujan equation [3], [8]. Berndt and
Galway showed by numerical computations that this equation has only three
solutions with n < 10° [2]. One can also consult an interesting paper of
Dabrowski [4] related to the more general Diophantine equation of the form
y?> = z! + A, where A is given integer, and a recent papers of Ulas [J]
and Dabrowski and Ulas [5], concerning some computational results for the
equation studied by Dabrowski.

We assume that the coefficients ag_1, ag_o are missing in P. Note that if
P € Q[X] is any polynomial of degree d, then by a standard trick, one can
find integers a,b and a polynomial @ € Q[X] such that P(z) = Q(ax — b)
and the coefficient of z9~! is missing in Q. So, in general, one can assume
that ag_1 = 0.
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In our paper, p is always a prime number. Moreover we will use ¥ to
denote the Chebyshev function J(z) = > ., Inp. We will also use the fact
that 9(x) ~ x as © — oo, which is a consequence of the prime number
theorem. The integer vy (z) is the exponent of p in the factorization of the
nonzero rational number x. We also use the well-known elementary estimate
Hp<np < 4", Finally, M, My, M., My, ... are always positive constants.

2. Preliminaries. Let us recall the ABC Conjecture.

DEFINITION 2.1. For n € Z\ {0} we define the radical of n to be the
product of all primes that divide n,

rad(n) = Hp.
pln

CONJECTURE 2.2 (ABC Conjecture). For each e > 0, there exists M >0
such that whenever a,b,c € Z\ {0} satisfy the conditions

ged(a,b,e) =1 and a+b+c=0,

then
max{|al, |b|, |¢|} < M, rad(abe)'*e.

We will use the following useful lemma, for triples (a, b, ¢) of integers with
ged(a, b, c) > 1.

LEMMA 2.3. Under the ABC Conjecture the following statement is true.
For each € > 0, there exists M¢ > 0 such that whenever a,b,c are positive
integers with a + b = ¢, then

¢ < M (arad(be)) e

Proof. Let d = ged(a,b,c). Then we can apply the ABC Conjecture to
the triple (a/d,b/d,c/d) to get

1+e 1+e
c abc a
g < ME I’ad<d3> < Mﬁ <d rad(bc)) s
and the conclusion follows. =

Let us recall Luca’s result, which we will use in our considerations.

THEOREM 2.4 (Luca [7]). Under the ABC Conjecture, for every polyno-
mial P € Z[X] of degree d > 2, the equation

P(m) =n!
has only finitely many integer solutions.
NOTE 2.5. We can take P € Q[X] in the previous theorem as well.

We also formulate a strong conjecture about this type of Diophantine
equations, which may be an object of further research.
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CONJECTURE 2.6. For every polynomial P € Z[X] of degree d > 2 and
every integer k > 0, the equation
P(z) = a1l + @ 4 -+ - + ap!

has only finitely many integer solutions.

3. The main result. First, we prove our result for polynomials of the

form P(z) = z?.

THEOREM 3.1. Under the ABC Conjecture, for any integers d > 2 and

¢ > 0, the equation

2% = ¢(m! +n!)

has only finitely many integer solutions.

Proof. From Theorem 2.4, we know that for fixed m the equation has only
finitely many solutions. So we can assume that n > m > 2c. Let p € (m/2,m]
be a prime. Then

d | | o n!
d|vp(2?) = vp(c(m! +nl)) = vy | m! m—i—l =1+, m—i—l ,
and therefore v,( %} + 1) > d — 1 > 1. Hence

n! #(m)—9%(m/2
D1z [ p=etmore),
pE(m/2,m]

So, for sufficiently large n, m,
! 1
(n—m)lnn+1> hl(:z! + 1) > 9(m) —ﬁ<m> > %m— gm: g™

Therefore,
m

n—m?> .
9lnn

On the other hand, from the prime gap bound [I], we know that for suffi-
ciently large m, there exists a prime p € [m/2,m/2 + (m/2)%5?°]. We have
2p > n, because otherwise v,(n!/m! + 1) = 0. So,

m\ 0-525
2m>m+2<2> > 2p > n.

We have

Thus,

181Inn > m%4™

for sufficiently large m, n, which contradicts the fact that n < 2m. =
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NOTE 3.2. We learned from F. Luca (personal communication) that the
above equation with ¢ = 1 was investigated by Erdds and Oblath [6]. More-
over, note that in essence we proved (independently of the ABC Conjecture)
that there exists a constant M such that the equation z? = c¢(m! + n!) has
no integer solutions with min{m,n} > M.

Now we can consider the general situation.

THEOREM 3.3. Let P(2) = agz?+ag_3293+ag_429 "+ +ayz+ag be a
polynomial of degree d with rational coefficients. Under the ABC Conjecture,
the equation

P(z) =m! +nl!

has only finitely many integer solutions.
Proof. We multiply out by the denominators to get
Pi(z) = Ci(m! +nl),
where P € Z[X] and C; is some integer. Let Pi(z) = bgz? + Lo.t. We
multiply the above equation by bg_l and set w := byz to obtain
Py(w) = Ca(m! +nl),

where P, is a monic polynomial with integer coefficients and Cs is some
integer. We assume that m < n. Fix some € < 1/(3d). We will look at
solutions satisfying the additional condition
m! < plld=b/d=e
Then, for all sufficiently large w, we have
(1) 2w > Py(w) = C(m! 4 n!) > nl.
Raising both sides to the power (d — 1)/d — €, we get
Map?—1-de > n!(d—l)/d—e > ml,
where M = 2(@=1/d=¢_ \oreover, from 2w? > n!, we have
(2) we > (n!/2)? > 4"
for sufficiently large n. Write Po(w) = w? 4+ R(w), where deg R < d— 3. Now
our equation is
w? + (R(w) — Cm!) = Cnl.
From Theorem 2.4, we have R(w) — Cm! = Cn! —w? # 0 for all but finitely

many pairs n,w. S0, we can use Lemma 2.3 for a small positive number 6 to
be fixed later and get

wd < Mg!R(w)—Cm!\He rad(cn!wd)l—i-G < Mg<4de_l_d5)1+94n(1+6)w1+9.

Therefore,

’U)d < Sew(d—l—de+e+1)(1+0)
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for some constant Sy. Because d + (1 — d)e < d, we can take 6 such that
d> (d+ (1 —d)e)(1+80),

so w is bounded.
Now we consider solutions with the additional condition m! > n!(d—2)/d+e

From and 7 we get
wE > 4" > 4™ and Y < 2.
We have

|
rad(m! 4+ n!) < 4™ <n' + 1> < w(n!?17¢ 4 1) < BuH2de,
m!

Because deg(R) = d — 3, for all sufficiently large w we have

|R(w)| < Mjw?=3,
where M is some constant which depends on P. We write our equation as
w? + R(w) = C(m! +n!). If R(w) = 0, then we use the previous theorem

and we are done. Otherwise R(w) # 0 for all but finitely many w. We can
use Lemma 2.3 for some small positive 6 to be fixed later again and get

wh < M| R(w)|" rad(C/(m! + nl)w®) 10 < Spu(d-3+2+1-Det1)(1+0)
for some constant Sy. We can choose # such that
d>(d+ (1 —d)e)(1+80),
therefore w is bounded.

Above, all solutions have been considered, because otherwise
n!(d—2)/d+e > m! > n!(d—l)/d—e

and therefore € > 1/(2d), a contradiction. m

COROLLARY 3.4 (from the proof). Let P(z) be a polynomial of degree d
with rational coefficients, and e > 0. Under the ABC Conjecture, the equation

P(z) =m! +n!

has only finitely many integer solutions with m! ¢ [n!(dfl)/dfe,n!(dfl)/d“].
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