A NOTE ON THE DIOPHANTINE EQUATION $P(z)=n!+m$!

BY
MACIEJ GAWRON (Kraków)

Abstract

We consider the Brocard-Ramanujan type Diophantine equation $P(z)=$ $n!+m!$, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when $d \geq 2$ and $P(z)=a_{d} z^{d}+a_{d-3} z^{d-3}+\cdots+a_{1} x+a_{0}$.

1. Introduction. In this paper, we consider the Diophantine equation

$$
P(z)=m!+n!
$$

where $P(x)=a_{d} x^{d}+a_{d-3} x^{d-3}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[X]$ is any polynomial of degree $d \geq 2$ of this form. We prove that under the ABC Conjecture, this equation has only finitely many integer solutions. This is a generalization of Luca's result [7], who proved the same for the equation $P(x)=n$! where $P \in \mathbb{Z}[X]$ is any polynomial of degree $d \geq 2$. Our result depends on the ABC Conjecture, which we recall later. If we do not assume the ABC Conjecture, the problem is still unsolved, even for the equation

$$
x^{2}-1=n!,
$$

which is the well-known Brocard-Ramanujan equation [3, 8]. Berndt and Galway showed by numerical computations that this equation has only three solutions with $n \leq 10^{9}$ [2]. One can also consult an interesting paper of Dąbrowski [4] related to the more general Diophantine equation of the form $y^{2}=x!+A$, where A is given integer, and a recent papers of Ulas [9] and Dąbrowski and Ulas [5], concerning some computational results for the equation studied by Dąbrowski.

We assume that the coefficients a_{d-1}, a_{d-2} are missing in P. Note that if $P \in \mathbb{Q}[X]$ is any polynomial of degree d, then by a standard trick, one can find integers a, b and a polynomial $Q \in \mathbb{Q}[X]$ such that $P(x)=Q(a x-b)$ and the coefficient of x^{d-1} is missing in Q. So, in general, one can assume that $a_{d-1}=0$.

Key words and phrases: Brocard-Ramanujan type equation, ABC Conjecture, Diophantine equation.

In our paper, p is always a prime number. Moreover we will use ϑ to denote the Chebyshev function $\vartheta(x)=\sum_{p \leq x} \ln p$. We will also use the fact that $\vartheta(x) \sim x$ as $x \rightarrow \infty$, which is a consequence of the prime number theorem. The integer $v_{p}(x)$ is the exponent of p in the factorization of the nonzero rational number x. We also use the well-known elementary estimate $\prod_{p \leq n} p<4^{n}$. Finally, $M, M_{1}, M_{\epsilon}, M_{\theta}, \ldots$ are always positive constants.
2. Preliminaries. Let us recall the ABC Conjecture.

Definition 2.1. For $n \in \mathbb{Z} \backslash\{0\}$ we define the radical of n to be the product of all primes that divide n,

$$
\operatorname{rad}(n)=\prod_{p \mid n} p
$$

Conjecture 2.2 (ABC Conjecture). For each $\epsilon>0$, there exists $M_{\epsilon}>0$ such that whenever $a, b, c \in \mathbb{Z} \backslash\{0\}$ satisfy the conditions

$$
\operatorname{gcd}(a, b, c)=1 \quad \text { and } \quad a+b+c=0
$$

then

$$
\max \{|a|,|b|,|c|\} \leq M_{\epsilon} \operatorname{rad}(a b c)^{1+\epsilon} .
$$

We will use the following useful lemma, for triples (a, b, c) of integers with $\operatorname{gcd}(a, b, c)>1$.

Lemma 2.3. Under the ABC Conjecture the following statement is true. For each $\epsilon>0$, there exists $M_{\epsilon}>0$ such that whenever a, b, c are positive integers with $a+b=c$, then

$$
c \leq M_{\epsilon}(a \operatorname{rad}(b c))^{1+\epsilon} .
$$

Proof. Let $d=\operatorname{gcd}(a, b, c)$. Then we can apply the ABC Conjecture to the triple $(a / d, b / d, c / d)$ to get

$$
\frac{c}{d} \leq M_{\epsilon} \operatorname{rad}\left(\frac{a b c}{d^{3}}\right)^{1+\epsilon} \leq M_{\epsilon}\left(\frac{a}{d} \operatorname{rad}(b c)\right)^{1+\epsilon},
$$

and the conclusion follows.
Let us recall Luca's result, which we will use in our considerations.
Theorem 2.4 (Luca [7). Under the ABC Conjecture, for every polynomial $P \in \mathbb{Z}[X]$ of degree $d \geq 2$, the equation

$$
P(m)=n!
$$

has only finitely many integer solutions.
Note 2.5. We can take $P \in \mathbb{Q}[X]$ in the previous theorem as well.
We also formulate a strong conjecture about this type of Diophantine equations, which may be an object of further research.

Conjecture 2.6. For every polynomial $P \in \mathbb{Z}[X]$ of degree $d \geq 2$ and every integer $k>0$, the equation

$$
P(z)=x_{1}!+x_{2}!+\cdots+x_{k}!
$$

has only finitely many integer solutions.
3. The main result. First, we prove our result for polynomials of the form $P(x)=x^{d}$.

Theorem 3.1. Under the $A B C$ Conjecture, for any integers $d \geq 2$ and $c>0$, the equation

$$
z^{d}=c(m!+n!)
$$

has only finitely many integer solutions.
Proof. From Theorem 2.4, we know that for fixed m the equation has only finitely many solutions. So we can assume that $n \geq m>2 c$. Let $p \in(m / 2, m]$ be a prime. Then

$$
d \left\lvert\, v_{p}\left(z^{d}\right)=v_{p}(c(m!+n!))=v_{p}\left(m!\left(\frac{n!}{m!}+1\right)\right)=1+v_{p}\left(\frac{n!}{m!}+1\right)\right.
$$

and therefore $v_{p}\left(\frac{n!}{m!}+1\right) \geq d-1 \geq 1$. Hence

$$
\frac{n!}{m!}+1 \geq \prod_{p \in(m / 2, m]} p=e^{\vartheta(m)-\vartheta(m / 2)}
$$

So, for sufficiently large n, m,

$$
(n-m) \ln n+1 \geq \ln \left(\frac{n!}{m!}+1\right) \geq \vartheta(m)-\vartheta\left(\frac{m}{2}\right) \geq \frac{3}{4} m-\frac{5}{8} m=\frac{1}{8} m
$$

Therefore,

$$
n-m \geq \frac{m}{9 \ln n}
$$

On the other hand, from the prime gap bound [1], we know that for sufficiently large m, there exists a prime $p \in\left[m / 2, m / 2+(m / 2)^{0.525}\right]$. We have $2 p>n$, because otherwise $v_{p}(n!/ m!+1)=0$. So,

$$
2 m>m+2\left(\frac{m}{2}\right)^{0.525}>2 p>n
$$

We have

$$
2\left(\frac{m}{2}\right)^{0.525} \geq n-m \geq \frac{m}{9 \ln n}
$$

Thus,

$$
18 \ln n>m^{0.475}
$$

for sufficiently large m, n, which contradicts the fact that $n<2 m$.

Note 3.2. We learned from F. Luca (personal communication) that the above equation with $c=1$ was investigated by Erdős and Oblath [6. Moreover, note that in essence we proved (independently of the ABC Conjecture) that there exists a constant M such that the equation $z^{d}=c(m!+n!)$ has no integer solutions with $\min \{m, n\}>M$.

Now we can consider the general situation.
Theorem 3.3. Let $P(z)=a_{d} z^{d}+a_{d-3} z^{d-3}+a_{d-4} z^{d-4}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree d with rational coefficients. Under the ABC Conjecture, the equation

$$
P(z)=m!+n!
$$

has only finitely many integer solutions.
Proof. We multiply out by the denominators to get

$$
P_{1}(z)=C_{1}(m!+n!),
$$

where $P_{1} \in \mathbb{Z}[X]$ and C_{1} is some integer. Let $P_{1}(z)=b_{d} z^{d}+$ l.o.t. We multiply the above equation by b_{d}^{d-1} and set $w:=b_{d} z$ to obtain

$$
P_{2}(w)=C_{2}(m!+n!),
$$

where P_{2} is a monic polynomial with integer coefficients and C_{2} is some integer. We assume that $m \leq n$. Fix some $\epsilon<1 /(3 d)$. We will look at solutions satisfying the additional condition

$$
m!<n!^{(d-1) / d-\epsilon} .
$$

Then, for all sufficiently large w, we have

$$
\begin{equation*}
2 w^{d}>P_{2}(w)=C(m!+n!)>n!. \tag{1}
\end{equation*}
$$

Raising both sides to the power $(d-1) / d-\epsilon$, we get

$$
M w^{d-1-d \epsilon}>n!^{(d-1) / d-\epsilon}>m!,
$$

where $M=2^{(d-1) / d-\epsilon}$. Moreover, from $2 w^{d}>n$!, we have

$$
\begin{equation*}
w^{\epsilon}>(n!/ 2)^{\epsilon / d}>4^{n} \tag{2}
\end{equation*}
$$

for sufficiently large n. Write $P_{2}(w)=w^{d}+R(w)$, where $\operatorname{deg} R \leq d-3$. Now our equation is

$$
w^{d}+(R(w)-C m!)=C n!.
$$

From Theorem 2.4, we have $R(w)-C m!=C n!-w^{d} \neq 0$ for all but finitely many pairs n, w. So, we can use Lemma 2.3 for a small positive number θ to be fixed later and get
$w^{d} \leq M_{\theta}|R(w)-C m!|^{1+\theta} \operatorname{rad}\left(C n!w^{d}\right)^{1+\theta}<M_{\theta}\left(4 C w^{d-1-d \epsilon}\right)^{1+\theta} 4^{n(1+\theta)} w^{1+\theta}$.
Therefore,

$$
w^{d}<S_{\theta} w^{(d-1-d \epsilon+\epsilon+1)(1+\theta)}
$$

for some constant S_{θ}. Because $d+(1-d) \epsilon<d$, we can take θ such that

$$
d>(d+(1-d) \epsilon)(1+\theta),
$$

so w is bounded.
Now we consider solutions with the additional condition $m!>n!(d-2) / d+\epsilon$. From (1) and (22), we get

$$
w^{\epsilon}>4^{n} \geq 4^{m} \quad \text { and } \quad n!^{1 / d}<2 w .
$$

We have

$$
\operatorname{rad}(m!+n!) \leq 4^{m}\left(\frac{n!}{m!}+1\right) \leq w^{\epsilon}\left(n!^{2 / d-\epsilon}+1\right) \leq 8 w^{\epsilon+2-d \epsilon} .
$$

$\operatorname{Because} \operatorname{deg}(R)=d-3$, for all sufficiently large w we have

$$
|R(w)|<M_{1} w^{d-3},
$$

where M_{1} is some constant which depends on P. We write our equation as $w^{d}+R(w)=C(m!+n!)$. If $R(w) \equiv 0$, then we use the previous theorem and we are done. Otherwise $R(w) \neq 0$ for all but finitely many w. We can use Lemma 2.3 for some small positive θ to be fixed later again and get

$$
w^{d} \leq M_{\theta}|R(w)|^{1+\theta} \operatorname{rad}\left(C(m!+n!) w^{d}\right)^{1+\theta} \leq S_{\theta} w^{(d-3+2+(1-d) \epsilon+1)(1+\theta)}
$$

for some constant S_{θ}. We can choose θ such that

$$
d>(d+(1-d) \epsilon)(1+\theta),
$$

therefore w is bounded.
Above, all solutions have been considered, because otherwise

$$
n!^{(d-2) / d+\epsilon} \geq m!\geq n!^{(d-1) / d-\epsilon}
$$

and therefore $\epsilon>1 /(2 d)$, a contradiction.
Corollary 3.4 (from the proof). Let $P(z)$ be a polynomial of degree d with rational coefficients, and $\epsilon>0$. Under the ABC Conjecture, the equation

$$
P(z)=m!+n!
$$

has only finitely many integer solutions with $m!\notin\left[n!{ }^{(d-1) / d-\epsilon}, n!^{(d-1) / d+\epsilon}\right]$.

REFERENCES

[1] R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes, II, Proc. London Math. Soc. 83 (2001), 532-562.
[2] B. C. Berndt and W. F. Galway, On the Brocard-Ramanujan Diophantine equation $n!+1=m^{2}$, Ramanujan J. 4 (2000), 41-42.
[3] H. Brocard, Question 1532, Nouv. Ann. Math. 4 (1885), 291.
[4] A. Dąbrowski, On the Diophantine equation $x!+A=y^{2}$, Nieuw Arch. Wisk. 14 (1996), 321-324.
[5] A. Dąbrowski and M. Ulas, Variations on the Brocard-Ramanujan equation, J. Number Theory 133 (2013), 1168-1185.
[6] P. Erdős und R. Oblath, Über diophantische Gleichungen der Form $n!=x^{p} \pm y^{p}$ und $n!\pm m!=x^{p}$, Acta Litt. Sci. Szeged 8 (1937), 241-255.
[7] F. Luca, The Diophantine equation $P(x)=n$! and a result of M. Overholt, Glas. Mat. Ser. III 37 (2002), 269-273.
[8] S. Ramanujan, Question 469, J. Indian Math. Soc. 5 (1913), 59.
[9] M. Ulas, Some observations on the Diophantine equation $y^{2}=x!+A$ and related results, Bull. Austral. Math. Soc. 86 (2012), 377-388.

Maciej Gawron
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: maciej.gawron@uj.edu.pl

