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CONVERGENCE OF LOGARITHMIC MEANS OF QUADRATIC
PARTIAL SUMS OF DOUBLE FOURIER SERIES

BY

USHANGI GOGINAVA (Thilisi)

Abstract. We investigate some convergence and divergence properties of the loga-
rithmic means of quadratic partial sums of double Fourier series of functions, in measure
and in the L Lebesgue norm.

1. Introduction. In the literature, there is a notion of the Riesz loga-
rithmic mean of a Fourier series. The nth mean of the Fourier series of an
integrable function f is defined to be

1= Sk(f) RS
m; P il

k=1

where Si(f) is the partial sum of its Fourier series. These Riesz logarithmic
means with respect to the trigonometric system have been studied by many
authors. We mention for instance the papers of Szdsz and Yabuta [13| [14].
These means with respect to the Walsh and Vilenkin systems are discussed
by Simon and G&t [12], 2].

Let {qx : k > 0} be a sequence of nonnegative numbers. The Noérlund
means for the Fourier series of f are defined by

1
2 k=1 Gk k=0
If g = 1/k, then we get the Norlund logarithmic means
1 nz_:l Sk(f)
. n—k

k=0
In this paper we call them logarithmic means. They are a kind of “reverse”
Riesz logarithmic means. In [3] we proved some convergence and divergence
properties of the logarithmic means of Walsh—Fourier series of continuous

functions, and of functions in the Lebesgue space L. In this paper we dis-
cuss some convergence and divergence properties of logarithmic means of

n—1

Qn—ksk(f)
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quadratic partial sums of the double Fourier series of functions in the L
Lebesgue norm (see Theorems [2] and [3).

The partial sums S, (f) of the Fourier series of a function f € L(T), T =
[—7,7), converge in measure on 7. The condition f € Llog L(T?) provides
convergence in measure on 72 of the rectangular partial sums Sy, (f) of
double Fourier series [15]. The first examples of functions from classes wider
than Llog L(T?) with S, ,(f) divergent in measure on T2 were obtained by
Getsadze [7] and Konyagin [10].

In the present paper we investigate convergence in measure of logarithmic
means of quadratic partial sums,

Sii(f; =, y
In Z n—=1

of double Fourier series and prove that for any Orlicz space which is not a
subspace of Llog L(I?), the set of functions such that these means converge
in measure is of first Baire category (Theorem 4). From this result it follows
(Corollary [1)) that in classes wider than Llog L(T?) there exist functions f
for which the logarithmic means t,(f) of quadratic partial sums of double
Fourier series diverge in measure. Besides, it is surprising that two cases (the
logarithmic means of quadratic and two-dimensional partial sums) are not
different from this point of view. Namely, for instance in the case of (C, 1)
means we have a quite different situation: it is well-known [I5] that the
Marcinkiewicz means o, (f) = n~* > i=155,i(f), that is, the (C, 1) means of
quadratic partial sums of the double trigonometric Fourier series of f € L,
converge in L-norm and a.e. to f. Thus, as regards convergence in measure
and in norm, the logarithmic means of quadratic partial sums of double
Fourier series differ from the Marcinkiewicz means, and behave similarly to
the usual quadratic partial sums of double Fourier series.

Some results on summability of quadratic partial sums of Walsh—Fourier
series can be found in [8) [4].

2. Definitions and notation. We denote by Lo = Lo(T?) the Lebesgue
space of functions that are measurable and almost everywhere finite on
T? = [—m,m) x [, 7); mes(A) is the Lebesgue measure of the set A C T2.

Let Lg = Lg(T?) be the Orlicz space [11] generated by the Young func-
tion @, i.e. @ is a convex continuous even function such that Q(0) = 0
and

lim % =00, lim M
u—00 U u—0 U
This space is endowed with the norm

1 lzgere) = inf {k > 0 §§ QU f(x9)l k) dwdy < 1}.
T2

=0.
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In particular, if Q(u) = ulog(14+u) and Q(u) = ulog?(14u), u > 0, then
the corresponding space will be denoted by Llog L(T?) and Llog? L(T?),
respectively.

Let f € L1(T?). The Fourier series of f with respect to the trigonometric
system is the series

00
Z f<m7 7,L)ez'7rzgcez‘rLg/7

m,n=—00

where

% “ f(x, y)e*imxe*my dz dy

are the Fourier coefficients of f. The rectangular partial sums of this series
are defined as follows:

Swn(fim) z z Flam, myeimeciny

—M n=—

The logarithmic means of quadratic partial sums of double Fourier series
are defined as follows:
-1

l n—1
™ i=0

It is evident that

i) = 5 {15, 0o — 5,y — D) ds
where

Fo(ts) = LS DEODS) ::§+Zn:cosjt.

ln n—=k

3. Main results. The following theorem is well-known (see [15]).
THEOREM 1. Let f € Llog? L(T?). Then
[Snn(f) = fllyr2y =0 asn — cc.

Due to the inequality

n—1
1Sk, (f) = fllLy (2
[tn(f) — f”Ll(TQ) l Z n—=k =

k=0

and the fact that the Norlund logarithmic summability method is regular
([9, Ch. 3]), Theorem [1] yields
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THEOREM 2. Let f € LlogQL(TQ). Then

1§ ”Skk f“Ll(T?

—0 asn— oo.
Iy

k=0
In this paper we investigate the sharpness of Theorem [2| Moreover, we
prove
THEOREM 3. Let Lg(T?) be an Orlicz space such that
Lo(T?) ¢ Llog? L(T?).
Then

(a) we have

sup thHLQ(T2)—>L1(T2) = 005
n

(b) there exists a function f € Lo(T?) such that t,(f) does not converge
to f in Li(T?)-norm.

THEOREM 4. Let Lgo(T?) be an Orlicz space such that
Lo(T?) € Llog L(T?).

Then the set of functions from the Orlicz space Lo(T?) with logarithmic
means of quadratic partial sums of double Fourier series convergent in mea-
sure on T? is of first Baire category in Lg(T?).

COROLLARY 1. Let ¢ : [0,00) — [0,00) be a nondecreasing function
satisfying the condition
o(x) =o(xlogz) asx— 0.
Then there exists a function f € Li(T?) such that

(a) we have

Wl f(z ) dedy < oo;
T2

(b) the logarithmic means of the quadratic partial sums of the double
Fourier series of f diverge in measure on T2.

4. Auxiliary results. We apply a reasoning of [I] summarized in the
following proposition.

THEOREM 5. Let H : L1(T?) — Lo(T?) be a continuous linear operator
which commutes with the family € of translations, i.e. for all E € £ and
f € L\(T?, HEf = EHf. Let [ fllz,;(r2y = 1 and A > 1. Then for any
1 < r € N under the condition mes{(x,y) € T? : |Hf| > A} > 1/r there
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exist E1,..., B El,...)El. € & ande; = £1,i=1,...,7, such that
T
mes{ (w,y) € T2 [H( Y eif (Eiw, Eiy)) | > A} = 1/8.
i=1

LEMMA 1. Let {Hp}°_, be a sequence of continuous linear operators
from the Orlicz space Lo(T?) into Lo(T?). Suppose that there exists a se-
quence {&,}32, of functions from the unit ball Bg(0,1) of Lo(T?), and se-
quences {my}32, and {v}72, of integers increasing to infinity, such that

g0 = i%fmes{(w,y) €T?: |Hp, &x(2,y)| > g} > 0.

Then the set B of functions f € Lgo(T?) for which the sequence {Hy,f}
converges in measure to an a.e. finite function is of first Baire category in

Lo(T?).
The proof of Lemma |1 can be found in [5].

LEMMA 2. Let Lo(T?) be an Orlicz space and let ¢ : [0,00) — [0,00) be
a measurable function with p(x) = o(®(x)) as x — oo. Then there exists a
Young function w such that w(x) = o(®(x)) as x — oo, and w(zx) > @(x)
forx>c>0.

The proof of Lemma [2| can be found in [6].

LEMMA 3. Let

arccos(1/4) 4+ 2mm /2 4+ 2mm
Omn = 22n+1/2 s an:m, n,m:(],l,....
Then there exists a positive integer ng such that
FQQ”(‘Tay) > i, nZnOa
Ty

whenever

277,73
(iL',y) cl, = U {(x,y) Toy <o < Bmm o <y < ﬂln}

I,m=1

Proof. We can write

2271
_D n__ €T _D n_
(]-) lenF22n (.’E,y) = Z 22 k( )k: 22 k(y)

k=1

2n
e~ 1sin (22 4 1/2 — k)7 sin (22" +1/2 — k)y
_kzlk 2sin § 2sin ¥
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sin (22" + 1/2)x sin (227 +1/2)y Z cos kx cos ky

z Y
2sin Z 5 2 sin 5 —

cos (22" 4+ 1/2)x cos (22" + 1/2)y Z 1nl<:$smky

2s1n§ 2sin ¥ 5 P

2n
sin (22" 4+ 1/2)x cos (22" +1/2)y < cos kx sin ky

2sin & 2sin ¥ k
2 2 k=1

2n
_ cos (227 4+ 1/2)2 sin (227 4 1/2)y = sin kz cos ky

n L n Y
2sin 3 2sin § Pt k

sin (22" 4 1/2)x sin (22" +1/2)y

- 2sin § 2sin ¥
1 22n k( + ) 22n k( )
cosk(z +y cosk(z —y
S
k=1 k=1
cos (22" +1/2)x cos (22" +1/2)y
2sin § 2sin ¥
22n 22n
" 1 cosk(x —y) Z cosk(xz +y)
2 k k
k=1 k=1
_ sin 22" 4+ 1/2)x cos (22" 4+ 1/2)y
2sin § 2sin 4
sink(x +y sink(x —y
e S
k=1 k=1
o8 (2" +1/2)x sin (27" +1/2)y
2sin 2sin ¥
sink(x +y sink(x —y
AR R

Since

_ sin®((n+ 1)t/2)
ZD 2sin?(t/2)

I

using Abel’s transformatlon we obtain
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2n
223 cosku (u) D22n(u) 1
= - =
P k E( k +1) 22m 2
22n 2 k 2211

- Z k k+2)ZDl(u)+22n 22n_ Z Dk

D22n( ) 1/1 1 1
_'_ — | — —_
22n 2\ 2 22n(22n _ 22n(22n _ 1) 2
B e 2 sin? ((k + 1)%)
— k(k+1)(k+2) 2sin® ¥
N 1 sin?(2%2"%) 1 sin(2+1/2u 3
22n(22n — 1) 2sin®y  22m 2sin § 4’
From we have
sin (22" 4+ 1/2)x sin (22" +1/2)y 1
2 l nF n - —
@ lemFn(ey) 2sin Z 2sing 2
22n 2 .
" Z sin® ((k+1)%5Y)
k(k+1)(k+2) 2sin? 2
N sin (22n +1/2)x sin (22" +1/2)y 1
2sin § 2sin ¥ 2
22n 2

2 sin? ((k 4+ 1)%5Y)
« k(k+1)(k+2) 2sin? &5

cos (22" +1/2)x cos (22" +1/2)y
2sin

Lﬁ

N | —

T in ¥
5 2sur12

2022 2 sin? ((k + ) 4)
8 kzl kk+D)(k+2) 2sin2

cos (22" +1/2)x cos (22" +1/2)y 1

T in ¥ 2
5 2sm2 2

Lﬁ

2sin

sin? ((k + 1)”——53’)
8 Z k‘k‘+1 +2) 2sin? LY

N sin (22n +1/2)x sin (22" +1/2)y
2sin § 2sin 4
y 1 sin?(22n 1Y)
22n(22n _ 1) ) sin2 zgﬂ
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N sin (2% + 1/2) sin (2*" +1/2)y 1 1 sin((2** +1/2)(z + y))
2sin § 2sin § 2 22n 2¢in "”y
sin (22" 4+ 1/2)x sin (22" +1/2)y 3
2sin 5 2sin 4 2
sin (22" 4+ 1/2)x sin (22" 4+ 1/2)y 1 sin? (22”3”—53’)
2sin 3 2sin 4 221227 — 1) 2sin? 22Y
sin (22" +1/2)x sin (22" +1/2)y 1 sin((22" +1/2)(z — v))
2sin § 2sin § 22n+1 2sin 54
4 cos (22" +1/2)z cos (22" +1/2)y 1 sin? (22”3”—53’)
2sin 3 2sin § 221220 — 1) 2sin? 23Y
4 cos (22" +1/2)z cos (22 +1/2)y 1 sin((22" +1/2)(x —y))
2sin § 2sin § 22n+1 2sin 54
4 cos (22" +1/2)z cos (22" +1/2)y 1 sin? (220 £1Y)
2sin 3 2sin § 2201220 — 1) 2sin? 2HY
4 cos (22" +1/2)z cos (2 +1/2)y 1 sin((22" +1/2)(x + 1))
2sin § 2sin § 22n+1 2sin 23
sin (22" 4+ 1/2)x cos (22" 4+ 1/2)y
2sin § 2sin 4
9 l{gsink(a:—ky) %sink(az—y)}
2Uia k k=1 k
cos (22" + 1/2)x sin (22" +1/2)y
2sin § 2sin ¥

2n
1{2
><7
2 _

k=1

2

2
|sinz| > —|z|,
s

T —y)

. 22n
Z sink(x + y) Z sin k(
T + - 5

k

k=1

sin kx

< 00,

|

n=12...,

/2 <z <m/2,
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we obtain
15 1
() >irl=o()
j=5 Y
Let (z,y) € I,,. Then it is easy to show that
sin (22" 4+ 1/2)x,sin (22" + 1/2)y > 1/2,
cos (2" +1/2)x, cos (22" + 1/2)y < 1/4.

Consequently, from we obtain

R1+R2+R3+R4>R1+R2—R3+R4

1 ‘= sin? ((k + 1)252)
4:1: po k:+1 )(k + 2) 2sin2xQﬁ
1 1 B2 sin? ((k +1)%55)
4:vy — k—i—l )(k+2) 2sin® £3¢
1 e 1 sin? ((k + 1)%52)

T
16 (2 vy = k(k+1)(k+2)  2sin® £
( )IZ L si? (kD)%)
Ty P k(k)—i— 1)(k+2) 2sin? 2y
1 sin? ((k + 1)%“’)
ry = k(k+1)(k+2) 2sin? 2HY

+Z . sin ((k +1)%5Y)
ry k(k+1)(k+2)  2sin? 23¥

which completes the proof of Lemma 3| m

COROLLARY 2. Letn > ng and
/2 — arccos(1/4)
422 4+ 1/2)

0<s,t<y,

Then
<

Fyn(x — s,y —t) >
Ty
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for

(z,y) € Jn
2n—3

U {(xyy):amn+7n Sl‘gﬂmn_%’n Qip, + Tn Sl‘gﬂln_’yn}
Il,m=1

5. Proofs of the theorems

Proof of Theorem@ ) Let Q(2%) > 2*" for n > ng. By the estimate
([I1, Ch. 2])
1oz < e+ QU Ly (12))
we get
2 — 1/4)\* 1
0 [fo (P21
8 72 2
n Ly (T?)
< |[tg2n (W/2 - arccos<1/4>>2 Lo, 2
>~ 2n || [~ (T2 L4 (T2
Q=0T 8 VA Lq(T?)
m/2 — arccos(1/4 210, 12
< C||t22"||LQ(T2)~>L1(T2) <1 + HQ<< / < ( / )) [fy’g ] > ] >
n L1(T?)
7/2 — arccos(1/4)\? 1
< el gt snaen (14 220 (2 y
Q 24n
< clltoznllLg(r2)—sLi(12) é4n )

On the other hand, from Corollary [2] we obtain

_ 21
o /2 — arccos(1/4) [0,75]2 1y
8 2

n

1 /7/2 —arccos(1/4)\2 1 7"
:7r2< / (/)> S SFZQn(x—s,y—t)dsdt

8 e
c
Z ) (ZL‘,y) € Jn
Ty
Consequently,
7/2 — arccos(1/4) \ ? Ljo.~,2
Tn L1(T?)
on— 3

> “xydxdy>0210g< m)log<1+l>>cn2.

I,m=1
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The fact that Lo(T?) ¢ Llog® L(T?) is equivalent to the condition

lim sup ulog®u =
u—oo  Q(u)
Thus there exists a sequence {uy : k > 1} of positive numbers such that
lim Up log2 Up
koo Q(uk)

and an increasing sequence {ry : k > 1} of positive integers such that

=00, Upt1 >up, k=12,...,

Then
247k 7",% u, log? uy,

c
Q) = Q(ug)
thus from and @ we obtain

sup [|[tg2n || Lo (12)— 11 (12) = 00
n

Part (b) follows immediately from (a) and the uniform boundedness
principle.
This completes the proof of Theorem [3| =

Proof of Theorem [} By Lemma [I] the proof of Theorem [4 will be com-
plete if we show that there exist sequences {ny : k > 1} and {vy : kK > 1} of
integers increasing to infinity, and a sequence {& : k > 1} of functions from
the unit ball Bg(0,1) of Lg(T?), such that for all ,

(7) mes{(z,y) € T2 . [tozny, (Ek;x,y)| > v} > 1/8.

First, we prove that there exist ¢y, co > 0 such that

1
(8) mes{(:c,y) cT?: t22n< [0’72”]2;30,,1;)
Tn

From Corollary
1 2
- (Hy)\ > 2}
Tn

1 2
to2n (W;:p, y> ‘ > 0123”}
Tn

1
> mes{(m,y) €EJp:— > 23"}.
ry

con
23n :

> c123”} >

(9) mes{(w,y) eT?:

> mes{(z,y) € Jy:

Set

r ma {l Bin < ! + }
n,m ‘= X Pin > 53072 o n (-
23 (ﬁmn - ’Yn)
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By a simple calculation we obtain

Then from @D we have

1 2
- (Hy)\ > 2}
Tn

mes{(x y) € T?:

on— 12 Tn,m on— 12 2n712
S 1 > com
Z 24n Z T = 930 m = 93n

m=1 [=1 m=1

Hence is proved.
From the condition of the theorem we infer [11]

lim inf Q)

u—oo ulogu

=0.

Consequently, there exists a sequence {ny : £ > 1} of integers increasing to
infinity such that

B B Q(24nk)
(10) klggoQ(24”k)2 e 1 =0, s 2 Lk

From we have

mes{(:c,y) cT?:

Lo ny )2 con
t22nk< [772 i ;:L“,y>‘ >0123”’“} > 223m’:

Nk

Then by Theoremthere exist F,...,E., E{,...,E. € £ and 1,...,e, =
41 such that

n 1
mes{xy yeT?: t22nk( ’7’“] 1B E/)‘>23”’“}>,
Vo 8

where r = [23% } + 1.

comy
Denote

where

Then holds.
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To finish the proof, we have to prove that £, € Bg(0,1). Since (see [16),
p. 278))

1My floo < 27%7F8, | M|l < 1,

lenlou < 5 [ 1@l +1],
T2

and

0<u<u,

we have

r Any,
1€kl Lo (12) < % 1+ SS Q(Wk(x’y)'> dx dy]

I Q(247)
24nk24nk+8
1], o @Caemeg ) 27| Mi(a, )

- T QR

L[ Q(2') 24 | My (2, )|
= 5 1+ SS 24ny Q(24nk)

dzx dy] <1.
L T2
Hence, &, € Bg(0,1), and the proof of Theorem 4] is complete. m

Corollary [I] follows immediately from Theorem [4] and Lemma
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