SYMMETrY CLASSES OF TEnsORS ASSOCIATED WITH THE SEMI-DIHEDRAL GROUPS SD_{8n}

BY

MAHDI HORMOZI (Gothenburg) and KIJTI RODTES (Phitsanulok)

Abstract. We discuss the existence of an orthogonal basis consisting of decomposable vectors for all symmetry classes of tensors associated with semi-dihedral groups SD_{8n}. In particular, a necessary and sufficient condition for the existence of such a basis associated with SD_{8n} and degree two characters is given.

1. Introduction. Let V be an n-dimensional complex inner product space and G be a permutation group on m elements. Let \(\chi \) be any irreducible character of G. For any \(\sigma \in G \), define the operator

\[
P_\sigma : \bigotimes_1^m V \rightarrow \bigotimes_1^m V
\]

by

\[
P_\sigma(v_1 \otimes \cdots \otimes v_m) = (v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}).
\]

The symmetry class of tensors associated with G and \(\chi \) is the image of the symmetry operator

\[
T(G, \chi) = \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) P_\sigma,
\]

and it is denoted by \(V^m_\chi(G) \). We say that the tensor \(T(G, \chi)(v_1 \otimes \cdots \otimes v_m) \) is a decomposable symmetrized tensor, and we denote it by \(v_1 \ast \cdots \ast v_m \).

The inner product on \(V \) induces an inner product on \(V^m_\chi(G) \) which satisfies

\[
\langle v_1 \ast \cdots \ast v_m, u_1 \ast \cdots \ast u_m \rangle = \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) \prod_{i=1}^m \langle v_i, u_{\sigma(i)} \rangle.
\]

Let \(\Gamma^m_n \) be the set of all sequences \(\alpha = (\alpha_1, \ldots, \alpha_m) \), with \(1 \leq \alpha_i \leq n \). Define the action of G on \(\Gamma^m_n \) by

\[
\sigma.\alpha = (\alpha_{\sigma^{-1}(1)}, \ldots, \alpha_{\sigma^{-1}(m)}).
\]

2010 Mathematics Subject Classification: Primary 20C30; Secondary 15A69.

Key words and phrases: symmetry classes of tensors, orthogonal basis, semi-dihedral groups.

DOI: 10.4064/cm131-1-6
Let $O(\alpha) = \{\sigma.\alpha \mid \sigma \in G\}$ be the orbit of α. We write $\alpha \sim \beta$ if α and β belong to the same orbit in Γ_n^m. Let Δ be a system of distinct representatives of the orbits. We denote by G_α the stabilizer subgroup of α, i.e., $G_\alpha = \{\sigma \in G \mid \sigma.\alpha = \alpha\}$. Define

$$\Omega = \{\alpha \in \Gamma_n^m \mid \sum_{\sigma \in G_\alpha} \chi(\sigma) \neq 0\},$$

and put $\overline{\Delta} = \Delta \cap \Omega$.

Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of V, and denote by e^*_α the tensor $e_{\alpha_1} \ast \cdots \ast e_{\alpha_m}$. We have

$$\langle e^*_\alpha, e^*_\beta \rangle = \begin{cases} 0 & \text{if } \alpha \nott\sim \beta, \\ \frac{\chi(1)}{|G|} \sum_{\sigma \in G_\beta} \chi(\sigma h^{-1}) & \text{if } \alpha = h.\beta. \end{cases}$$

In particular, for $\sigma_1, \sigma_2 \in G$ and $\gamma \in \overline{\Delta}$ we obtain

$$\langle e^*_{\sigma_1.\gamma}, e^*_{\sigma_2.\gamma} \rangle = \frac{\chi(1)}{|G|} \sum_{x \in \sigma_2 G_\gamma \sigma_1^{-1}} \chi(x).$$

Moreover, $e^*_\alpha \neq 0$ if and only if $\alpha \in \Omega$.

For $\alpha \in \overline{\Delta}$, $V^*_\alpha = \langle e^*_{\sigma.\alpha} : \sigma \in G \rangle$ is called the **orbital subspace** of $V_\chi(G)$. It follows that

$$V_\chi(G) = \bigoplus_{\alpha \in \overline{\Delta}} V^*_\alpha$$

is an orthogonal direct sum. In [9] it is proved that

$$\dim V^*_\alpha = \frac{\chi(1)}{|G_\alpha|} \sum_{\sigma \in G_\alpha} \chi(\sigma).$$

Thus we deduce that if χ is a linear character, then $\dim V^*_\alpha = 1$ and in this case the set

$$\{e^*_\alpha \mid \alpha \in \overline{\Delta}\}$$

is an orthogonal basis of $V_\chi(G)$.

A basis which consists of decomposable symmetrized tensors e^*_α is called an **orthogonal *-basis**. If χ is not linear, it is possible that $V_\chi(G)$ has no orthogonal *-basis. The reader can find further information about the symmetry classes of tensors in [1]–[8], [10]–[11], [13]–[15] and [17].

In this paper we discuss the existence of an orthogonal basis consisting of decomposable vectors for all symmetry classes of tensors associated with semi-dihedral groups SD_{8n}.
2. Semi-dihedral groups SD_{8n}. The presentation for SD_{8n} for $n \geq 2$ is given by

$$SD_{8n} = \langle a, b \mid a^{4n} = b^2 = 1, bab = a^{2n-1} \rangle,$$

where the embedding of SD_{8n} into the symmetric group S_{4n} is given by $T(a)(t) := t + 1$ and $T(b)(t) := (2n - 1)t$, where \overline{m} is the remainder of m divided by $4n$.

Definition 2.1. Define

$$C_1 := \{0, 2, 4, \ldots, 2n\},$$

$$C_2 := \{1, 3, 5, \ldots, n\} \cup \{2n + 1, 2n + 3, 2n + 5, \ldots, 3n\},$$

$$C_{\text{even}} := \{2, 4, \ldots, 2n - 2\},$$

$$C_{\text{odd}}^{\dagger} = \{1, 3, 5, \ldots, 2[n/2] - 1, 2n + 1, 2n + 3, \ldots, 2[3n/2] - 1\}.$$

We define two-dimensional representations, for each natural number h and $\omega = e^{i\pi/2n}$:

$$(2.1)\quad \rho^h(a^r) = \begin{pmatrix} \omega^h r & 0 \\ 0 & \omega^{(2n-1)hr} \end{pmatrix} \quad \text{and} \quad \rho^h(ba^r) = \begin{pmatrix} 0 & \omega^{(2n-1)hr} \\ \omega^h r & 0 \end{pmatrix},$$

for each $r \in \{1, 2, \ldots, 4n\}$.

Denote $\chi_h = \text{Tr}(\rho^h)$. The non-linear irreducible complex characters of SD_{8n} are the characters χ_h where $h \in C_{\text{even}}^{\dagger}$ or $h \in C_{\text{odd}}^{\dagger}$. Since the numbers of conjugacy classes of SD_{8n} are different for n even ($2n + 3$ classes) and n odd ($2n + 6$ classes), we consider the corresponding two non-linear character tables separately.

Table I. The non-linear character table for SD_{8n}, n even

<table>
<thead>
<tr>
<th>Characters</th>
<th>$[a^r], r \in C_1$</th>
<th>$[a^r], r \in C_{\text{odd}}^{\dagger}$</th>
<th>$[b]$</th>
<th>$[ba]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_h, h \in C_{\text{even}}^{\dagger}$</td>
<td>$2 \cos\left(\frac{hr\pi}{2n}\right)$</td>
<td>$2 \cos\left(\frac{hr\pi}{2n}\right)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_h, h \in C_{\text{odd}}^{\dagger}$</td>
<td>$2 \cos\left(\frac{hr\pi}{2n}\right)$</td>
<td>$2i \sin\left(\frac{hr\pi}{2n}\right)$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table II. The non-linear character table for SD_{8n}, n odd

<table>
<thead>
<tr>
<th>Characters</th>
<th>$[a^r], r \in C_1$</th>
<th>$[a^r], r \in C_2$</th>
<th>$[b]$</th>
<th>$[ba]$</th>
<th>$[ba^2]$</th>
<th>$[ba^3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_h, h \in C_{\text{even}}^{\dagger}$</td>
<td>$2 \cos\left(\frac{hr\pi}{2n}\right)$</td>
<td>$2 \cos\left(\frac{hr\pi}{2n}\right)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi_h, h \in C_{\text{odd}}^{\dagger}$</td>
<td>$2 \cos\left(\frac{hr\pi}{2n}\right)$</td>
<td>$2i \sin\left(\frac{hr\pi}{2n}\right)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Existence of an orthogonal basis for the symmetry classes of tensors associated with SD_{8n}. In this section we study the existence of an orthogonal basis for the symmetry classes of tensors associated with SD_{8n}. As explained in the introduction, if χ is a linear character of G then
the symmetry class of tensors associated with G and χ has an orthogonal basis. Therefore we will concentrate on non-linear irreducible complex characters of SD_{8n}, i.e. the characters χ_h where $h \in C_{\text{even}}^\dagger$ or $h \in C_{\text{odd}}^\dagger$.

Remark 3.1. Let ν_2 be the 2-adic valuation, that is, $\nu_2\left(\frac{2^km}{n}\right) = k$ for m and n odd. Then the condition $\nu_2\left(\frac{h}{2^n}\right) < 0$ means that every power of 2 that divides h also divides n.

Lemma 3.2. Let $G := SD_{8n}$ and H be a subgroup of G. Then there is a natural number r, $0 \leq r < 4n$, such that either $H = \langle a^r \rangle$, or $\langle a^r \rangle \leq H$ and $H \cap \langle a \rangle = \langle a^r \rangle$. In the latter case we have $|H| \geq 2|\langle a^r \rangle|$.

Proof. This is straightforward. ■

Lemma 3.3. Suppose $\chi = \chi_h$. If r is defined by $G_\alpha \cap \langle a \rangle = \langle a^r \rangle$ and $l = 4n/\gcd(4n, r)$, then

$$\sum_{g \in G_\alpha} \chi(g) = \begin{cases} 2l & \text{if } rh \equiv 0 \pmod{4n}, \\ 0 & \text{if } rh \not\equiv 0 \pmod{4n}, \end{cases}$$

and for $\alpha \in \Delta$, we have $rh \equiv 0 \pmod{4n}$.

Proof. Since G_α is a subgroup of G, using Lemma 3.2 there is a natural number r, $0 \leq r < 4n$, such that either $G_\alpha = \langle a^r \rangle$ or $\langle a^r \rangle < G_\alpha$. Using Table I, we find that χ vanishes outside $\langle a \rangle$, therefore

$$\sum_{g \in G_\alpha} \chi(g) = \sum_{t=1}^l \chi(a^{tr}) = 2 \sum_{t=1}^l \cos\left(\frac{trh\pi}{2n}\right) = \begin{cases} 2l, & rh \equiv 0 \pmod{4n}, \\ 0, & rh \not\equiv 0 \pmod{4n}. \end{cases}$$

Also if $rh \not\equiv 0 \pmod{4n}$, then $\sum_{g \in G_\alpha} \chi(g) = 0$, which shows $\alpha \notin \Delta$. ■

Lemma 3.4. Let $1 \leq h < 2n$ and let ν_2 be the 2-adic valuation. Then there exist t_1, t_2, $0 \leq t_1, t_2 < 4n$, such that $\cos\left(\frac{(t_1-t_2)h\pi}{2n}\right) = 0$ if and only if $\nu_2\left(\frac{h}{2^n}\right) < 0$.

Theorem 3.5. Let $G = SD_{8n}$ be a subgroup of S_{4n}, denote $\chi = \chi_h$ for $h \in C_{\text{even}}^\dagger$, and assume $d = \dim V \geq 2$. Then $V_\chi(G)$ has an orthogonal \ast-basis if and only if $\nu_2\left(\frac{h}{2^n}\right) < 0$.

Proof. It is enough to prove that for any $\alpha \in \Delta$ the orbital subspace V_α^\ast has an orthogonal \ast-basis if $\nu_2\left(\frac{h}{2^n}\right) < 0$. Let $\nu_2\left(\frac{h}{2^n}\right) < 0$ and assume $\alpha \in \Delta$. By Lemma 3.2 either $G_\alpha = \langle a^r \rangle$ or $\langle a^r \rangle < G_\alpha$. Let $l = 4n/\gcd(4n, r)$. Now we consider two cases.

Case 1. If $\langle a^r \rangle < G_\alpha$, then by Lemma 3.2 we obtain $|G_\alpha| \geq 2l$ where

$$\langle a^r \rangle = \langle a \rangle \cap G_\alpha = \{a^r, a^{2r}, \ldots, a^{lr} = 1\}.$$
By (1.4), \(|G_\alpha| \geq 2l \) and Lemma 3.3 we have

\[
\dim V_\alpha^* = \frac{\chi(1)}{|G_\alpha|} \sum_{\sigma \in G_\alpha} \chi(\sigma) \leq \frac{2}{2l} (2l) = 2.
\]

If \(\dim V_\alpha^* = 1 \), then it is obvious that we have an orthogonal \(*\)-basis. Let us consider \(\dim V_\alpha^* = 2 \). Set \(\sigma_1 = a^j, \sigma_2 = a^i \). Then

\[
\sigma_2 G_\alpha \sigma_1^{-1} \cap \langle a \rangle = \{ a^{r+i-j}, \ldots, a^{lr+i-j} \}.
\]

Hence if \(\sigma_1 = a^j, \sigma_2 = a^i \), by (1.3), we have

\[
\langle e_{\sigma_1,\alpha}^*, e_{\sigma_2,\alpha}^* \rangle = \frac{\chi(1)}{|G|} \sum_{x \in \sigma_2 G_\alpha \sigma_1^{-1}} \chi(x) = \frac{2}{8n} \sum_{t=1}^{l} \chi(a^{tr+i-j})
\]

\[
= \frac{4}{8n} \sum_{t=1}^{l} \cos \left(\frac{tr + i - j}{2n} \right) \pi
\]

\[
= \frac{1}{2n} \sum_{t=1}^{l} \cos \left(\frac{tr \pi + (i - j) \pi}{2n} \right)
\]

\[
= \frac{1}{2n} \sum_{t=1}^{l} \cos \left(\frac{(i - j) \pi}{2n} \right) = \frac{l}{2n} \cos \left(\frac{(i - j) \pi}{2n} \right)
\]

where the penultimate equality is due to an application of Lemma 3.3. By Lemma 3.4, there exist \(i \) and \(j \) such that

\[
\langle e_{a^i,\alpha}^*, e_{a^i,\alpha}^* \rangle = 0,
\]

which means that \(\{ e_{\sigma_1,\alpha}^*, e_{\sigma_2,\alpha}^* \} \) is an orthogonal \(*\)-basis for \(V_\alpha^* \).

Case 2. If \(G_\alpha = \langle a^r \rangle = \{ a^r, a^{2r}, \ldots, a^{lr} = 1 \} \), then by (1.4) and Lemma 3.3

\[
\dim V_\alpha^* = \frac{\chi(1)}{|G_\alpha|} \sum_{\sigma \in G_\alpha} \chi(\sigma) = \frac{2}{l} (2l) = 4.
\]

For any \(\sigma_1, \sigma_2 \in G \), we have

\[
\sigma_2 G_\alpha \sigma_1^{-1} =
\begin{cases}
\{ a^{r+i-j}, a^{2r+i-j}, \ldots, a^{lr+i-j} \} & \text{if } \sigma_1 = a^j, \sigma_2 = a^i, \\
\{ a^{r+i+j(1-2n)} b, a^{2r+i+j(1-2n)} b, \ldots, a^{lr+i+j(1-2n)} b \} & \text{if } \sigma_1 = a^jb, \sigma_2 = a^i, \\
\{ a^{(1-2n)r+i-j}, a^{2r(1-2n)+i-j}, \ldots, a^{lr(1-2n)+i-j} \} & \text{if } \sigma_1 = a^jb, \sigma_2 = a^i b.
\end{cases}
\]

If \(\sigma_1 = a^j, \sigma_2 = a^i \), by (3.1) we have

\[
\langle e_{\sigma_1,\alpha}^*, e_{\sigma_2,\alpha}^* \rangle = \frac{l}{2n} \cos \left(\frac{(i - j) \pi}{2n} \right).
\]
If \(\sigma_1 = a^j b, \sigma_2 = a^i \), we have
\[
\langle e_{\sigma_1, \alpha}^*, e_{\sigma_2, \alpha}^* \rangle = 0,
\]
and for \(\sigma_1 = a^j b, \sigma_2 = a^i b \), we have
\[
\langle e_{\sigma_1, \alpha}^*, e_{\sigma_2, \alpha}^* \rangle = \frac{\chi(1)}{|G|} \sum_{x \in \sigma_2 G \sigma_1^{-1}} \chi(x) = \frac{2}{8n} \sum_{l=1}^i \chi(a^{tr(1-2n)+i-j})
\]
\[
= \frac{4}{8n} \sum_{l=1}^i \cos \left(\frac{(tr(1-2n)+i-j)h\pi}{2n} \right)
\]
\[
= \frac{1}{2n} \sum_{l=1}^i \cos \left(\frac{trh\pi}{2n} + \frac{(i-j)h\pi}{2n} - trh\pi \right)
\]
\[
= \frac{1}{2n} \sum_{l=1}^i \cos \left(\frac{(i-j)h\pi}{2n} \right) = \frac{l}{2n} \cos \left(\frac{(i-j)h\pi}{2n} \right)
\]
where the penultimate equality uses Lemma 3.3. Therefore
\[
\langle e_{\sigma_1, \alpha}^*, e_{\sigma_2, \alpha}^* \rangle = \begin{cases}
\frac{l}{2n} \cos \left(\frac{(i-j)h\pi}{2n} \right), & \sigma_1 = a^j, \sigma_2 = a^i, \\
0, & \sigma_1 = a^j b, \sigma_2 = a^i, \\
\frac{l}{2n} \cos \left(\frac{(i-j)h\pi}{2n} \right), & \sigma_1 = a^j b, \sigma_2 = a^i b.
\end{cases}
\]
In view of Lemma 3.4 if \(\nu_2 \left(\frac{h}{2n} \right) < 0 \), there exist \(t_1, t_2, 0 \leq t_1, t_2 < 4n \) such that \(\cos \left(\frac{(t_1-t_2)h\pi}{2n} \right) = 0 \). Put
\[
S = \{a^{t_1, \alpha}, a^{t_2, \alpha}, a^{t_1 b, \alpha}, a^{t_2 b, \alpha} \} \subseteq \Gamma_n^m.
\]
Then for every \(\alpha, \beta \in S \) and \(\alpha \neq \beta \) we have
\[
\langle e_\alpha^*, e_\beta^* \rangle = 0.
\]
But \(\dim V_\alpha^* = 4 \); hence \(\{e_\xi^* | \xi \in S\} \) is an orthogonal \(*\)-basis for \(V_\alpha^* \).

Conversely, assume that \(V_\chi(G) \) has an orthogonal basis of decomposable symmetrized tensors. Then since \(V_\chi(G) = \bigoplus_{\alpha \in \Delta} V_\alpha^* \) for all \(\alpha \in \Delta \), the orbital subspace \(V_\chi^* \) has an orthogonal basis of decomposable symmetrized tensors. Using [17, p. 642], we can choose \(\alpha \in \Gamma_n^m \) such that \(a^t \notin G_\alpha \) for \(1 \leq t < 4n \). Thus for such \(\alpha \) we have either \(G_\alpha = \{1\} \) or \(G_\alpha = \{1, a^t b, a^{-(2n-1)t} b\} \) for some \(1 \leq t < 4n \), since if \(G_\alpha \neq \{1\} \) and \(a^{t_1} b, a^{t_2} b \in G_\alpha \), then
\[
a^{t_1} b, a^{t_2} b = a^{t_1} b, ba^{(2n-1)t_2} = a^{t_1+(2n-1)t_2} \in G_\alpha,
\]
which shows that \(t_1 = -(2n-1)t_2 \).

To prove that \(\nu_2 \left(\frac{h}{2n} \right) < 0 \) is a necessary condition for existence of an orthogonal \(*\)-basis for \(V_\chi(G) \), it is enough to consider the cases \(G_\alpha = \{1\} \).
and \(G_\alpha = \{1, a^tb, a^{-(2n-1)t}b\} \). For both, we have
\[
\|e^*_\alpha\|^2 = \frac{\chi(1)}{|G|} \sum_{g \in G_\alpha} \chi(g) \neq 0,
\]
so \(\alpha \in \overline{\Delta} \). First consider \(G_\alpha = \{1\} \). For any \(\sigma_1, \sigma_2 \in G \), we have
\[
\sigma_2 G_\alpha \sigma_1^{-1} = \begin{cases}
\{a^{i-j}\} & \text{if } \sigma_1 = a^j, \sigma_2 = a^i, \\
\{a^{i+j(1-2n)b}\} & \text{if } \sigma_1 = a^jb, \sigma_2 = a^i, \\
\{a^{(1-2n)i-j}\} & \text{if } \sigma_1 = a^jb, \sigma_2 = a^ib.
\end{cases}
\]
Therefore by (1.3) we have
\[
\langle e^*_{\sigma_1, \alpha}, e^*_{\sigma_2, \alpha} \rangle = \begin{cases}
\frac{1}{2n} \cos \left(\frac{(i-j)h\pi}{2n} \right) & \text{if } \sigma_1 = a^j, \sigma_2 = a^i, \\
0 & \text{if } \sigma_1 = a^jb, \sigma_2 = a^i, \\
\frac{1}{2n} \cos \left(\frac{(i-j)h\pi}{2n} \right) & \text{if } \sigma_1 = a^jb, \sigma_2 = a^ib.
\end{cases}
\]
Hence \(\langle e^*_{\sigma_1, \alpha}, e^*_{\sigma_2, \alpha} \rangle = 0 \) implies that there exist \(t_1 \) and \(t_2 \) such that
\[
\cos \left(\frac{(t_1-t_2)h\pi}{2n} \right) = 0,
\]
therefore by Lemma 3.4 we get \(\nu_2 \left(\frac{h}{2n} \right) < 0 \).

Now consider \(G_\alpha = \{1, a^tb, a^{-(2n-1)t}b\} \). For any \(\sigma_1, \sigma_2 \in G \), we have
\[
\sigma_2 G_\alpha \sigma_1^{-1} = \begin{cases}
\{a^{i-j}, ba^{(2n-1)(j+t)-i}, ba^{(2n-1)(j-(2n-1)t)-i}\} & \text{if } \sigma_1 = a^j, \sigma_2 = a^i, \\
\{a^{i+j(1-2n)b}, a^{j+(2n-1)t+i}, a^{j-t+i}\} & \text{if } \sigma_1 = a^jb, \sigma_2 = a^i, \\
\{a^{(1-2n)i-j}, a^{j+(2n-1)t+i}, a^{j-t+i}b\} & \text{if } \sigma_1 = a^jb, \sigma_2 = a^ib.
\end{cases}
\]
Now similar to our previous calculations in this section, we get \(\nu_2 \left(\frac{h}{2n} \right) < 0 \).

Remark 3.6. In the proof of the necessity part of Theorem 3.5, one can choose \(\alpha = (1, 2, \ldots, 2) \). The proof given here shows the stronger statement that the orbital subspace \(V^*_\alpha \) has an orthogonal \(*\)-basis whenever \(G_\alpha \cup \langle a \rangle = \{1\} \).

Corollary 3.7. Let \(G = SD_{8n} \), \(n \) odd, be a subgroup of \(S_{4n} \), denote \(\chi = \chi_h \) for \(h \in C_{\text{even}}^l \), and assume \(d = \dim V \geq 2 \). Then \(V^*_\chi(G) \) does not have an orthogonal \(*\)-basis.

Proof. Since \(n \) is odd we have \(\nu_2 \left(\frac{h}{2n} \right) \geq 0 \). Thus Theorem 3.5 implies \(V^*_\chi(G) \) does not have an orthogonal \(*\)-basis.

Theorem 3.8. Let \(G = SD_{8n} \) be a subgroup of \(S_{4n} \), denote \(\chi = \chi_h \) for \(h \in C_{\text{odd}}^l \), and assume \(d = \dim V \geq 2 \). Then \(V^*_\chi(G) \) does not have an orthogonal \(*\)-basis.
Proof. The proof is similar to the proof of Theorem 3.5. Using Table I and Table II we conclude that $\langle e^{*}_{\sigma_1, \alpha}, e^{*}_{\sigma_2, \alpha} \rangle \neq 0$ since the imaginary and real parts should both be zero; but $i \sin x$ and $\cos x$ cannot vanish simultaneously.

Acknowledgements. The authors are grateful to Professor Hjalmar Rosengren for valuable comments and for reviewing earlier drafts very carefully.

REFERENCES

Mahdi Hormozi
Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology
and University of Gothenburg
Gothenburg 41296, Sweden
E-mail: hormozi@chalmers.se

Kijti Rodtes
Department of Mathematics
Faculty of Science
Naresuan University
Phitsanulok 65000, Thailand
E-mail: kijtir@nu.ac.th

Received 19 December 2012;
revised 17 February 2013

(5831)