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Abstract. For an arbitrary topological group G any compact G-dynamical sys-
tem (G, X) can be linearly G-represented as a weak”-compact subset of a dual Banach
space V*. As was shown in [45] the Banach space V can be chosen to be reflexive iff the
metric system (G, X) is weakly almost periodic (WAP). In the present paper we study the
wider class of compact G-systems which can be linearly represented as a weak®-compact
subset of a dual Banach space with the Radon—-Nikodym property. We call such a system a
Radon—-Nikodym (RN) system. One of our main results is to show that for metrizable com-
pact G-systems the three classes: RN, HNS (hereditarily non-sensitive) and HAE (hered-
itarily almost equicontinuous) coincide. We investigate these classes and their relation to
previously studied classes of G-systems such as WAP and LE (locally equicontinuous). We
show that the Glasner—Weiss examples of recurrent-transitive locally equicontinuous but
not weakly almost periodic cascades are actually RN. Using fragmentability and Namioka’s
theorem we give an enveloping semigroup characterization of HNS systems and show that
the enveloping semigroup E(X) of a compact metrizable HNS G-system is a separable
Rosenthal compact, hence of cardinality < 2%°. We investigate a dynamical version of
the Bourgain—Fremlin—Talagrand dichotomy and a dynamical version of the Todorcevié
dichotomy concerning Rosenthal compacts.
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Introduction. The main goal of this paper is to exhibit new and per-
haps unexpected connections between the (lack of) chaotic behavior of a dy-
namical system and the existence of linear representations of the system on
certain Banach spaces. The property of sensitive dependence on initial con-
ditions appears as a basic constituent in several definitions of “chaos” (see,
for example, [9, 16, 25, 11| and references therein). In the present paper we
introduce the classes of hereditarily not sensitive (HNS for short; intuitively
these are the non-chaotic systems) and hereditarily almost equicontinuous
systems (HAE). It turns out that these classes of dynamical systems are
well behaved with respect to the standard operations on dynamical systems
and they admit elegant characterizations in terms of Banach space represen-
tations.

For an arbitrary topological group G any compact G-system X can be
linearly G-represented as a weak*-compact subset of a dual Banach space V*.
As was shown in [45] the Banach space V' can be chosen to be reflexive iff the
metric G-system X is weakly almost periodic (WAP). We say that a dynami-
cal system (G, X) is a Radon—Nikodym system (RN) if V* can be chosen as a
Banach space with the Radon—Nikodym property. One of our main results is
to show that for metrizable compact G-systems the three classes of RN, HNS
and HAE dynamical systems coincide. For general compact G-systems X we
prove that X is in the class HNS iff X is RN-approximable. In other words:
a compact system is non-chaotic if and only if it admits sufficiently many
G-representations in RN dual Banach spaces. The link between the various
topological dynamics aspects of almost equicontinuity on the one hand and
the Banach space RN properties on the other is the versatile notion of frag-
mentability. It played a central role in the works on RN compacta (see e.g.
Namioka [48]) and their dynamical analogues (see Megrelishvili [42, 43, 45]).
It also serves as an important tool in the present work.

The following brief historical review will hopefully help the reader to
get a clearer perspective on the context of our results. The theory of weakly
almost periodic (WAP) functions on topological groups was developed
by W. F. Eberlein [17], A. Grothendieck [28] and I. Glicksberg and
K. de Leeuw [15]. About thirty years ago, W. A. Veech [58], in an attempt to
unify and generalize the classical theory of weakly almost periodic functions
on a discrete group G, introduced a class of functions in ¢*°(G) which he
denoted by K(G). He showed that K(G) is a uniformly closed left and right
G-invariant subalgebra of °°(G) containing the algebra of weakly almost pe-
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riodic functions WAP(G) and shares with WAP(G) the property that every
minimal function in K(G) is actually almost periodic.

In [51] Shtern has shown that for any compact Hausdorff semitopological
semigroup S there exists a reflexive Banach space V' such that S is topolog-
ically isomorphic to a closed subsemigroup of B = {s € L(V) : ||s|| < 1}.
Here £(V) is the Banach space of bounded linear operators from V to itself
and B is equipped with the weak operator topology. Megrelishvili provided
an alternative proof for this theorem in [43]| and has shown in [45] that WAP
dynamical systems are characterized as those systems that have sufficiently
many linear G-representations on weakly compact subsets of reflexive Ba-
nach spaces. In particular, if V' is a reflexive Banach space then for every
topological subgroup G of the linear isometry group Iso(V') the natural ac-
tion of G on the weak*-compact unit ball V}* of V* is WAP. Moreover, every
WAP metric compact G-space X is a G-subsystem of V|* for a suitable re-
flexive Banach space V.

A seemingly independent development is the new theory of almost equi-
continuous dynamical systems (AE). This was developed in a series of papers:
Glasner & Weiss [25], Akin, Auslander & Berg |1, 2] and Glasner & Weiss |26].
In the latter the class of locally equicontinuous dynamical systems (LE) was
introduced and studied. It was shown there that the collection LE(G) of
locally equicontinuous functions forms a uniformly closed G-invariant sub-
algebra of ¢*°(G) containing WAP(G) and having the property that each
minimal function in LE(G) is almost periodic.

Of course the classical theory of WAP functions is valid for a general
topological group G and it is not hard to see that the AE theory, as well
as the theory of K(G)-functions—which we call Veech functions—extend to
such groups as well.

Let V' be a Banach space, V* its dual. A compact dynamical G-system
X is V*-representable if there exist a weakly continuous co-homomorphism
G — Iso(V), where Iso(V) is the group of linear isometries of a Banach
space V' onto itself, and a G-embedding ¢ : X — V", where V| is the weak™-
compact unit ball of the dual Banach space V* and the G-action is the
dual action induced on V}* from the G-action on V. An old observation (due
to Teleman [53]) is that every compact dynamical G-system X is C(X)*-
representable.

The notion of an Eberlein compact (Eb) space in the sense of Amir and
Lindenstrauss [4] is well studied and it is known that such spaces are char-
acterized by being homeomorphic to a weakly compact subset of a Banach
(equivalently: reflexive Banach) space. Later the notion of Radon—Nikodym
(RN) compact topological spaces was introduced. These can be character-
ized as weak*-compact sets in the duals V* with the RN property. A Banach
space V whose dual has the Radon—Nikodym property is called an Asplund
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space (see, for example, [22, 48] and Remark 6.2.3). We refer to the ex-
cellent 1987 paper of I. Namioka [48] where the theory of RN compacts is
expounded.

One of the main objects of [45] was the investigation of RN systems
(a dynamical analog of RN compacta) and the related class of functions
called “Asplund functions”. More precisely, call a dynamical system which
is linearly representable as a weak*-compact subset of a dual Banach space
with the Radon—Nikodym property a Radon—Nikodym system (RN for short).
The class of RN-approzimable systems, that is, subsystems of products of
RN systems, will be denoted by RN,p,. It was shown in [45] that WAP C
RN,pp C LE.

Given a compact dynamical G-system X, a subgroup H < G and a
function f € C(X), define a pseudometric g s on X as follows:

o, f(z,2') = sup |f(h) = f(ha')].

We say that f is an Asplund function (notation: f € Asp(X)) if the pseu-
dometric space (X, o, f) is separable for every countable subgroup H < G.
These are exactly the functions which come from linear G-representations
of X on V* with V' Asplund. By [45], a compact G-system X is RNy, iff
C(X) = Asp(X) and always WAP(X) C Asp(X).

The first section of the paper is a brief review of some known aspects of
abstract topological dynamics which provide a convenient framework for our
results. In the second section we discuss enveloping semigroups and semi-
group compactifications. Our treatment differs slightly from the traditional
approach and terminology and contains some new observations. For more
details we refer to the books [19, 23, 24, 60, 10, 6]. See also [8, 38, 59].

In [37] Kéhler shows that the well known Bourgain-Fremlin-Talagrand
dichotomy, when applied to the family {f™ : n € N} of iterates of a con-
tinuous interval map f : I — I, yields a corresponding dichotomy for the
enveloping semigroups. In the third section we generalize this and obtain a
Bourgain—Fremlin—Talagrand dichotomy for enveloping semigroups of metric
dynamical systems.

Section 4 treats the property of m-approzimability, i.e. of being approx-
imable by metric systems. For many groups G every dynamical G-system
is m-approximable and we characterize such groups as being exactly the
uniformly Lindelof groups.

In Section 5 we recall some important notions like almost equicontinuity,
WAP and LE and relate them to universal systems. We also study the related
notion of lightness of a function f € RUC(G), i.e. the coincidence of the
pointwise and the norm topologies on its G-orbit.

Section 6 is devoted to some results concerning fragmentability. These will
be crucial at many points in the rest of the paper. In Section 7 we investigate
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Asplund functions and their relations to fragmentability. In Section 8 we deal
with the related class of Veech functions. As already mentioned the latter
class K(G) is a generalization of Veech’s definition [58]. We show that every
Asplund function is a Veech function and that for separable groups these
two classes coincide.

In Section 9 we introduce the dynamical properties of HAE and HNS and
show that they are intimately related to the linear representation condition
of being an RN system. In particular for metrizable compact systems we
establish the following equalities and inclusions:

Eb = WAP C RN = HAE = HNS = RN,,, C LE.

Here Eb stands for Eberlein systems—a dynamical version of Eberlein com-
pacts (see Definition 7.5). Section 10 is devoted to various examples and
applications. We show that for symbolic systems the RN property is equiv-
alent to having a countable phase space; and that any Z-dynamical system
(f,X), where X is either the unit interval or the unit circle and f: X — X
is a homeomorphism, is an RN system.

In Section 11 we show that the Glasner—Weiss examples of recurrent-
transitive LE but not WAP metric cascades are actually HAE. In Section 12
we investigate the mincenter of an HAE system, and in Section 13 we use
a modified construction to produce an example of a recurrent-transitive, LE
but not HAE system. This example exhibits the sharp distinction between
the possible mincenters of LE and HAE systems.

In Section 14, using fragmented families of functions and Namioka’s joint
continuity theorem, we establish an enveloping semigroup characterization of
Asplund functions and HNS systems. Our results imply that the Ellis semi-
group F(X) of a compact metrizable HNS system (G, X) is a Rosenthal
compact. In particular, by a result of Bourgain-Fremlin-Talagrand [12], we
deduce that E(X) is angelic (hence, it cannot contain a subspace homeo-
morphic to SN). Finally in Section 15 we show how a theorem of Todoréevié
implies that for a metric RN system, E(X) either contains an uncountable
discrete subspace or admits an at most two-to-one metric G-factor.

We are indebted to Stevo Todorcevié for enlightening comments. Thanks
are due to Hanfeng Li for a critical reading of the manuscript and his con-
sequent fruitful suggestions, including improvements in the statement and
proof of Propositions 5.14 and 9.5. We would like to thank Ethan Akin for a
careful reading of the paper and for suggesting several improvements. Finally,
we thank Benjy Weiss for many helpful conversations.

1. Topological dynamics background. Usually all the topological
spaces we deal with are assumed to be Hausdorff and completely regular.
However, occasionally we will consider a pseudometric on a space, in which
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case of course the resulting topology need not be even Ty. Let G x X — X
be a continuous (left) action of the topological group G on the topological
space X . As usual, we say that (G, X), or X (when the group is understood),
is a G-space or a G-action. Every G-invariant subset Y C X defines a G-
subspace of X. Recall that every topological group G can be treated as a
G-space under the left regular action of G on itself. If X is a compact G-space
then sometimes we call it also a G-system or just a system. We say that a
G-space X is a subdirect product of a class I' of G-spaces if X is a G-subspace
of a G-product of some members of I

The notations (X, 7) and (X, u) are used for a topological and a uni-
form space respectively. When the acting group is the group Z of integers,
we sometimes write (7, X) instead of (Z,X), where T : X — X is the
homeomorphism which corresponds to the element 1 € Z (such systems are
sometimes called cascades). We write gz for the image of z € X under
the homeomorphism § : X — X which corresponds to g € G. As usual,
Gr = Og(z) = {gx : g € G} is the orbit of x and Og(z) = cls(Gx) is
the closure in X of Og(x). If (G,Y) is another G-system then a surjective
continuous G-map 7 : X — Y (that is, gn(z) = w(gx) for all (g,z) € Gx X)
is called a homomorphism. We also say that Y is a G-factor of X. When
(G, X) is a dynamical system and Y C X is a non-empty closed G-invariant
subset, we say that the dynamical system (G,Y), obtained by restriction
to Y, is a subsystem of (G, X).

Denote by C'(X) the Banach algebra of all real-valued bounded functions
on a topological space X under the supremum norm. Let G be a topolog-
ical group. We write RUC(G) for the Banach subalgebra of C(G) of right
uniformly continuous (1) real-valued bounded functions on G. These are
the functions which are uniformly continuous with respect to the right uni-
form structure on G. Thus, f € RUC(G) iff for every € > 0 there exists a
neighborhood V' of the identity element e € G such that sup,cq [f(vg) —
f(g)] < e for every v € V. It is equivalent to say that the orbit map
G — C(G), g — 4f, is norm continuous where f is the left translation
of f defined by ,f(x) = Ly(f)(z) := f(gx). Analogously can be defined
the algebra LUC(G) of left uniformly continuous functions and the right
translations fy(x) = Rg(f)(z) := f(xg). It is easy to see that UC(G) :=
RUC(G) N LUC(G) is a left and right G-invariant closed subalgebra of
RUC(G).

More generally: for a given (not necessarily compact) G-space X a func-
tion f € C(X) will be called right uniformly continuous if the orbit map
G — C(X), g 4f == Ly(f), is norm continuous, where Ly(f)(z) := f(gx).
The map C(X) x G — C(X), (f,g) — 4f, defines a right action. The set

(*) Some authors call these functions left uniformly continuous.
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RUC(X) of all right uniformly continuous functions on X is a uniformly
closed G-invariant subalgebra of C'(X).

A G-compactification of a G-space X is a dense continuous G-map v :
X — Y into a compact G-system Y. A compactification v : X — Y is
proper when v is a topological embedding. We say that a G-compactification
v:G — S of X := G (the left regular action) is a right topological semi-
group compactification of G if S is a right topological semigroup (that is, for
every x € S the map o5 : S — S, gs(x) = xs, is continuous) and v is a
homomorphism of semigroups. There exists a canonical 1-1 correspondence
(see for example [59]) between the G-compactifications of X and uniformly
closed G-subalgebras (“subalgebra” will always mean a subalgebra contain-
ing the constants) of RUC(X). The G-compactification v : X — Y induces
an isometric G-embedding of G-algebras

Ju:C(Y)—=RUC(X), ¢+~ pov,

and the algebra A, (corresponding to v) is defined as the image j,(C(Y)).
Conversely, if A is a uniformly closed G-subalgebra of RUC(X), then its
Gelfand space |A| C (A*,weak®) has a structure of a dynamical system
(G,|A]) and the map v4: X — Y := |A|, x — eva,, where evaz(p) := ¢(x)
is the multiplicative functional of evaluation at x, defines a G-compactifi-
cation. If 1 : X — Y7 and 1p : X — Y5 are two G-compactifications then
A, C Ay, iff 1 = a oy for some G-homomorphism « : Yo — Y;. The
algebra A, determines the compactification v uniquely, up to equivalence of
G-compactifications.

The G-algebra RUC(X) defines the corresponding Gelfand space
IRUC(X)| (which we denote by 33X) and the mazimal G-compactification
ig : X — BgX. Note that this map may not be an embedding even for Polish
X and G (see [40]); it follows that there is no proper G-compactification for
such X. If X is a compact G-system then 55X can be identified with X and
C(X) =RUC(X).

A point zy € X is a transitive point (notation: xy € Trans(X)) if
Oc(x9) = X, and the G-space X is called point-transitive (or just transi-
tive) if Trans(X) # (). It is topologically transitive if for any two non-empty
open subsets U,V C X there exists g € G with gU NV # (). Every point-
transitive G-space is topologically transitive. When X is a metrizable sys-
tem, topological transitivity is equivalent to point-transitivity and, in fact,
to the existence of a dense G set of transitive points. For a G-space (G, X)
with G locally compact we say that a point x € X is a recurrent point if
there is a net G 5 g; — oo with z = lim;_,o g;x. A system (G, X) with a
recurrent transitive point is called a recurrent-transitive system. Note that
a transitive infinite Z-system is recurrent-transitive iff X has no isolated
points.
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A system (G, X) is called weakly mizing if the product system (G, X x X)
(where g(z,2') = (gz,gz’)) is topologically transitive. A system (G, X) is
called minimal if every point of X is transitive.

A triple (G, X, zp) with X compact and a distinguished transitive point
xo is called a pointed dynamical system (or sometimes an ambit). For ho-
momorphisms 7 : (X,z9) — (Y,yo) of pointed systems we require that
m(x9) = yo. When such a homomorphism exists it is unique. A pointed
dynamical system (G, X, zo) can be treated as a G-compactification vy, :
G — X, vg,(9) = gzo. We associate with every F' € C(X) the func-
tion jy,(F) = f € RUC(G) defined by f(g9) = F(gxo). Then the map
Juo 1s actually the above-mentioned isometric embedding jy, : c(X) —
RUC(G). Let us denote its image by j;,(C(X)) = A(X,zg). We have
gf = g(Juo(F)) = Jjao(F o g). The Gelfand space |A(X,zo)| of the algebra
A(X,z0) is naturally identified with X and in particular the multiplica-
tive functional eva, : f — f(e) is identified with the point z¢. Moreover
the action of G on A(X,xo) by left translations induces an action of G
on |A(X,zo)| and under this identification the pointed systems (X, zo) and
(|A(X, z0)|, evae) are isomorphic.

Conversely, if A is a G-invariant uniformly closed subalgebra of RUC(G)
(here and in what follows, when we say that a subalgebra of RUC(G) is
G-invariant we mean left G-invariant, that is, invariant with respect to the
action A x G — A, (f,g) — 4f), then its Gelfand space |A| has a structure
of a pointed dynamical system (G, |A|,eva.). In particular, we have, corre-
sponding to the algebra RUC(G), the universal ambit (G,GY, eva.) where
we denote the Gelfand space |[RUC(G)| = BaG by GR. (See for example [19]
or [60] for more details.)

It is easy to check that for any collection {(G, Xy, xg) : 0 € O} of pointed
systems we have

A(\/{(Xg,xg) 0 @}) — \/{A(Xg,20) : 0 € 6},

where \/{(Xp,xp) : 0 € O} is the orbit closure of the point z in the prod-
uct space [[yco X¢ whose f-coordinate is zg, and the algebra on the right
hand side is the closed subalgebra of RUC(G) generated by the union of the
subalgebras A(Xy, xg).

DEFINITION 1.1. 1. We say that a function f € C(X) on a G-space
X comes from a G-system Y if there exist a G-compactification v :
X —Y (so, v is onto if X is compact) and a function F' € C(Y') such
that f = vo F (equivalently, f € A,). Then necessarily f € RUC(X).
Only the maximal G-compactification ig : X — BgX has the property
that every f € RUC(X) comes from ig.
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2. A function f € C(G) comes from a pointed system (Y,yp) (and then
necessarily f € RUC(G)) if for some continuous function F' € C(Y)
we have f(g) = F(gyo) for all g € G, i.e. f = j,,(F) (equivalently, if
f € A(Y,yp)). Defining v : X = G — Y by v(g) = gyo we observe
that this is indeed a particular case of 1.1.1.

3. A function f € RUC(X) is called minimal if it comes from a minimal
system.

2. The enveloping semigroup. The enveloping (or Ellis) semigroup
E = E(G,X) = E(X) of a dynamical system (G, X) is defined as the clo-
sure in XX (with its compact, usually non-metrizable, pointwise convergence
topology) of the set G = {3 : X — X}yeq considered as a subset of XX.
With the operation of composition of maps this is a right topological semi-
group. Moreover, the map i : G — E(X), g — ¢, is a right topological
semigroup compactification of G.

PROPOSITION 2.1. The enveloping semigroup of a dynamical system
(G, X) is isomorphic (as a dynamical system) to the pointed product

(E',wo) = \/{(O¢(x),2) 1w € X} c X¥.

Proof. Tt is easy to see that the map p — pwy, (G, E,i(e)) — (G, E’, wy),
is an isomorphism of pointed systems. =

Let X be a (not necessarily compact) G-space. Given f € RUC(X) let
I =[-|IfILIIfll € R and 2 = I%, the product space equipped with the
compact product topology. We let G act on 2 by gw(h) = w(hg), g,h € G.
Define the continuous map

fi: X =02, fi(z)(9) = f(g2),

and the closure Xy := cls(fy(X)) in 2. Note that X; = fy(X) whenever X
is compact.

Denoting the unique continuous extension of f to BgX by f we now
define a map

Vi BeX — Xy, (y)(g) = flgy), v€PeX,geQq.

Let pr, : 2 — R denote the projection of 2 = I onto the e-coordinate and
let Fp :=pr.[x, : Xy — R be its restriction to X. Thus, F,(w) := w(e) for
every w € Xy.

For every f € RUC(X) denote by A; the smallest closed G-invariant
subalgebra of RUC(X) which contains f. There is then a naturally defined G-
action on the Gelfand space |Af| and a G-compactification (homomorphism
of dynamical systems if X is compact) 7y : X — |Ay|. Next consider the
map 7 : fgX — |Af|, the canonical extension of 7.
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The action of G on {2 is not in general continuous. However, the restricted
action on Xy is continuous for every f € RUC(X). This follows from the
second assertion of the next proposition.

PROPOSITION 2.2. 1. Fach w € Xy is an element of RUC(G).

2. The map ¥ : X — Xy is a continuous homomorphism of G-
systems. The dynamical system (G,|Ay|) is isomorphic to (G,Xy)
and the diagram

X —25 BaX
I
Iy r
| Ay Xy R

commutes.

3. f = F.o f;. Thus every f € RUC(X) comes from the system Xy.
Moreover, if f comes from a system Y and a G-compactification v :
X — Y then there erists a homomorphism o : Y — Xy such that
fs = aov. In particular, f € Af C A,.

Proof. 1. f € RUC(X) implies that f;(X) is a uniformly equicontin-
uous subset of I¢ (endowing G with its right uniform structure). Thus,
the pointwise closure cls(fy(X)) = Xy is also uniformly equicontinuous. In
particular, for every w € Xy the function w : G — I is right uniformly
continuous.

2. Suppose ig(z,) € ig(X) is a net converging to y € [BgX. Then
v()(g) = flgy) = limy, f(gzy) = lim, fy(z,)(g). Thus ¢(y) = lim, fy(z,)
is indeed an element of X and it is easy to see that ¢ is a continuous
G-homomorphism. In particular, we see that X, being a G-factor of 55X,
is indeed a G-system (i.e. the G-action on X7 is jointly continuous).

Now we use the map 7 : g X — |A¢|. By definition, the elements of Sg X
are continuous multiplicative linear functionals on the algebra RUC(X), and
for y € B X its value 7(y) € | Ay is the restriction y[4, to the subalgebra
Ay C RUC(X). For g € G, as above, let ,f € Ay C RUC(X) be defined

by ¢f (z) = f(gx). Then w(y1) = w(y2) implies y1(yf) = f(gy1) = f(gy2) =
y2(gf) for every g € G.

Conversely, assuming f(gyl) = f(gyg) for every g € GG, we observe that,
as y1 and yo are multiplicative functionals, we also have y;(h) = y2(h) for
every h in the subalgebra Ay generated by the family {,f : ¢ € G}. Since
Ap is dense in Ay and as y; and yo are continuous we deduce that 7(y;) =
yila; = y2la, = m(y2). N N

We clearly have ¥(y1) = ¥(y2) < f(g9y1) = f(gy2) for every g € G. Thus

for y1,y2 € faX we have w(y1) = 7(y2) & P(y1) = P(y2) & flgy) =
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f(gy2) for every g € G, and we find that indeed |A¢| and X are isomorphic
G-systems.
The verification of the commutativity of the diagram is straightforward.
3. Clearly, Fo(fi(x)) = fi(x)(e) = f(ex) = f(x) for every x € X. For
the rest use the G-isomorphism |A¢| < X (assertion 2). If f = Fov for
some F' € C(Y) then f € A,. This implies the inclusion of G-subalgebras
Af C Ay, which leads to the desired G-homomorphism o : Y — X¢. =

REMARK 2.3. 1. Below we use the map f; : X — X and Proposition 2.2
in two particular cases. First, for a compact G-space X when clearly
BcX can be replaced by X. We also frequently consider the case of
the left regular action of G on X := G (see Proposition 2.4). Here the
canonical maximal G-compactification ig : X — B¢ X is actually the
compactification G — G® and the orbit Gf = {Ry(f)}sec = fi(G)
of f € RUC(G) is pointwise dense in X; = cls(f;(G)) C £2 = I°.

2. X is a subdirect product of the G-systems Xy where f € RUC(X).
This follows easily from Proposition 2.2 and the fact that elements
of C(BeX) ={f: f € RUC(X)} separate points and closed subsets
of BaX.

3. Proposition 2.2.3 actually says that the compactification f; : X — X
is minimal (in fact, the smallest) among all G-compactifications v :
X — Y such that f € RUC(X) comes from v. The mazimal com-
pactification in the same setting is clearly ig : X — BgX.

PropPOSITION 2.4. 1. Consider the left reqular action of G on X = G.
For every f € RUC(G) we have Gf C X5 = Oc(f) C 2, file) = f
and Fe(gf) = f(g) for every g € G.
2. The pointed G-system (|Ay|,eva.) is isomorphic to (Xy, f) (hence
Ay = A(Xy, f)).
3. f=F.o f;. Thus every f € RUC(G) comes from the pointed system
(X¢, f). Moreover, if f comes from a pointed system (Y,yo) and v :
(G,e) — (Y,yo0) ts the corresponding G-compactification then there
exists a homomorphism o : (Y,y0) — (Xy, f) such that fy = aov. In
particular, f € Ay C A(Y, yo).
4. Denote by XJ{{ C I the dynamical system constructed for the sub-
group H < G and the restriction flg (e.g., XJg =Xy). If H<G is
a dense subgroup then, for every f € RUC(G), the dynamical systems
(H,Xy) and (H, X]{{) are canonically isomorphic.
Proof. For assertions 1, 2 and 3 use Proposition 2.2 and Remark 2.3.1.
4. Let 7 : Xy — X}q be the restriction of the natural projection
I¢ — 17 Clearly, j : (H,Xy) — (H, X]{{) is a surjective homomorphism. If
j(w) = j(w') then w(h) = W'(h) for every h € H. Since by Proposition 2.2.1
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every w € X is a continuous function on G and since we assume that H is
dense in GG, we conclude that w = ' so that j is an isomorphism. =

DEFINITION 2.5. We say that a pointed dynamical system (G, X, )
is point-universal if for every x € X there is a homomorphism 7, :
(X,20) — (Og(z),z). A closed G-invariant subalgebra A C RUC(G) is
called point-universal if the corresponding Gelfand system (G, |A|, eva,) is
point-universal.

PROPOSITION 2.6. The following conditions on the pointed dynamical
system (G, X, x0) are equivalent:

L. (X, xo) is point-universal.
2. A(X,20) = Uyex AOc(a), )
3. (X, x0) is isomorphic to its enveloping semigroup (E(X),i(e)).

Proof. 1= 2: Clearly, A(X,z0) = A(O¢(z0), z0) C U,ex A(Oc(z), ).
Suppose f(g) = F(gz) for all ¢ € G and for some F € C(Og(z)) and
x € X. Since (X, ) is point-universal there exists a homomorphism 7, :
(X, 20) — (Og(), z). Hence f(g) = F(gz) = Flgms(z0)) = F(rs(g0)) =
(F o 73)(gx0) = Jjuo(F o m2)(g) and we conclude that f = j, (F om,) €
A(X, xo).

2 = 3: Proposition 2.1 guarantees the existence of a pointed isomor-
phism between the systems (E(X),i(e)) and V,cy(Oc(z),z). Now, using
our assumption we have

AB(X),i(e)) = A (Oc(@),2)) = \/ A@a(x),2) = A(X,x0),
zeX zeX
whence the isomorphism of (X, z¢) and (E(X),i(e)).
3= 1: For any fixed z € X the map 7, : E(X) — X defined by
7z(p) = px is a G-homomorphism with 7, (i(e)) = z. Our assumption that
(X,xz0) and (E(X),i(e)) are isomorphic now implies the point-universality
of (X,z0). m

PROPOSITION 2.7. A transitive system (G, X, xzq) is point-universal iff
the map G — X, g — gxo, is a right topological semigroup compactification

of G.

Proof. The necessity of the condition follows directly from Proposi-
tion 2.6. Suppose now that the map G — X, g — gz, is a right topological
semigroup compactification of G. Given x € X we observe that the map g, :
(X,z9) — (X,x), 02(2) = zz, is a homomorphism of pointed systems, so
that (G, X, zo) is point-universal. m

In particular, for every G-system X the enveloping semigroup (E(X),
i(e)), as a pointed G-system, is point-universal. Here, as before, i : G —
E(X), g — g, is the canonical enveloping semigroup compactification.
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PROPOSITION 2.8. Let (G,X,xz9) be a pointed compact system and
A = A(X,zg) the corresponding (always left G-invariant) subalgebra of
RUC(G). The following conditions are equivalent:

1. (G, X,x0) is point-universal.
2. Xy C A for every f € A (in particular, A is also right G-invariant).

Proof. 1= 2: Let f: G — R belong to A. Consider the G-compactifi-
cation fy : G — Xy := cls(Gf) as defined by Proposition 2.4. We have to
show that ¢ € A for every ¢ € X;. Consider the orbit closure X, = cls(Gy)
in Xy. By Definition 1.1.2 there exists a continuous function F' : X — R
such that f(g) = F(gxo) for every g € G. That is, f comes from the pointed
system (X, xp). For some net g; € G we have go(g) = lim; f(gg;) for every
g € G and with no loss in generality we have 1 = lim; g;x¢9 € X. Then

¢(9) = lim f(gg;) = lim F(ggizo) = F(gz1).

Thus ¢ comes from the pointed system (Og(x1),71) and in view of Propo-
sition 2.6 we conclude that indeed ¢ € A.
2 = 1: Define the G-ambit

(Y,y0) == \/{(Xs, f) : f € A},
First we show that A(X,z0) = A(Y, yo). Indeed, as we know,

A(Y,yo) = \/{-AXff fe A}

Proposition 2.4 implies that f € Ay = A(Xy, f) for every f € A(X, o).
Thus
feAr=AXy, ) CAY ) VfeAX, zo).

Therefore, A(X,z9) C A(Y,y0). On the other hand, Ay = A(Xy, f)
C A(X, zg) (for every f € A(X,x)) because A(X, ) is left G-invariant and
Ay is the smallest closed left G-invariant subalgebra of RUC(G) which con-
tains f. This implies that A(Y,yo) C A(X, zg). Thus, A(X,zo) = A(Y, y0)-
Denote this algebra simply by .A.

Suppose pyo = qyp for p,q € E(Y) (the enveloping semigroup of (G,Y)).
By our assumption, Xy C A for every f € A. Then every y € Y, considered
as an element of the product space erA Xy, has the property that its f-
coordinate, say vy, is again an element of .4 and it follows that y; appears as a
coordinate of yg as well. Therefore also py; = qyr and it follows that py = qy.
Thus the map p — pyo from (E(Y),i(e)) to (Y,yp) is an isomorphism. By
Proposition 2.6, (Y, ) (and hence also (X, z¢)) is point-universal.

(Observe that Gf = {Ry(f)}gec C X5 := cls(Gf). Therefore, the con-
dition Xy C A for all f € A trivially implies that A is right invariant.) m

PROPOSITION 2.9. Let P be a property of compact G-dynamical systems
which is preserved by products, subsystems and G-isomorphisms.
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1. Let X be a (not necessarily compact) G-space and let Px C C(X)
be the collection of functions coming from systems having property P.
Then there exists a mazimal G-compactification X¥ of X with prop-
erty P. Moreover, j(C(X7)) = Px. In particular, Px is a uniformly
closed, G-invariant subalgebra of RUC(X).

2. Let P C C(G) be the set of functions coming from systems with prop-
erty P. Then (Gp,evae) s the universal point-transitive compact G-
system having property P. Moreover P is a point-universal subalgebra
of RUC(QG). (Thus, P is uniformly closed, right and left G-invariant,
and Xy C P for every f € P.)

3. If in addition P is preserved by factors then f € P iff Xy has prop-
erty P.

Proof. 1. We only give an outline of the rather standard procedure.
There is a complete set {v; : X — Y;}ier of equivalence classes of G-
compactifications of X such that each Y; has property P. Define the de-
sired compactification v : X — Y = cls(v(X)) C [];c; Y; via the diagonal
product. Then we get the suprema of our class of G-compactifications. In
fact, Y has property P because the given class is closed under subdirect
products. f € P means that it comes from some Y; via the compactification
vi : X —Y;. Denote Y by X¥. Now using the natural projection of ¥ on Y;
it follows that f comes from Y = X”. This implies j(C(X7)) = Px.

2. The construction of the maximal ambit (G”, eva.) with property P
is similar. In fact it is a particular case of the first assertion identifying
G-ambits (Y, yo) and G-compactifications vy, : G — Y, vy,(9) = gyo, of
X :=(G. As to the point-transitivity of P note that according to the defi-
nition the uniformly closed subalgebra P C RUC(G) is the set of functions
coming from systems with property P. Every subsystem of G¥ has property
P. In particular, (Og(z), ) has property P. Therefore, P contains the al-
gebra A(Og(x),z) for every x € X. By Proposition 2.6 it follows that P
is point-universal. Thus Proposition 2.8 guarantees that Xy C P for every
f € P (and that P is right and left G-invariant).

3. Use Proposition 2.2.3. =

3. A dynamical version of the Bourgain—Fremlin—Talagrand the-
orem. Let F = E(X) be the enveloping semigroup of a G-system X. For
every f € C(X) define

El = {p;: X = Rlyep = {fop:p€ E}, ps(z)= f(pr).
Then E7 is a pointwise compact subset of R¥, being a continuous image of
E under the map ¢y : £ — E, P Dy
Recall that a topological space K is Rosenthal compact [27] if it is hom-
eomorphic to a pointwise compact subset of the space Bi(X) of functions
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of the first Baire class on a Polish space X. All metric compact spaces are
Rosenthal. An example of a separable non-metrizable Rosenthal compact is
the Helly compact of all (not only strictly) increasing selfmaps of [0, 1] in
the pointwise topology. Another is the “two arrows” space of Aleksandrov
and Urysohn (see Example 14.10 below). A topological space K is angelic if
the closure of every subset A C K is the set of limits of sequences from A
and every relatively countably compact set in K is relatively compact. Note
that the second condition is superfluous if K is compact. Clearly, SN, the
Stone—Cech compactification of the natural numbers N, is not angelic, and
hence it cannot be embedded into a Rosenthal compact space.

The following theorem is due to Bourgain-Fremlin-Talagrand [12, The-
orem 3F|, generalizing a result of Rosenthal. The second assertion (BFT di-
chotomy) is presented as in the book of Todor¢evi¢ [54] (see Proposition 1
of Section 13).

THEOREM 3.1. 1. Fvery Rosenthal compact space K s angelic.

2. (BFT dichotomy) Let X be a Polish space and let {f,}>2, C C(X)
be a sequence of real-valued functions which is pointwise bounded (i.e.
for each x € X the sequence {fn(x)}52 , is bounded in R). Let K be

n=1

the pointwise closure of {fn}2%, in RX. Then either K C B1(X) (i.e.
K is Rosenthal compact) or K contains a homeomorphic copy of SN.

Next we will show how the BFT dichotomy leads to a corresponding
dynamical dichotomy (see also [37]). In the proof we will use the following
observation. Let G be an arbitrary topological group. For every compact
G-space X, denote by j : G — Homeo(X), g — ¢, the associated (always
continuous) homomorphism into the group of all selfhomeomorphisms of X.
Then the topological group G = j(G) (we will call it the natural restric-
tion) naturally acts on X. If X is a compact metric space then Homeo(X),
equipped with the topology of uniform convergence, is a Polish group. Hence,
the subgroup G = j (G) is second countable. In particular one can always
find a countable dense subgroup Gg of G.

THEOREM 3.2 (A dynamical BFT dichotomy). Let (G, X) be a metric
dynamical system and let E = E(X) be its enveloping semigroup. We have
the following alternative: either

1. E is a separable Rosenthal compact (hence card E < 2%0), or
2. the compact space E contains a homeomorphic copy of BN, hence
card E = 2270

The first possibility holds iff EY is a Rosenthal compact for every f € C(X).

Proof. Since X is compact and metrizable, one can choose a sequence
{fn}nen in C(X) which separates the points of X. For every pair s,t¢ of
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distinct elements of E there exist a point g € X and a function f,, from
our sequence such that fy,,(szo) # fn,(txo). It follows that the continuous
diagonal map

@:E—>HEf", p— (fiop, faop,...),
neN
separates the points of E and hence is a topological embedding.

Now if for each n the space E/ is a Rosenthal compact then so is F =
P(E) C I, Efn | because the class of Rosenthal compacts is closed under
countable products and closed subspaces. On the other hand the map ¢y :
E — Ef, p— fop, is a continuous surjection for each f € C(X). Therefore,
BT = cls(qf(Go)) = cls{fog : g € Go}, where Gy is a countable dense
subgroup of G. By Theorem 3.1 (BFT dichotomy), if at least one Ef» is
not Rosenthal then it contains a homeomorphic copy of SN and it is easy to
see that so does its preimage E. (In fact if N = Z C Ef» then any closed
subset Y of E which projects onto Z and is minimal with respect to these
properties is also homeomorphic to GN.)

Again an application of the BFT dichotomy yields the fact that in the
first case F is angelic. Clearly, the cardinality of every separable angelic
space is at most 28, Now in order to complete the proof observe that for
every compact metric G-system X the space E, being the pointwise closure
of G in XX is separable, hence card E < 22%0,

The last assertion clearly follows from the above proof. =

4. Metric approximation of dynamical systems. Let (X, u) be a
uniform space and let € € . We say that X is e- Lindelof if the uniform cover
{e(z) : x € X}, where e(x) = {y € X : (z,y) € €}, has a countable subcover.
If X is e-Lindeldf for each € € p, then it is called uniformly Lindelof [42].
We note that (X, u) is uniformly Lindel6f iff it is Ro-precompact in the sense
of Isbell [30]. If X, as a topological space, is either separable, Lindel6f or
ccc (see [30, p. 24|), then (X, u) is uniformly Lindelof. For a metrizable
uniform structure pu, (X, 1) is uniformly Lindel6f iff X is separable. Uniformly
continuous maps send uniformly Lindel6f subspaces onto uniformly Lindel6f
subspaces.

A topological group G is Ng-bounded (in the sense of Guran [29]) if for
every neighborhood U of e there exists a countable subset C' C G such that
G = CU. Clearly, G being Xg-bounded means exactly that G is uniformly
Lindélof with respect to its right (or left) uniform structure. By [29] a group
G is Ng-bounded iff G is a topological subgroup of a product of second
countable topological groups. If G is either separable or Lindelof (o-compact,
for instance) then G is uniformly Lindeldf.

Recall our notation for the “natural restriction” G = Jj(G), where for a
compact G-system (G, X), the map j : G — Homeo(X) is the associated
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continuous homomorphism of G into the group of all selfhomeomorphisms
of X (see Section 3).

We say that a compact G-system X is m-approzimable if it is a subdirect
product of metric compact G-systems (see also the notion of quasi-separablity
in the sense of [36, 60]). By Keynes [36], every transitive system X with
o-compact acting group G is m-approximable. The following generalization
provides a simple criterion for m-approximability.

PROPOSITION 4.1. Let X be a compact G-system. The following condi-
tions are equivalent:

1. X is an inverse limit of metrizable compact G-systems (of dimension
< dim X).

2. (G, X) is m-approzimable.

3. G is uniformly Lindeldf.

Proof. 1 =2 is trivial.

For 2 = 3 observe that for every metric compact G-factor X; of X the
corresponding natural restriction G; C Homeo(X;) of G is second countable
with respect to the compact open topology. By our assumption it follows that
the group GcC Homeo(X) can be topologically embedded into the product
[L; Gi of second countable groups. Hence G is uniformly Lindel6f by the
theorem of Guran mentioned above.

The implication 3 = 1 has been proved (one can assume that G = é) in
[39, p. 82] and [41, Theorem 2.19] (see also [56, Lemma 10]). =

PROPOSITION 4.2. Let G be a topological group. The following conditions
are equivalent:

1. G is uniformly Lindeldf.

2. The greatest ambit G® is m-approzimable.

3. FEvery compact G-system is m-approzimable.

4. For every G-space X and each f € RUC(X) the G-system Xy is
metrizable.

Proof. 1 = 4: Given f € RUC(X) the orbit map G — RUC(X), g — 4f,
is uniformly continuous, where G is endowed with its right uniform struc-
ture. Since G is uniformly Lindeléf the orbit fG = {;f}4cq is also uni-
formly Lindel6f, hence separable in the Banach space RUC(X) (inspired by
[56, Lemma 10]). It follows that the Banach G-algebra A generated by fG
is also separable. By Proposition 2.2.2, X is metrizable.

4 = 2: Consider the G-space X := G. Assuming that each X is metriz-
able, we see, by Remark 2.3.2, that GR = 35X is an m-approximable G-
system.
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2 = 1: Since G naturally embeds as an orbit into G®, we see that the
map j : G — G C Homeo(GR®) is a homeomorphism. If G® is m-approx-
imable then by Proposition 4.1, G (and hence @) is uniformly Lindeldf.

1 = 3: Immediate by Proposition 4.1.

3 = 2: Trivial. m

5. Almost equicontinuity, local equicontinuity and variations.
By a uniform G-space (X, ) we mean a G-space (X, 7) where 7 is a (com-
pletely regular Hausdorff) topology, with a compatible uniform structure p,
so that the topology top(u) defined by u is 7.

DEFINITION 5.1. Let (X, u) be a uniform G-space.

1. A point xy € X is a point of equicontinuity (notation: z¢ € Eq(X))
if for every entourage € € pu, there is a neighborhood U of z( such
that (gxo,gz) € € for every z € U and g € G. The G-space X is
equicontinuous if Eq(X) = X. As usual, X is uniformly equicontinuous
if for every ¢ € p there is 6 € u such that (gx,gy) € e for every
g € G and (z,y) € 0. For X compact, equicontinuity and uniform
equicontinuity coincide.

2. The G-space X is almost equicontinuous (AE for short) if Eq(X) is
dense in X.

3. We say that the G-space X is hereditarily almost equicontinuous (HAE
for short) if every closed uniform G-subspace of X is AE.

The following fact is well known at least for metric compact G-spaces.
See for example [2, Proposition 3.4]. Note that neither metrizability nor
compactness of (X, u) are needed in the proof.

LEMMA 5.2. If (X,u) is a point-transitive (%) uniform G-space and
Eq(X) is not empty then Eq(X) = Trans(X).

Let m : G x X — X be a separately continuous (at least) action on a
uniform space (X, p). Following [3, Ch. 4] define the injective map

m: X = O(GX),  m(2)(9) = ge,
where C(G, X) is the collection of continuous maps from G into X. Given

a subgroup H < G endow C(H, X) with the uniform structure of uniform
convergence whose basis consists of the sets of the form

E={(f,f) € C(H,X): (f(h), f'(h) € < for all he H} (= € p).
We use the map 73 : X — C(H,X) to define a uniform structure pp
on X, as follows. For € € i set

lelg = {(z,y) € X x X : (ha,hy) € € for all h € H}.
The collection {[e]p : € € p} is a basis for pg.

(2) By Lemma 9.2.5 one can assume that X is only topologically transitive.
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Always p C pp and equality occurs iff the action of H on (X, pu) is
uniformly equicontinuous. If (X, u) is metrizable and d denotes some com-
patible metric on X, then the corresponding gy is uniformly equivalent to
the following metric:

dy(z,2") = supyepd(gz, gz').

REMARK 5.3. 1. It is easy to characterize ug for G-subsets of RUC(G)
(e.g., for Xy = cls(f3(X)) € RUC(G)), where p is the pointwise
uniform structure on RUC(G). The corresponding ¢ is the metric
uniform structure inherited from the norm of RUC(G).

2. The arguments of [1, Theorem 2.6] show that the uniform space
(X, 1) is complete for every compact (not necessarily metric) G-
system (X, p).

LEMMA 5.4. Let (X, pn) be a uniform G-space. The following conditions

are equivalent:

1. xg is a point of equicontinuity of the G-space (X, ).

2. xq is a point of continuity of the map m : X — C(G, X).

3. xg is a point of continuity of the map idx : (X, n) — (X, ug).

Proof. Straightforward. =

COROLLARY 5.5. Given a compact system (G, (X, u)) (with the unique
compatible uniform structure u) the following conditions are equivalent:

1. (G,(X,n)) is (uniformly) equicontinuous.

2. pG = p.

3. m: X — C(G,X) is continuous.

4. pg is precompact.

Proof. By Remark 5.3.2 the uniform space (X, ug) is complete. Thus
precompact implies compact. This establishes 4 = 1.

The implications 1 = 2 = 3 = 4 are trivial upon taking into account
Lemma 5.4. u

LEMMA 5.6. The uniform structure ug defined above is compatible with
subdirect products. More precisely:

1. Let G act on the uniform space (X,pn) and let Y be a G-invariant
subset. Then (pa)ly = (uly)a-

2. Let {(Xj, ps) i € I} be a family of uniform G-spaces. Then (I]; ji)a
=[L:i(m)e-

Proof. Straightforward. m

DEFINITION 5.7. 1. Let us say that a subset K of a uniform G-space
(X, p) is light if the topologies induced by the uniformities p and pg
coincide on K. We say that X is orbitwise light if all orbits are light
in X.
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2. (X, p) is said to be locally equicontinuous (LE for short) if every
point xg € X is a point of equicontinuity of the uniform G-subspace
cls(Gxg). That is, for every xg € X and every element ¢ of the uni-
form structure p there exists a neighborhood O of zp in X such that
(g, gzp) € € for every g € G and every € ONcls(Gxp) (see [26]). It
is easy to see that the latter condition, equivalently, can be replaced
by the weaker condition: z € O N Gz (this explains Lemma 5.8.1 be-
low). It follows by Lemma 5.2 that X is LE iff every point-transitive
closed G-subspace of X is AE.

LEMMA 5.8. 1. xg € X is a point of equicontinuity of cls(Gxo) iff Gxg
is light in X.

2. X is LE iff X 1is orbitwise light.

3. A pointed system (X, x¢) is AE iff the orbit Gxq is light in X.

4. Let f € RUC(X). A subset K C Xy = cls(fy(X)) is light iff the
pointwise and norm topologies coincide on K C RUC(G).

Proof. 1. Straightforward.

2. Follows directly from assertion 1.

3. X is point-transitive and AE. Therefore the nonempty set Eq(X) co-
incides with the set of transitive points (Lemma 5.2). In particular, zy €
Eq(X). Thus, Gxy is light in X = cls(Gzg) by assertion 1.

Conversely, let Gxg be a light subset and xg be a transitive point. Then
again by the first assertion z¢ € Eq(X). Hence Eq(X) (containing Gxp) is
dense in X.

4. For the last assertion see Remark 5.3.1. m

Given a G-space X the collection AP(X) of functions in RUC(X) coming
from equicontinuous systems is the G-invariant uniformly closed algebra of
almost periodic functions, where a function f € C(X) is almost periodic iff
the set of translates {Ly(f) : g € G}, where Ly(f)(x) = f(gx), forms a
precompact subset of the Banach space C'(X). This happens iff X is norm
compact iff (G, X¢) is an AP system.

A function f € C(X) is called weakly almost periodic (WAP for short, no-
tation: f € WAP(X)) if the set of translates {L,(f) : g € G} forms a weakly
precompact subset of C'(X). We say that a dynamical system (G,X) is
weakly almost periodic if C(X) = WAP(X). The classical theory shows that
WAP(G) is a left and right G-invariant, uniformly closed, point-universal
algebra containing AP(G) and that every minimal function in WAP(G) is in
AP(G). In fact f € WAP(X) iff X is weakly compact iff (G, X ) is a WAP
system.

The following characterization of WAP dynamical systems is due to
Ellis [18] (see also Ellis and Nerurkar [20]) and is based on a result of
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Grothendieck [28] (namely: pointwise compact bounded subsets in C(X)
are weakly compact for every compact X).

THEOREM 5.9. Let (G, X) be a dynamical system. The following condi-
tions are equivalent:

1. (G, X) is WAP.

2. The enveloping semigroup E(X) consists of continuous maps.

REMARK 5.10. When (G, X) is WAP the enveloping semigroup E(X)
is a semitopological semigroup; i.e. for each p € F both g, : ¢ — ¢p and
Ap 1 ¢ — pq are continuous maps. The converse holds if in addition we assume
that (G, X) is point-transitive. As one can verify, the enveloping semigroup
of the dynamical system described in Example 10.7 below is isomorphic to
the Bohr compactification of the integers (use Proposition 2.1). In particular
it is a topological group; however, the original system is not even AE and
therefore not WAP as we will shortly see.

The next characterization, of AE metric systems, is due to Akin, Aus-
lander and Berg [2].

THEOREM 5.11. Let (G, X) be a compact metrizable system. The follow-
ing conditions are equivalent:

1. (G, X) is almost equicontinuous.
2. There exists a dense Gs subset Xg C X such that every member of
the enveloping semigroup E is continuous on Xjy.

Combining these results Akin, Auslander and Berg [2] deduce that every
compact metric WAP system is AE. Since every subsystem of a WAP system
is WAP it follows from Theorems 5.9 and 5.11 that every metrizable WAP
system is both AE and LE. This result is retrieved, and generalized, in [45]
for all compact RN,p, G-systems using linear representation methods.

Note that a point-transitive LE system is of course AE but there are
nontransitive LE systems which are not AE (e.g., see Remark 10.9.1 below).
It was shown in [26] that the LE property is preserved under products,
under passage to a subsystem and under factors X — Y provided that X is
metrizable (for arbitrary systems X see Proposition 5.14 below).

Let LE(X) be the set of functions on a G-space X coming from LE
dynamical systems. It then follows from Proposition 2.9 that LE(G) is a
uniformly closed point-universal left and right G-invariant subalgebra of
RUC(G) and that LE(X), for compact X, is the G-subalgebra of C'(X) that
corresponds to the unique maximal LE factor of (G, X). The results and
methods of [26] show that WAP(X) C LE(X) and that a minimal function
in LE(X) is almost periodic (see also Corollary 5.15.2 below).
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REMARK 5.12. In contrast to the well behaved classes of WAP and LE
systems, it is well known that the class of AE systems is closed neither under
passage to subsystems nor under taking factors; see [25, 1] and Remark 10.9.1
below.

By Proposition 2.9 we see that for every G-space X the classes AP(X),
WAP(X), LE(X) form G-invariant Banach subalgebras of RUC(X). Re-
call that for a topological group GG we denote the greatest ambit of G by
GRUC(G) = GR = |[RUC(G)|. Tt is well known that the maximal compact-
ification ug : G — G® is a right topological semigroup compactification
of G. We adopt the following notation. For a G-invariant closed subalgebra
A of RUC(G) let G4 denote the corresponding factor GR — G4, and for a
G-space X and a closed G-subalgebra A C RUC(X), let X = | A| denote
the corresponding factor fgX — X4

In the next proposition we sum up some old and new observations con-

cerning some subalgebras of RUC(X) and RUC(G).

PROPOSITION 5.13. Let G be a topological group.
1. For every G-space X we have the inclusions
RUC(X) D LE(X) D Asp(X) D WAP(X) D AP(X),
and the corresponding G-factors
BuX — XUE _, xAw _, xWAP | x AP

2. For every topological group G we have the inclusions

RUC(G) 2 UC(G) D LE(G) D Asp(G) D WAP(G) D AP(G),

and the corresponding G-factors

GR _ GUC N GLE _ GAsp N GWAP _ GAP.

3. The compactifications GAY and GWAY of G are respectively a topo-
logical group and a semitopological semigroup; G® and G*P are right
topological semigroup compactifications of G.

Proof. For the properties of Asp(X) we refer to Section 7, Theorem 7.6.6
and Lemma 9.8.2.

In order to show that UC(G) D LE(G) we only have to check that
LUC(G) D LE(G). Let f € LE(G). By the definition f comes from a
point-transitive LE system (X, xg). Therefore for some continuous function
F: X — R we have f(g) = F(gxo). Let p be the natural uniform structure
on X. For a given € > 0 choose an entourage 6 € p such that |F(z)—F(y)| <
e for every (z,y) € 4. Since ¢ is a point of equicontinuity we can choose
a neighborhood O of z( such that (gx,gzg) € § for every (g,z) € G x O.
Now pick a neighborhood U of e € G such that Uzqg C O. Then clearly
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|F'(guzxg) — F(gxo)| < € for every (g,u) € G x U; equivalently, |f(gu) — f(g)|
< e. This means that f € LUC(G). n

Now we show the hereditariness of LE under factors.

PrOPOSITION 5.14. Let X be a compact LE G-system. If m: X — Y is
a G-homomorphism then (G,Y) is LE.

Proof. We have to show that each point yg in the space Y is an equiconti-
nuity point of the subsystem Og(yo). Fix yo € Y and assume, with no loss in
generality, that Og(yo) = Y. Furthermore, since by Zorn’s Lemma there is a
subsystem of X which is minimal with the property that it projects onto Y,
we may and do assume that X itself is minimal with respect to this property.
Denoting by Yy the subset of transitive points in Y it then follows that the
set Xo = 7~ 1(Y)) coincides with the set of transitive points in X. Let € be an
element of the uniform structure of Y (i.e. a neighborhood of the identity in
Y xY). Then the preimage ¢ := 7~ !(¢) is an element of the uniform structure
of X. Let ¢ be a preimage of yg. Then ¢ € Eq(X) since g is transitive and X
is LE (see Lemma 5.2). Thus there exists an open neighborhood Uy of ¢ such
that (gx,gq) € 6 for all g € G and x € U,. Let V be the union of all such
U,’s for ¢ running over the preimages of yg. Then V' is an open neighborhood
of 7 1(yo). Set W to be Y \ (X \ V). Then W is an open neighborhood
of yo and W C m(V). For any y € W we can find some preimage ¢ of yp
and some point = € U, such that 7(z) = y. Then (gz, gq) € d for all g € G,
which means that (gy, gyo) € € for all g € G. Therefore yp € Eq(Y). =

COROLLARY 5.15. Let G be a topological group, X a G-space and f €
RUC(X). Then

1. fe LE(X) & Xy is LE.

2. If f € LE(X) is a minimal function then f € AP(X).

Proof. 1. Use Propositions 5.14 and 2.9.3.

2. Observe that every minimal LE system is AP.

Our next result is an intrinsic characterization of the LE property of a
function.

First recall that for the left regular action of G on X := G, the space
Xy can be defined as the pointwise closure of the orbit G f (Remark 2.3.1)
in RUC(G).

DEFINITION 5.16. We say that a function f € RUC(G) is

1. light (notation: f € light(G)) if the pointwise and norm topologies co-
incide on the orbit Gf = {Ry(f)}gec = {fy}gec C Xy (with X := G)
as a subset of RUC(G);

2. hereditarily light (notation: f € hlight(G)) if the pointwise and norm
topologies coincide on the orbit Gh for every h € X;.
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By Lemma 5.8.4 and Definition 5.7.1, f € light(G) (resp. f € hlight(G))
iff Gf is a light subset of the G-system X (resp. iff X is orbitwise light).

PROPOSITION 5.17. For every topological group G and f € RUC(G) we
have:

1. UC(G) D light(G).
2. f € light(G) & X is AE.
3. f € hlight(G) & X is LE.

Proof. 1. f € light(G) means that the pointwise and norm topologies
coincide on Gf. It follows that the orbit map G — RUC(G), g — fg, is
norm continuous. This means that f is also left uniformly continuous.

2. Since f is a transitive point of Xy = cls(G f) we can use Lemma 5.8.3.

3. Use Lemma 5.8.2. u

THEOREM 5.18. LE(G) = hlight(G) for every topological group G.
Proof. Follows from Proposition 5.17.3 and Corollary 5.15.1. =

REMARK 5.19. 1. By [45, Theorem 8.5, for every topological group G
and every f € WAP(G) the pointwise and norm topologies coincide

on fG ={Ly(f)}gec = {4f}gec- Using the involution

UC(G) = UC(Q), [ " (f*(9):=Fflg™")
(observe that Gf* = (fG)*) we get the coincidence of the above-
mentioned topologies also on G f*. Since (WAP(G))* = WAP(G) we
can conclude that WAP(G) C light(G) for every topological group G.
Theorem 5.18 provides a stronger inclusion LE(G) C light(G) (since
WAP(G) C LE(G) by Proposition 5.13.2).

2. In view of Proposition 5.17.2 a minimal function is light iff it is AP.
Thus, for example, the function f(n) = cos(n?) on the integers, which
comes from a minimal distal but not equicontinuous Z-system on the
2-torus, is not light.

6. Fragmented maps and families. The following definition is a
generalized version of fragmentability (implicitly it appears in a paper of
Namioka and Phelps [49]) in the sense of Jayne and Rogers [33].

DEFINITION 6.1 ([42]). Let (X,7) be a topological space and (Y, pu) a
uniform space.

1. We say that X is (7, u)-fragmented by a (not necessarily continuous)
function f: X — Y if for every non-empty subset A of X and every
€ € u there exists an open subset O of X such that ON A is non-empty
and the set f(ONA) is e-small in Y. We also say in that case that the
function f is fragmented. Note that it is enough to check the condition
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above only for closed subsets A C X and for ¢ € y from a subbase ~y
of u (that is, the finite intersections of elements of v form a base of
the uniform structure p).

. If the condition holds only for every non-empty open subset A of X

then we say that f is locally fragmented.

. When the inclusion map 7 : X C Y is (locally) fragmented we say that

X is (locally) (T, p)-fragmented, or more simply, (locally) p-fragmented.

REMARK 6.2. 1. Note that in Definition 6.1.1 when Y = X, f = idx

and g is a metric uniform structure, we get the usual definition of
fragmentability [33|. For the case of functions see also [32].

. Namioka’s joint continuity theorem [47] (see also Theorem 14.1 below)

implies that every weakly compact subset K of a Banach space is
(weak, norm)-fragmented (that is, idg : (K, weak) — (K,norm) is
fragmented).

. Recall that a Banach space V' is an Asplund space if the dual of every

separable Banach subspace is separable, iff every bounded subset A
of the dual V* is (weak®, norm)-fragmented, iff V* has the Radon—
Nikodym property. Reflexive spaces and spaces of the type co(I") are
Asplund. For more details cf. [13, 22, 48].

. A topological space (X, 7) is scattered (i.e., every non-empty subspace

has an isolated point) iff X is (7, p)-fragmented, where o(x,y) = 1 iff
x #y.

Following [46] we say that f : X — Y is barely continuous if for every
non-empty closed subset A C X, the restricted map f[4 has at least one
point of continuity.

LEMMA 6.3. 1. If f is (1, p)-continuous then X is (T, pu)-fragmented by f.

2.

Suppose that there exists a dense subset of (T, p)-continuity points
of f. Then X is locally (7, p)-fragmented by f.

. X is (1, p)-fragmented by f iff X is hereditarily locally fragmented

by f (that is, for every closed subset A C X the restricted function
fla is (relatively) locally (T, 1)-fragmented).
Every barely continuous f is fragmented.

. Fragmentability is preserved under products. More precisely, if f; :

(X5, 1) — (Y, i) is fragmented for every i € I then the product map
el i€l el

is (7, p)-fragmented with respect to the product topology T and the

product uniform structure p.

. Let a: X =Y be a continuous map. If f:Y — (Z, ) is a fragmented

map then the composition foa: X — (Z,u) is also fragmented.
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Proof. Assertions 1, 2 and 6 are straightforward.

For 3 and 4 use the fact that it is enough to check the fragmentability
condition only for closed subsets A C X.

The verification of 5 is straightforward if we take into account that it is
enough to check the fragmentability (see Definition 6.1.1) for € € -, where
v is a subbase of y. »

Fragmentability has good stability properties, being closed under passage
to subspaces (trivial), products (Lemma 6.3.5) and quotients. Here we in-
clude the details for quotients. The following lemma is a generalized version
of [42, Lemma 4.8], which in turn was inspired by Lemma 2.1 of Namioka’s
paper [48].

LEMMA 6.4. Let (X1,71) and (X2,72) be compact (Hausdorff) spaces,
and let (Y1,p1) and (Yo, p2) be uniform spaces. Suppose that F : X1 — Xo
is a continuous surjection, f : (Y1,u1) — (Yo, u2) is uniformly continuous,
and ¢1 : X1 — Y1 and ¢ : Xo — Yo are maps such that the diagram

¢
(X1,71) —— (Y1, 1)

Fl N lf
(X2, m2) — (Y2, p2)

commutes. If X1 is fragmented by ¢1 then Xs is fragmented by ¢s.

Proof. We modify the proof of [42, Lemma 4.8|. In the definition of frag-
mentability it suffices to check the condition for closed subsets. So, let € € uo
and let A be a non-empty closed, and hence compact, subset of X5. Choose
0 € py such that (f x f)(d) C e. By Zorn’s Lemma, there exists a mini-
mal compact subset M of X; such that F'(M) = A. Since X; is fragmented
by ¢1, there exists V € 7 such that VN M # 0 and ¢1(V N M) is d-small.
Then the set f¢1(V N M) is e-small. Consider the set W := A\ F(M \ V).
Then

(a) ¢2(W) is e-small, being a subset of fo1 (VN M) = ¢ F(V N M);
(b) W is relatively open in A;
(¢) W is non-empty (otherwise, M \ V is a proper compact subset of M
such that F(M\V)=A). »
The next lemma provides a key to understanding the connection between
fragmentability and separability properties.

LEMMA 6.5. Let (X, T) be a separable metrizable space and (Y, 9) a pseu-
dometric space. Suppose that X is (7,0)-fragmented by a surjective map

f:X =Y. ThenY is separable.

Proof. Assume (to the contrary) that the pseudometric space (Y, ) is
not separable. Then there exist an € > 0 and an uncountable subset H
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of Y such that g(hi,he) > € for all distinct hy,hy € H. Choose a subset
A of X such that f(A) = H and f is bijective on A. Since X is second
countable, the uncountable subspace A of X (in its relative topology) is
a disjoint union of a countable set and a non-empty closed perfect set M
comprising the condensation points of A (this follows from the proof of the
Cantor-Bendixson theorem; see e.g. [35]). By fragmentability there exists
an open subset O of X such that O N M is non-empty and f(O N M) is
g-small. By the property of H the intersection O N M must be a singleton,
contradicting the fact that no point of M is isolated. m

PRrROPOSITION 6.6. If X is locally fragmented by f : X — Y, where
(X, 1) is a Baire space and (Y, p) is a pseudometric space, then f is contin-
uwous at the points of a dense Gy subset of X.

Proof. For a fixed € > 0 consider
O. := {union of all 7-open subsets O of X with diam, f(O) < ¢}.

The local fragmentability implies that O is dense in X. Clearly, ({0, :
n € N} is the required dense G5 subset of X. =

A topological space X is hereditarily Baire if every closed subspace of
X is a Baire space. Recall that for metrizable spaces X and Y a function
f: X — Y is of Baire class 1if f~'(U) C X is an F, subset for every
open U C Y. If X is separable then a real-valued function f : X — R is of
Baire class 1 iff f is the pointwise limit of a sequence of continuous functions
(see e.g. [35]).

PROPOSITION 6.7. Let (X, 7T) be a hereditarily Baire (e.g., Polish or com-
pact) space, and (Y, ) a pseudometric space. Consider the following asser-
tions:

(a) X s (7,0)-fragmented by f: X —Y;

(b) f is barely continuous;

(¢) f is of Baire class 1.

Then:

1. (a)e(b).
2. If X is Polish andY is a separable metric space then (a)<(b)<(c).

Proof. For (a)<(b) combine Lemma 6.3 and Proposition 6.6.
The equivalence (b)<>(c) for Polish X and separable Y is well known (see
[35, Theorem 24.15]) and actually goes back to Baire. m

The following new definition will play a crucial role in Section 14.

DEFINITION 6.8. 1. We say that a family of functions F = {f : (X, 7)
— (Y, )} is fragmented if the condition of Definition 6.1.1 holds si-
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multaneously for all f € F. That is, f(O N A) is e-small for every
f € F. It is equivalent to say that the mapping

T X = Y5 m@)(f) = f(a),

is (1, pu)-fragmented, where gy is the uniform structure of uniform
convergence on the set Y7 of all mappings from F into (Y, p).

2. Analogously one can define the notions of a locally fragmented family
and a barely continuous family. The latter means that every closed
non-empty subset A C X contains a point a € A such that F4 =
{fla: f € F} is equicontinuous at a. If y is pseudometrizable then
so is py. Therefore if in addition (X,7) is hereditarily Baire then
it follows by Proposition 6.7.1 that F is fragmented iff F is barely
continuous.

Fragmented families, like equicontinuous families, are stable under point-
wise closures as the following lemma shows.

LEMMA 6.9. Let F = {f : (X,7) — (Y,u)} be a fragmented family
of functions. Then the pointwise closure F of F in YX is also a (7, u)-
fragmented family.

Proof. Use a straightforward “3e-trick” argument. m

7. Asplund functions and RN systems. Let H be a subgroup of G.
Recall that we denote by p the uniform structure on the uniform G-space
(X, p) inherited by the inclusion 74 : X — C(H,X). Precisely, py is gener-
ated by the basis {[¢]y : € € u}, where

lelg :=A{(z,y) € X x X : (hxz,hy) € € for all h € H}.

For every f € C(X) and H < G denote by pp ¢ the pseudometric on X
defined by

omf(v,y) = sup |f(hx) — f(hy)|.

Then pieigrry = i and oagm),f = 0H,f-

DEFINITION 7.1. 1. A continuous function f : X — R on the compact
G-space X is an Asplund function [45] if for every countable sub-
group H C G the pseudometric space (X, op ) is separable. It is an
s-Asplund function (notation: f € Asp (X)) when (X, oG ¢) is sepa-
rable. A pseudometric d on a set X is called Asplund (respectively,
s-Asplund) if for every countable subgroup H < G (respectively, for
H = @) the pseudometric space (X, d) is separable, where

dH(-T, y) = sup d(th, hy)
heH
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2. More generally, we say that a function f € RUC(X) on a (not nec-
essarily compact) G-space X is an Asplund function (notation: f €
Asp(X)) if f comes (in the sense of Definition 1.1) from an Asplund
function F' on a G-system Y and a G-compactification v : X — Y. By
Remark 7.2.2 below, equivalently, one can take each of the following
G-compactifications (see Remark 2.3.3): f; : X — Xy (minimal pos-
sible) or ig : X — (X (maximal). Analogously we define the class
Aspy(X) of s-Asplund functions on a G-space X.

3. In particular, a function f € RUC(G) is an Asplund function
(s-Asplund function) if it is Asplund (s-Asplund) for the G-space
X := G with respect to the regular left action. Notation: f € Asp(G)
(resp. f € Asps(G)).

REMARK 7.2. 1. Note that in the definition of Asplund functions F' :
X — R, equivalently, H can run over all uniformly Lindel6f subgroups
of GG. Indeed, as in the proof of Proposition 4.2, the orbit FFH =
{nF }heq is norm separable. Let K < G be a countable subgroup of
H such that F'K is dense in F'H. Then oy r = 0Kk F.

2. Let ¢ : Y7 — Y5 be a G-homomorphism of compact G-spaces. It
is straightforward to show that a continuous bounded function F :
Y5 — R is Asplund (resp. s-Asplund) iff the function f = Foq:Y; —
R is Asplund (resp. s-Asplund).

3. Of course every s-Asplund function is Asplund. If G, or the natural
restriction é, is uniformly Lindel6f (e.g. G is second countable if X is
compact and metrizable) then clearly the converse is also true. Thus
in this case Asp(X) = Asp(X).

4. Let (G, X) be a dynamical system and d a pseudometric on X. Sup-
pose F' : X — R is d-uniformly continuous. If d is Asplund or s-
Asplund then so is F.

Let X be a G-space. By Proposition 2.2.1, X¢ := cls(f;(X)) is a subset
of RUC(G) for every f € RUC(X). Let rg : Xy — RUC(G) be the inclusion
map. For every subgroup H < G we can define the natural restriction oper-
ator g : RUC(G) — RUC(H). Denote by rg := qu org : Xy — RUC(H)
the composition and let {5 s be the corresponding pseudometric induced on
X¢ by the norm of RUC(H). Precisely,

€m,p(w,w') = sup [w(h) — w'(R)].
heH

Finally, define the composition fﬁH :=rgo fy: X — RUC(H). The corre-
sponding pseudometric induced by fﬁH on X is just op f.
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LEMMA 7.3. Let X be a G-space and f € RUC(X). Let F. : Xy — R
be the map F.(w) = w(e) (defined before Proposition 2.2). The following are
equivalent:

1. f e Asp(X).

2. F, € ASp(Xf).

3. (X7,€m,f) is separable for every countable (uniformly Lindeldf) sub-
group H < G.

4. r(Xy) is norm separable in RUC(H) for every countable (uniformly
Lindelof ) subgroup H < G.

Proof. 1< 2 follows by Definition 7.1.2, Remark 7.2.2 and Proposi-
tion 2.2.3.

3 & 4 is clear by the definitions of {y y and 7.

23 F. € Asp(Xy) means, by Definition 7.1.1, that for every
countable (uniformly Lindel6f) subgroup H < G the pseudometric space
(X¢, 0m,F,) is separable, where

onF,(w,w') = sup |F.(hw) — Fe(hw')].
heH
Recall that by the definition of F. : Xy — R we have F,(hw) = (hw)(e)
= w(h). Hence

€5 (@, ) = sup [w(h) — o' (h)| = sup | F.(hw) — F.(ho')| = 0,5, (0, ).
heH heH

Therefore the pseudometrics {z s and gp r, coincide on Xy. This clearly
completes the proof. m

COROLLARY 7.4. Let X be a G-space and f € RUC(X). The following
are equivalent:

1. f € Aspy(X).
2. F. € Asp,(Xy).
3. Xy is norm separable in RUC(G).

Proof. The proof of Lemma 7.3 shows that in fact {5 ; and op F, coincide
on X; for every H < G. Consider the particular case of H := G taking into
account that rq(Xy) = Xy. =

The following definition of RN dynamical systems (a natural general-
ization of RN compacta in the sense of Namioka [48]) and Eberlein sys-
tems (a natural generalization of Eberlein compacta in the sense of Amir-
Lindenstrauss |4]) were introduced in [45]. For the definition and properties
of Asplund spaces see Remark 6.2.3 and [13, 48, 22].

DEFINITION 7.5. Let (G, X) be a compact dynamical system.

1. A continuous (proper) representation of (G,X) on a Banach space
V is a pair (h,«a), where h : G — Iso(V) is a strongly continuous

3

co-homomorphism of topological groups and « : X — V* is a weak™*-
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continuous bounded G-mapping (resp. embedding) (with respect to
the dual action G x V* — V*, (gp)(v) := ¢(h(g)(v))).

. (G, X) is a Radon-Nikodym system (RN for short) if there exists a

proper representation of (G, X) on an Asplund Banach space V. If we
can choose V' to be reflexive, then (G, X) is called an Eberlein system.
The classes of Radon—Nikodym and Eberlein compact systems will be
denoted by RN and Eb respectively.

. (G, X) is called an RN-approzimable system (RNypp) if it can be rep-

resented as a subdirect product (or equivalently, as an inverse limit)
of RN systems.

Note that compact spaces which are not RN are necessarily non-metriz-
able, while there are many natural metric compact G-systems which are
not RN.

The next theorem collects some useful properties which were obtained
recently in [45].

THEOREM 7.6. Let (G, X) be a compact G-system.

1.

2.

X is WAP iff X is a subdirect product of Eberlein G-systems. A metric
system X is WAP iff X is Eberlein.

The system (G,X) is RN iff there exists a representation (h,«) of
(G,X) on a Banach space V such that: h : G — Iso(V) is a co-
homomorphism (no continuity assumptions on h), a : X — V* is a
bounded weak* G-embedding and a(X) is (weak™, norm)-fragmented.

. f X — R is an Asplund function iff f arises from an Asplund

representation (that is, there exists a continuous representation (h, )
of (G,X) on an Asplund space V, such that f(x) = a(z)(v) for some
v € V), or equivalently, iff f comes from an RN (or RN,pp) G-factor
Y of X.

The system (G, X) is RNupp iff Asp(X) = C(X).

. RN is closed under countable products and RNy, is closed under

quotients. For metric compact systems RN,p, = RN holds.

. Asp(X) is a closed G-invariant subalgebra of C(X) containing

WAP(X). The canonical compactification up : G — GP is the uni-
versal RNapp compactification of G. Moreover, ua is a right topolog-
ical semigroup compactification of G.

(G,X) is RN iff (G,(C(X)7, weak™)) is RN iff (G,P(X)) is RN,
where P(X) denotes the space of all probability measures on X (with
the induced action of G).

The proofs of assertions 1, 2 and 3 use several ideas from Banach space
theory; mainly the notion of Asplund sets and Stegall’s generalization of a
factorization construction by Davis, Figiel, Johnson and Pelczyniski [14, 13,
48, 52, 22|.
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PROPOSITION 7.7. Let G be an arbitrary topological group. Then (GASp,
ua(e)) is point-universal (hence Xy C Asp(G) for every f € Asp(G)).

Proof. P := Asp(G) is an algebra of functions coming from RN,y sys-
tems. Since the class RNy, is preserved by products and subsystems we can
apply Proposition 2.9.2. =

Let (X, 7) be a topological space. As usual, a metric g on the set X is
said to be lower semicontinuous if the set {(x,y) : o(z,y) < t} is closed in
X x X for each t > 0. A typical example is any subset X C V* of a dual
Banach space equipped with the weak™ topology and the norm metric. It
turns out that every lower semicontinuous metric on a compact Hausdorff
space X arises in this way (Lemma 7.8.1). This important result has been
established in [31] using ideas of Ghoussoub and Maurey.

LEMMA 7.8. 1 ([31]). Let (X,7) be a compact space and let o <1 be a
lower semicontinuous metric on (X, 7). Then there is a dual Banach
space V* and a homeomorphic embedding o : (X, 7) — (V{*, weak")
such that

o) — aly)l| = o(=,y)
for all z,y € X.

2. If in addition X is a G-space and ¢ is G-invariant, then assertion 1
admits a G-generalization. More precisely, there is a linear isometric
(not necessarily jointly continuous) right action V. x G — V such that
a: X — V" is a G-map.

Proof. 2. As in the proof of [31, Theorem 2.1] the required Banach space
V is defined as the space of all continuous real-valued functions f on (X, 7)
which satisfy a uniform Lipschitz condition of order 1 with respect to p,
endowed with the norm

p(f) = max{]| f|uip, 111},

where || f|| = sup{|f(z)| : « € X} and the seminorm |||, is defined
to be the least constant K such that |f(z1) — f(x2)| < Ko(x1,x2) for all
x1,w2 € X. Then o : (X, 7) — (V{*, weak™) is defined by a(x)(f) = f(x).

Define now the natural right action 7 : V.xG — V by n(f,9) = fg = 4f,
where ,f(z) := f(gz). Then clearly p(fg) = p(f) and o : X — V" is a
G-map. =

THEOREM 7.9. Let (G, X) be a compact dynamical system. The following
conditions are equivalent:

1. (G,X) is RN.
2. X is fragmented with respect to some bounded lower semicontinuous
G-invariant metric 9.
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Proof. 1 = 2: Our G-system X, being RN, is a G-subsystem of the ball
V¥ = (Vy*, weak™) for some Asplund space V. By a well known charac-
terization of Asplund spaces, V;* is (weak™, norm)-fragmented. Hence, X is
also fragmented by the lower semicontinuous G-invariant metric o(z1, z2) =
||lx1 — 22| on X, inherited from the norm of V*.

2= 1: We can suppose that o < 1. Using Lemma 7.8.1 we can
find a Banach space V and a weak® embedding « : (X,7) — V" such
that a is (o, norm)-isometric. Since X is (7, p)-fragmented, a(X) C Vj* is
(weak™, norm)-fragmented. Moreover, by Lemma 7.8.2, there exists a co-
homomorphism (without continuity assumptions) h : G — Iso(V') (the right
action V' x G — V leads to the co-homomorphism h) such that the map
o X — V|* is G-equivariant with respect to the dual action of G on V*
defined by (g¢)(v) := ¢(h(g)(v)). Therefore we get a representation (h, )
of (G, X) on V such that a(X) C Vi* is (weak™, norm)-fragmented. By The-
orem 7.6.2 we deduce that the G-system (X, 7) is RN. m

8. Veech functions. The algebra K(G) was defined by Veech in [58],
for a discrete group G, as the algebra of functions f € ¢°°(G) such that for
every countable subgroup H < G the collection Xsy, = Opg(no) C 2y =
[—1I£1l, [ £111*, with 59 = f &, considered as a subspace of the Banach space
(>*(H), is norm separable. Replacing ¢>°(G) and ¢*°(H) by RUC(G) and
RUC(H), respectively, we define, for any topological group G, the algebra
K(G) c RUC(G) as follows.

DEFINITION 8.1. Let G be a topological group. We say that a function
f € RUC(G) is a Veech function if for every countable (equivalently: separa-
ble) subgroup H < G the corresponding H-dynamical system (H, X¢,,,70),
when considered as a subspace of the Banach space RUC(H) (see Proposi-
tion 2.4.4), is norm separable (that is, rg(Xy;,) C RUC(H) is separable;
see the definitions before Lemma 7.3). We denote by K (G) the collection of
Veech functions in RUC(G).

THEOREM 8.2. For any topological group G we have:

1. K(G) is a closed left G-invariant subalgebra of RUC(G).

2. The algebra K(G) is point-universal.

3. Asp(G) C K(G).

4. K(G) = Asp(G) = Asp,(G) for every separable G.

Proof. 1. For every f € K(G) let (G, Xy, f) be the corresponding pointed
dynamical system as constructed in Proposition 2.4. If f;, ¢ = 1,2, are
in K(G) and H < G is a countable subgroup then the subsets Xy,
i = 1,2, are norm separable in RUC(H) and therefore so is X = {w+ 7 :
w € Xpi1ys M E Xy} Since X(p,4 )1, C X it follows that f1+fa € K(G).
Likewise f1 - fo € K(G), and we conclude that K(G) is a subalgebra. Uni-
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formly convergent countable sums are treated similarly and it follows that
K(G) is uniformly closed. The left G-invariance is clear.

2. Given f € K(G) one shows, as in [58, Lemma 3.4|, that every element
w € Xy is also in K(G). Now use Proposition 2.8.

3. By Lemma 7.3, a function f € RUC(G) is Asplund iff ry(Xy) is
norm separable in RUC(H) for every countable subgroup H < G. Con-
sider cls(H f), the H-orbit closure in X; (for f € X; = cls(Gf)). Then
rr(cls(H f)) is also separable in RUC(H). On the other hand, it is easy to
see that the set rp(Xy;,) coincides with rg(cls(H f)). Hence, rg(Xyy,,) is
also separable in RUC(H). This exactly means that f € K(G).

4: Let f € K(G). Then the collection Xy, is norm separable for every
separable subgroup H < G. In particular, X (for H := G) is norm separable.
Now by Corollary 7.4 we can conclude that f € Asp,(G). m

9. Hereditary AE and NS systems. We begin with a generalized
version of sensitivity. The functional version (Definition 9.1.3) will be con-
venient in the proof of Theorem 14.2.

DEFINITION 9.1. 1. The uniform G-space (X,u) has sensitive depen-
dence on initial conditions (or simply, is sensitive) if there exists an
€ € p such that for every x € X and any neighborhood U of = there
exists y € U and g € G such that (gz,gy) ¢ e (for metric cascades
see for example [9, 16, 25]). Thus a (metric) G-space (X, p) is non-
sensitive, NS for short, if for every (¢ > 0) € € p there exists an open
non-empty subset O of X such that gO is e-small in (X, u) for all
g € G, or equivalently, O is [¢]g-small in (X, ug) (respectively: whose
dg-diameter is less than e, where d is the metric on X and as usual
dG(ﬂf, CC/) = SUPgeq d(gSC, gl‘,))

2. We say that (G, X) is hereditarily non-sensitive (HNS for short) if
every non-empty closed G-subspace A of X is not sensitive.

3. More generally, we say that a map f: (X,7) — (Y, n) is not sensitive
if there exists an open non-empty subset O of X such that f(gO)
is e-small in (Y, u) for every g € G. The function f is hereditarily
non-sensitive if for every closed G-subspace A of X the restricted
function f[4: A — (Y, u) is not sensitive. Using these notions we can
define the classes of NS and HNS functions. Observe that (X, u) is NS
iff the map idx : (X, top(p)) — (X, ) is NS.

Let (X, ) be a uniform G-space and € € p. Define Eq, as the union of
all non-empty top(u)-open [¢]g-small subsets in X. More precisely,

Eq, := U{U € top(p) : (9z,gz’) € € for all (x,2',9) € U x U x G}.
Then Eq, is an open G-invariant subset of X and Eq(X) = ({Eq, : € € u}.
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LEMMA 9.2. Let (X, p) be a uniform G-space.

1. X is NS if and only if Eq. # 0 for every ¢ € u. Therefore, if
Eq(X) # 0 then (X, u) is NS.

2. X is locally pg-fragmented iff Eq. is dense in X for every ¢ € p.
Thus, if X s locally pug-fragmented then X is NS.

. If X is NS then Eq(X) D Trans(X).

4. If X is NS and topologically transitive then Eq(X) = Trans(X) and
so X is point-transitive iff Eq(X) # (.

5. If Eq(X) # 0 and X is topologically transitive then Eq(X) =
Trans(X).

Proof. The first two assertions are trivial.

3. If X is NS then Eq, is not empty for every € € p. Any transitive point
is contained in any non-empty invariant open subset of X. In particular,
Trans(X) C Eq.. Hence, Trans(X) C ({Eq, : € € u} = Eq(X).

4. By assertion 3 it now suffices to show that if X is topologically tran-
sitive then Eq(X) C Trans(X). Let zp € Eq(X), y € X and let ¢ € p.
We have to show that the orbit Gxg intersects the e-neighborhood e(y) :=
{r € X : (z,y) € e} of y. Choose 6 € p such that § o § C e. Since
zo € Eq(X) there exists a neighborhood U of xg such that (gxo,gz) €
for every (z,g) € U x G. Since X is topologically transitive we can choose
go € G such that goU N d(y) # 0. This implies that (goz,y) € § for some
x € U. Then (gozo,y) € o d C e.

5. Combine assertions 1 and 4. u

w

COROLLARY 9.3. A weakly mizing NS system is trivial.

Proof. Let (G, X) be a weakly mixing NS system. Let ¢ be a neighbor-
hood of the diagonal and choose a symmetric neighborhood of the diagonal
0 with odod C €. By the NS property and Lemma 9.2.1, Eq; is non-empty.
Thus there exists a non-empty open subset U C X such that W = UgGG gU x
gU C §. By weak mixing the open invariant set W is dense in X x X and
hence X x X C e. Since ¢ is arbitrary we conclude that X is trivial. m

Next we provide some useful results which link our dynamical and topo-
logical definitions (and involve fragmentability and sensitivity).

LEMMA 94. 1. Let f: X — Y be a G-map from a topological G-space
(X, 1) into a uniform G-space (Y, ). Then the following are equiva-
lent:

(a) f:(X,7)— (Y,pn) is HNS.

(b) f:(X,7) — (Y, uc) is fragmented.

(¢) f:(A,71a) — (Y, ug) is locally fragmented for every closed non-
empty G-subset A of X.
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2. (X, p) is HNS off idx : (X, 7) — (X, pg) is fragmented.
3. HAE C HNS.

Proof. 1. (a)=-(b): Suppose that f : (X,7) — (Y,u) is HNS. We have
to show that f is (7, ug)-fragmented. Let A be a non-empty subset of X
and [e]g € pg. Consider the closed G-subspace Z := cls(GA) of X. Then by
our assumption f[z : Z — (Y, ) is NS. Hence there exists a relatively open
non-empty subset W C Z such that (f(gx), f(g9y)) = (9f(x),g9f(y)) € € for
every (g,z,y) € G x W x W. Therefore, f(W) is [e]g-small. Since GA is
dense in Z, the intersection W NG A is non-empty. There exists gg € GG such
that g, 'W N A # (. On the other hand, clearly, f(gy W) is also [¢]g-small.
Thus the same is true for f(gy 'W N A).

(b)=-(c): This is trivial by Definition 6.1.

(c)=(a): Let A be a closed non-empty G-subspace of X and € € u. Take a
non-empty open subset O of the space A (say, O = A). Since f: A — (Y, ug)
is locally fragmented one can choose a non-empty open subset U C O such
that f(U) is [¢]g-small in Y. This means, in particular, that f{4: A — (Y, )
is NS for every closed G-subspace A. Hence, f is HNS.

2. This is a particular case of the first assertion for f = idyx : (X,u) —
(X, ).

3. Let (G, X) be HAE. For every closed non-empty G-subsystem A there
exists a point of equicontinuity of (G, A). By Lemma 9.2.1, (G, A) is NS.
Therefore, (G, X) is HNS. =

PROPOSITION 9.5. Let X be a compact G-system with its unique uniform
structure . Consider the following conditions:

(a) X is AE.

(b) X is locally pg-fragmented.

(¢c) X is NS.

Then we have:

. Always, (a)=(b)=(c).

. f ug is metrizable (e.g., if p is metrizable) then (a)<(b)=(c).
. If X is point-transitive then (a)<(b)<(c).

. If X is topologically transitive then (a)=(b)<(c).

=W N =

Proof. 1. (a)=(b): Let U be a non-empty open subset of X and ¢ € p.
Since X is AE we can choose a point z¢p € Eq(X) N U. Now we can pick
an open neighborhood O C U of x( such that (gz, ga’) € ¢ for every g € G
and z,2’ € O. Therefore, (z,2") € [¢]g. This proves that X is locally pg-
fragmented.

(b)=(c): Trivial by Lemma 9.2.2.
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2. (a)<(b): If pg is metrizable then Proposition 6.6 guarantees that
idx : (X,u) — (X,ug) is continuous at the points of a dense Gg subset
(say, Y) of X. By Lemma 5.4, Y C Eq(X). Hence, Eq(X) is also dense
in X. Therefore, X is AE.

3. (c)=(a): Observe that Trans(X) C Eq(X) by Lemma 9.2.3.

4. (b)<(c): Since X is NS the subset Eq, is non-empty for every ¢ € p
(Lemma 9.2.1). Since the open set Eq, is invariant and X is topologically
transitive we see that Eq, is dense for every ¢ € pu. By Lemma 9.2.2 this
means that X is locally pg-fragmented. »

The equivalence of AE and NS for transitive metric systems is shown
in [25, 1|. The referee proposed the following problem. Does there exist a
topologically transitive NS system which is not point-transitive? That is,
can it happen for a topologically transitive system that every Eq, is dense
but the intersection Eq is empty?

COROLLARY 9.6. For every topological group G and f € RUC(G) the
following are equivalent:

1. f € light(G).

3. Xy is locally norm fragmented (with respect to the norm of RUC(G)).

4. X; is NS.

Proof. Use Propositions 9.5.3 and 5.17.2. It should be noted here that if
p is the natural pointwise uniform structure on X; = cls(Gf) € RUC(G)
then the norm of RUC(G) induces on X the uniform structure pug (Re-
mark 5.3.1). =

LEMMA 9.7. HNS is closed under quotients of compact G-systems.

Proof. Let f : X — Y be a G-quotient. Denote by pux and py the
original uniform structures on X and Y respectively. Assume that X is HNS,
or equivalently (see Lemma 9.4.2), that X is (ux)g-fragmented. Since f :
(X, ux) — (Y, py) is uniformly continuous, it is easy to see that so is the G-
map f: (X, (ux)c) — (Y, (uy)c). We can now apply Lemma 6.4. It follows
that Y is (uy)g-fragmented. Hence, Y is HNS (use again Lemma 9.4.2). »

Note that the class NS is not closed under quotients (see [25]).

LEMMA 9.8. 1. Every RN compact G-system X is HAE. In particular,

such a system is always LE and HNS.
2. Asp(X) C LE(X) for every G-space X.

Proof. 1. By Definition 7.5 there exists a representation (h, «) of (G, X)
on an Asplund space V such that h : G — Iso(V) is a co-homomorphism
and « : (X,7) — (V* weak™) is a bounded weak* G-embedding. Since V' is
Asplund, it follows that a(X) is (weak™, norm)-fragmented. The map idx :
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(X,7) — (X,norm) has a dense subset of points of continuity by Proposi-
tion 6.6. The norm induces on X the metric uniform structure which ma-
jorizes the original uniform structure g on X. On the other hand the norm
is G-invariant. It follows that every point of continuity of idx : (X, u) —
(X,norm) is a point of equicontinuity for the system (G, X). Clearly, the
same is true for every restriction on a closed G-invariant non-empty sub-
set Y of X. Hence X is HAE. Then clearly X is LE (see Definition 5.7.2).
Lemma 9.4.3 implies that X is also HNS.

2. Use the first assertion and Theorem 7.6.3 (taking into account Defini-
tion 7.1.2).

In the following theorem we show that the classes HNS and RN, co-
incide. Loosely speaking, we can rephrase this by saying that a compact
G-system X admits sufficiently many good (namely: Asplund) representa-
tions if and only if X is “non-chaotic”.

THEOREM 9.9. For a compact G-space X (with its unique compatible
uniform structure p) the following are equivalent:

X is RNypp.

X is HNS.

s X — C(G, X) is a fragmented map.

G= {9: X = X}yeq is a fragmented family.

(X, pg) is uniformly Lindelof for every countable (equivalently, uni-
formly Lindelof) subgroup H < G.

O W=

Proof. 1 = 2: The first assertion means that (X, p) is a subdirect prod-
uct of a collection X; of RN G-systems (with the uniform structure p;). By
Lemma 9.8.1 every X; is HNS. Lemma 9.4.2 guarantees that each X is (1;)c-
fragmented. Then X is pug-fragmented. Indeed, this follows by Lemma 5.6
and the fact that fragmentability is closed under passage to products (Lem-
ma 6.3.5) and subspaces. Now, by Lemma 9.4.2, X is HNS.

23 m: X — C(G,X) is fragmented iff X is pug-fragmented. Hence,
we can use Lemma 9.4.2.

3 & 4: See Definition 6.8.1.

2 =5: Let X € HNS and H < G be a uniformly Lindel6f subgroup. We
have to show that (X, py) is uniformly Lindel6f. The system (H, X) (being
m-approximable by Proposition 4.1) is a subdirect product of a family of
compact metric H-systems {X; : ¢ € I}. Uniform product of uniformly
Lindelof spaces is uniformly Lindel6f. Therefore by Lemma 5.6 it suffices to
establish that every (X, (ui)m) is uniformly Lindel6f. Since p; and (u;) g
are metrizable, this is equivalent to showing that (u;)g is separable. Since
(H, X) is HNS, Lemma 9.7 shows that the H-quotient (H, X;) is also HNS.
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Hence, idy, @ (Xi, i) — (Xi, (1i)mr) is fragmented by Lemma 9.4.2. Now,
Lemma 6.5 guarantees that (X;, (u;) ) is separable.

5 = 1: We have to show that X is RN,y,. Equivalently, by Theorem 7.6.4
we need to check that C'(X) = Asp(X). Let F € C(X) and H < G be a
countable subgroup. By our assumption, (X, pfr) is uniformly Lindeldf. Since
F : (X,p) — R is uniformly continuous, so is idx : (X, un) — (X, 0m,F)-
Therefore, (X, op,r) is uniformly Lindelof as well. Since gp r is a pseu-
dometric, we conclude that (X, oy ) is separable. This proves that F €
Asp(X). =

REMARK 9.10. 1. Every precompact uniform space is uniformly Lin-
delof. Note here that (X, pug) is precompact iff (G, X) is equicon-
tinuous (cf. Corollary 5.5). Therefore, RNy, and its equivalent con-
cept HNS, can be viewed as a natural generalization of equicontinu-
ity.

2. Theorem 9.9 implies that RN,p, (or HNS) is “countably determined”.
That is, (G, X) is RNayp iff (H, X) is RN,pp, for every countable sub-
group H < G.

3. Let H < G be a syndetic subgroup (that is, there exists a compact
subset K C G such that G = KH) of a uniformly Lindel6f group G.
Then a system (G, X) is RN,pp, iff (H, X) is RNyp,p. Indeed, K acts
p-uniformly equicontinuously on X. Thus if (X, ) is uniformly Lin-
deldf then so is (X, pr ).

4. RN,pp C LE by Lemma 9.8.1 (or by [45, Theorem 6.10]).

We now have the following diagram for compact G-systems:

Eb —> RN —> HAE —— HNS = RN,,, — LE

/

WAP

REMARK 9.11. 1. We do not know (even for cascades) if HAE # HNS for
non-metrizable systems. All other implications, in general, are proper:

2. RN # HAE, Eb # WAP. Indeed, take a system (G, X) with trivial G
and a compact X which is not RN in the sense of Namioka, and hence
not Eberlein, as a compact space (e.g. X := ON). Such a G-system,
however, is trivially WAP and also HAE.

3. Eb # RN. Take a trivial action on a compact RN space which is not
Eberlein.

4. RN,pp # LE even for transitive metric systems (cf. Remark 10.9.1 and
Theorem 11.1).

5. WAP # HNS. See again Theorem 11.1.
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THEOREM 9.12. For a compact G-system X the following are equivalent:

. f € Asp(X).

. fﬁG : X — RUC(G) is fragmented.

. fy 1 X — Xy is HNS.

. f: X — R is HNS.

L GF = {gr 0 X — Rlgeq (where gp(z) = f(gx)) is a fragmented
family.

6. Xy C RUC(G) is norm fragmented.

7. The G-system Xy is RN.

U = W N

Proof. 1 = 2: By Theorem 7.6.3 there exist a G-quotient o : (X, ux) —
(Y,py) with Y € RN and F' € C(Y) such that f = F' o . Then f; =
F; o a. Therefore, by Lemma 6.3.6, it is enough to show that Fy : ¥ —
RUC(Q) is fragmented, or equivalently, that Y is pg p-fragmented (see re-
marks before Lemma 7.3). By our assumption (Y, py) is RN. Therefore, The-
orem 9.9 guarantees that Y is (uy)g-fragmented. Since idy : (Y, (uy)g) —
(Y, 0c,r) is uniformly continuous, it follows that Y is pg p-fragmented, as
required.

2 & 3: Use Lemma 9.4.1 taking into account Remark 5.3.1.

3 4: Let fy : X — Xy be HNS. Then f;J4 : A — Xy is NS for every
non-empty invariant closed subset of A C X. Therefore by Definition 9.1
(observe that the uniform structure of X; C R is the pointwise uniform
structure inherited from R%) for every ¢ > 0 and every finite subset S C G
there exists a relatively open non-empty subset O C A such that

| fi(gz)(s) — fy(g2')(s)| <e forall (s,g) €S x G and all (z,2') € O x O.

Now since |fy(gz)(s) — fy(ga2)(s)| = |f(sgx) — f(sga')| and g runs over all
elements of GG our condition is equivalent to the inequality

|f(gz) — f(ga)| <e forall g€ G.

The latter means that f(gO) is e-small for every g € G. Equivalently, f :
X — R is HNS.

2 < 5: See Definition 6.8.1.

2=06: Let f; : X — X be the canonical G-quotient. Then by Lem-
ma 6.4 (with Y7 = Y2 = RUC(G)) the fragmentability of fﬁG : X — RUC(G)
guarantees the fragmentability of r¢ : Xy — RUC(G). This means that X
is norm fragmented.

6 = 7: The norm on RUC(G) is lower semicontinuous with respect to
the pointwise topology. Hence, Theorem 7.9 ensures that the G-system Xy
is RN.
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7 =-1: Since X is RN, by Theorem 7.6.3 and Proposition 2.2.3 we see
that f € Asp(X). =

REMARK 9.13. Note in the following list how, for a G-space X, topolog-
ical properties of X; correspond to dynamical properties of f € RUC(X)
and provide an interesting dynamical hierarchy:

X is norm compact < f is AP,
Xy is weakly compact < f is WAP,
X is norm fragmented < f is Asplund,
X is orbitwise light < f is LE.
In the domain of compact metric systems NS and AE are distinct prop-

erties. In contrast to this fact, if these conditions hold hereditarily then they
are equivalent.

THEOREM 9.14. Let (X, d) be a compact metric G-space. The following
properties are equivalent:

1. X 1s RN.

2. X is HAE.

3. FEwvery closed G-subsystem Y of X has a point of equicontinuity.
4. X is HNS.

5. X is dg-fragmented (recall that dg(x,2") = supyeqd(gz, ga')).

6. (X,dq) is separable (that is, d is an s-Asplund metric).

7. Every continuous function F : X — R is s-Asplund.

Proof. Since X is metric, G C Homeo(X) is second countable. So we can
and do assume, for simplicity, that GG is second countable.

By Theorem 7.6.5, RN = RNy, in the domain of compact metric sys-
tems. Hence, it follows by our diagram above that 1 & 2 < 4.

2 = 3: Trivial.

3 = 4: By the assumption Eq(Y") # 0 for every subsystem (G,Y). Thus,
Y is NS by Lemma 9.2.1. It follows that X is HNS.

4 & 5 By Lemma 9.4.2.

5= 6: Apply Lemma 6.5 to the map idy : (X,d) — (X, dg).

6 = 7: By our assumption (X, d¢g) is separable. Since idy : (X,dg) —
(X, oc,F) is uniformly continuous, we deduce that (X, og ) is also separable.
Hence, f € Asp,(X).

7= 1. Every s-Asplund function is Asplund. Hence, C'(X) = Asp(X).
By assertions 4 and 5 of Theorem 7.6 we can conclude that X is RN. u

Summing up we have the following simple diagram (with two proper
inclusions) for metric compact systems:

Eb = WAP — RN = HAE = HNS = RN,,, — LE.
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10. Some examples

COROLLARY 10.1. The class of compact metrizable HNS (hence also RN,
HAE) systems is closed under factors and countable products.

Proof. RN = HAE = HNS by Theorem 9.14. Now use Lemma 9.7 and
Theorem 7.6.5. =

COROLLARY 10.2. Ewvery scattered (e.g., countable) compact G-space X
is RN (see also [45]).

Proof. Apply Theorem 7.9 using Remark 6.2.4. =

A metric G-space (X,d) is called expansive if there exists a constant
¢ > 0 such that dg(z,y) := sup,eq d(gx, gy) > c for any distinct x,y € X.

COROLLARY 10.3. An expansive compact metric G-space (X,d) is RN
iff X is countable.

Proof. If X is RN then by Theorem 9.14, (X, dg) is separable. On the
other hand, (X,dq) is discrete for every expansive system (X, d). Thus, X
is countable. =

For a countable discrete group G and a finite alphabet S the compact
space S¢ is a G-space under left translations (gw)(h) = w(g~'h), w € S%,
g,h € G. A closed invariant subset X C S¢ defines a subsystem (G, X).
Such systems are called subshifts or symbolic dynamical systems.

COROLLARY 10.4. For a countable discrete group G and a finite alphabet
S let X C S be a subshift. The following properties are equivalent:

1. X is RN.
2. X 1is countable.

Moreover if X C S is an RN subshift and x € X is a recurrent point then
it 1s periodic (i.e. Gz is a finite set).
Proof. 1t is easy to see (and well known) that every subshift is expansive.
For the last assertion recall that if x is a recurrent point with an infinite

orbit then its orbit closure contains a homeomorphic copy of the Cantor
set. m

For some (one-dimensional) compact spaces every selfhomeomorphism
will produce an RN system.

PROPOSITION 10.5. 1. For each element f € Homeo(I), the homeomor-
phism group of the unit interval I = [0, 1], the corresponding dynamical
system (f,I) is HNS.

2. For each element f € Homeo(S'), the homeomorphism group of the
circle S' = {z € C : |z| = 1}, the corresponding dynamical system
(f,S1) is HNS.
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Proof. 1. Fix an element f € Homeo(/), which with no loss of gener-
ality we assume is orientation preserving. Consider the dynamical system
(f,I) and for a set A C I define Of(A) = [U,cz ["(A). Let us note first
that for every z € [0, 1] the sequence ..., f~2(x), f~1(z),z, f(z), f3(z),...
is increasing, hence the orbit closure of z is just the orbit together with
the points lim,, . f~"(z) and lim,_,~ f™(z). In particular the dynamical
system (f,I) is LE.

Next we show that (f, I) is NS. If this is not the case then there exists an
g > 0 such that for every non-empty open set U C I there exists n € Z such
that diam(f"U) > €. Let (a,b) C I be an open interval and let {Uj}ren be
a countable basis for open sets in (a, b). If for every k the set (a,b) NO(Uy)
is dense in (a, b) then the orbit of any point € (a,b) N2, Of(Uy) will be
dense in (a, b), which is impossible.

We conclude that for every interval (a,b) and every proper subinterval
Ji there is another subinterval Jo C (a,b) which is disjoint from Of(J1). By
induction we can find an infinite sequence of disjoint intervals J; in (a,b)
such that for every j the set J; i1, and hence also O¢(Jj41), is disjoint from
Ui<; O(Ji). Since for each j the set Of(J;) contains an interval of length
at least € we arrive at a contradiction. This concludes the proof that (f,I)
is NS.

Next consider any non-empty closed invariant subset Y C I. If Y contains
an isolated point then clearly the system (f,Y) is NS. Thus we now assume
that Y is a perfect set. We can then repeat the argument that showed that
(f,I)is NS for the system (f,Y) and arrive at the same kind of contradiction
since again an orbit of a single point in Y cannot be everywhere dense in a
non-empty set of the form (a,b) NY.

2. We will use Poincaré’s classification of the systems (5!, f) whose na-
ture is well understood (see for example [34, Section 11.2]). Again we can
assume with no loss of generality that our homeomorphism f preserves the
orientation on S'. Let r(f) € R denote the rotation number of f. If r(f)
is rational then some power of f has a fixed point and we are reduced to
the case of a homeomorphism of I = [0, 1]. Thus we can assume that r(f) is
irrational. There are two cases to consider.

The first case is when the system (S*, f) is minimal; then f is conjugate
to an irrational rotation and is therefore equicontinuous.

In the second case, when (S!, f) is not minimal, there exists a unique
minimal subset K C S' with K a Cantor set and there are wandering in-
tervals J C S!. For such an interval, given an € > 0 there exists an N such
that for every n € Z with |n| > N, diam(f"(J)) < &; hence the NS property
of (81, f) follows.

For the HNS property consider an arbitrary subsystem (Y, f) with Y C S*.
Again distinguish between the cases when Y has an isolated point and when
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it is a perfect set. The presence of an isolated point ensures NS. Finally, when
Y is perfect it is either equal to K, hence equicontinuous, or we can still use
the existence of the wandering intervals in (S', f) to obtain a non-empty set
J NY with the property that the diameter of its images under the iterates
of f tends to zero. m

ExaMPLES 10.6. Of course it is easy to find non-RN metric systems.
Here are some “random” examples.

1. The cascades on the torus T? defined by a hyperbolic automorphism,
or the horocycle flows, being weakly mixing (see Corollary 9.3), are
not RN. Likewise Anosov diffeomorphisms on a compact manifold,
being expansive (see [5]), are not RN by Corollary 10.3.

2. Systems which contain non-equicontinuous minimal subsystems fail to
be RN.

3. Let X be compact metric and uncountable and set G = Homeo(X).
Then in many cases (like X = [0,1]) the action is expansive, hence
not RN (Corollary 10.3).

4. As we have seen, any uncountable subshift is not RN. Thus, for ex-
ample, the well known “generator of the Morse cascade”

w=...01101001100101100110100110010110. ..
considered as a function w : Z — R is not an Asplund function on the
group Z.

A point-transitive LE system is, by definition, AE but there are non-
transitive LE systems which are not AE.

EXAMPLE 10.7. As can be easily seen, the Z-system (7', D), where D =
{z € C:|z| < 1} is the unit disk in the complex plane and 7' : D — D is the
homeomorphism given by the formula Tz = zexp(27i|z|), is an LE system
which is not AE.

There exist many compact metrizable transitive AE systems which fail to
be HAE. This follows, for example, from the lemma below. We will use the
following construction which is due to Takens. For a metric cascade (T, X)
define an asymptotic pseudo-orbit to be a bi-infinite sequence {z,,} such that
limy,| oo d(T'Tn, Tn+1) = 0. Note that (7', X) is chain transitive iff it admits
an asymptotic pseudo-orbit with alpha and omega limit point sets the whole
space.

LEMMA 10.8. Let (T, X) be a metric cascade.

1. If (T,X) is a chain recurrent Z-space then X is isomorphic to a
subsystem of a compact metric transitive AE cascade (T,Y).

2. If (T, X) is transitive-recurrent then X is also a retract of the ambient
transitive AE system (T,Y).



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 267

Proof. Let {t,} be a bi-infinite monotonic sequence in (0,1) with
limy, ooty = 1, lim, oo t_,, = 0. Let S be the circle represented as the in-
terval [0, 1] with 0 identified with 1. Let {x, } be an asymptotic pseudo-orbit
in X. Identify X with the subset X x {0} C X xS and let Y = XU{(x,t,) :
n € Z}. Extend T to Y by T'(zp,tn) = (Zn+1, tnt+1). This completes the proof
of part 1. For part 2 note that if the pseudo-orbit is actually an orbit then
the first coordinate projection from Y to X is a Z-retraction. m

REMARK 10.9. 1. If we apply the construction of Lemma 10.8 to the
(clearly chain recurrent) system (7, X) = (7', D) of Example 10.7, we
obtain a transitive (but not recurrent-transitive) metric LE system
(T,Y) which is not HAE (nor RN,p,). Applying Lemma 10.8 to a
transitive non-AE system (7', X) (e.g. a minimal weakly mixing sys-
tem), we obtain an example of an AE system with both a subsystem
and a factor which are not AE (see [25]).

2. As noted above, HAE is preserved under both passage to subsystems
and the operation of taking factors. In the next section we will show
that the Glasner—Weiss family of recurrent-transitive LE but not WAP
systems consists, in fact, of HAE systems. On the other hand, in Sec-
tion 13 we will modify these examples so that the resulting dynamical
system will still be recurrent-transitive, LE, but no longer HAE. Thus
even among metric recurrent-transitive Z-systems we have the proper
inclusions

WAP C HAE C LE.
Then we can conclude that the following inclusions are also proper:

WAP(Z) C Asp(Z) C LE(Z).

3. It is interesting to compare some of the current definitions of chaos
and the corresponding classes of dynamical systems (see, for exam-
ple, [16, 25, 11]|) with the class of G-systems X such that Asp(X) =
{constants}. The latter are the systems which admit only trivial repre-
sentations on Asplund Banach spaces. Every weakly mixing compact
system belongs to this class because by Corollary 9.3 every Asplund
function (in fact, every continuous NS function) on such a system is
constant.

4. By Theorem 1.3 of [25] and the variational principle, an LE (e.g.,
RN) cascade has topological entropy zero. This probably holds for a
much broader class of acting groups but we have not investigated this
direction.

11. The G-W examples are HAE. In this section we assume that
the reader is familiar with the details of the paper [26]. In particular we use
the notations of that paper with no further comments.
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THEOREM 11.1. The G-W examples of recurrent-transitive LE but not
WAP systems are actually HAFE.

Proof. Recall that 2 is the space of continuous maps = : R — 2!, where
I =10,1] and 2! is the compact metric space of closed subsets of I equipped
with the Hausdorff metric d. (In fact, the values x assumes are either intervals
or points.) The topology on (2 is that of uniform convergence on compact
sets: x,, — x if for every € > 0 and every M > 0 there exists N > 0 such
that for all n > N, supjy<p d(zn(t), 2(t)) < . On §2 there is a natural R-
action defined by translations: (T%z)(s) = x(s +t). The compact metrizable
dynamical system (T, X ), where T' = T, is obtained as the orbit closure X =
cls{T"w : n € Z} for a carefully constructed (kite-like) element w € 2 (see
also the figure in Section 13). The fact that w : R — 2! is a Lipschitz function
implies that each member of X is Lipschitz as well with the same constant,
so that X as a family of functions is equicontinuous. The compactness of X
follows from the Arzela—Ascoli theorem. We next sum up some of the salient
facts we have about (T, X):

(a) For every x € X there is a unique interval [a,b] C [0, 1] such that:
(i) z(t) C [a,b], Vt € R,
(ii) there exists a sequence t; € R with limz(¢;) = [a, b].
We set
N(z) = [a, b].

(b) The function x — N(z) is lower semicontinuous, that is, lim, z,, = x
= liminf, N(z,) D N(z).

(c) Call intervals [a,b] C [0,1] of the form N(z), =z € X, admissible.
Then for every admissible [a,b] C [0, 1] there exists a unique element
wap € X with N(wgp) =wap(0) = [a, b]. (In particular wp; =w.)

(d) Let J = {wap € X : 0 < a < b < 1}. Then J is a closed subset
of X and N : J — {(a,b) : 0 < a <b < 1} C [0,1] x [0,1] is
a homeomorphism onto the set of admissible intervals. (Not every
subinterval of [0,1] is admissible. For example neither [0,9/10] nor
any degenerate interval with 9/10 < a = b <1 is attained.)

(e) Defining Xy, = Or(wap) we have z € Xy iff N(2) C [a, b].

(f) For each admissible interval [a,b] C [0, 1] the subsystem (7', X)
is AE, with Eq(X4) = {z € X : N(x) = [a, b]}.

These facts, perhaps except (b), are either stated explicitly and proved in

[26] or can be easily deduced from the results in that paper. For completeness
we provide a proof for (b).

Proof of (b). With no loss in generality we assume liminf, N(z,)
= lim, N(z,) = [a,b] and we then have to show that [a,b] D N(z). There
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exists a sequence m; such that lim; 7" 2(0) = N(z). Therefore, given € > 0,
there exists an ¢ with

(11.1) d(T™z(0),N(x)) < e.
Next choose v such that

(11.2) d(T™x,(0), T™x(0)) < e
and

(11.3) d(N(zy,), [a,b]) < e.

Now, by (11.3) we have
[a—¢e,b+¢] D N(z,) DTz, (0),
hence by (11.1) and (11.2),
[a —3e,b+ 3¢] D N(x).
Since € > 0 is arbitrary we conclude that indeed [a,b] D N(z). =

Of course this list implies the LE property of (T, X). However, we are
after the stronger property HAE. For this purpose consider now an arbitrary
closed invariant non-empty subset Y of X. Let Jy be the subset of Y which
consists of those elements y € JNY for which N(y) = y(0) is maximal; that
is, if z € Y and N(z) D N(y) then N(z) = N(y).

CrAM 1. The restriction N[y : Y — [0, 1] x [0, 1] is continuous at points
Of Jy.

Proof. Suppose Y 3y, — y € Jy. By the lower semicontinuity of N,
[a,b] = liminf N(y,) D N(y).
n

Choose a subsequence n; such that N(yy,) — [a,b]. Then for some sequence
m; we have T™iy, (0) — [a,b]. By compactness we can assume with no
loss in generality that T™iy,. — z for some z € Y. Now, Ty, (0) —
2(0) = [a,b] D N(y), whence N(y) = [a, b]. It follows easily that lim, N(y,)
=N(y). =

In item (d) of the above list we noted that .J is a closed subset of X and
N :J —[0,1] x [0, 1] is a homeomorphism into. Set K = N(J NY) and let
Ky C K be the subset of maximal elements in K;i.e. [a,b] € Ky iff [a,b] € K
and K > [¢,d] D [a,b] implies [c,d] = [a,b]. Clearly Ky is a closed subset of
the closed set K and for every [c,d] € K there exists some [a,b] € Ky with
[e,d] C [a,b].

CrLam 2. Ko = N(Jy).

Proof. Let [a,b] be an element of Ky; then [a, b] =N(y) for some y € JNY.
If [¢,d] = N(2) D [a,b] for some z € Y, then for some 2’ € Or(z) C Y we
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have 2/(0) = [¢,d] = N(2'). In particular 2’ € JNY and N(2') = [¢,d] € K.
Hence [c, d] = [a,b] and it follows that y € Jy.

Conversely, if y € Jy with y(0) = [a,b] = N(y) and N(z) = 2(0) =
[c,d] D [a,b] for z € Y, then [¢,d] = [a,b] and [a,b] € K. =

CrLAaM 3. Jy is closed and non-empty; in fact Y = cls{T"Jy : n € Z}.

Proof. The fact that Jy is closed and non-empty is a direct consequence
of Claim 2. Clearly N(Y) = N(JNY) = K and it follows that every [a,b] =
N(y) € N(Y) is a subset of some [c, d] = N(wqp) € Ko. By item (e) we have
y € Xap = Or(wep) and our claim follows. =

CLAIM 4. Every wy, € Jy with a < b is in Eq(Y).

Proof. The key fact in proving the inclusion Jy \ {constant functions}
C Eq(Y) is a certain uniformity of the function ¢ = &'(¢,b — a) pro-
vided by Lemma 3.5 of [26]. In essence, as can be seen by combining Lem-
mas 3.5, 3.6 and 1.1 of [26], this function is the equicontinuity modulus
function for D(z,w) = sup,czd(T"z, T"w) on orbit closures in (7', X); i.e.
given a point € X with N(z) = [a,b] and £ > 0, the &’-neighborhood of z,
B.(z)NOr(x),in O7(z) is (g, D)-small. The point is that the ¢’ = £’(¢, b—a)
provided by Lemma 3.5 of [26] is uniform in x as long as b — a is bounded
away from zero.

Therefore, given a point wy, € Jy with a < b, and € > 0, we can choose a
point wyy € J with @’ < a < b < b so that a—a’, b’ — b are sufficiently small
to ensure that wyy, € Ber(wyey ). Of course by (e) we have wypy € Or(wary)-

By Claim 1, wg, is a continuity point for the restriction of the map N
to Y and it follows that there exists a neighborhood V of wg, such that
N(y) C [, ¥] for every y € V, hence y € Or(wqy). We now conclude that
B./(wgy) NV is an (g, D)-small neighborhood of wyy, in the subsystem Y,
and the proof that wy, is an equicontinuity point of the system (7,Y) is
complete. m

We next observe that T' acts as the identity on the open subset
U=Y\cs{T"wap : wap € Jy, a < b, n €L}

(when non-empty) and thus every point in U is an equicontinuity point.
This observation together with Claims 3 and 4 shows that the set Eq(Y") of
equicontinuity points is dense in Y. That is, (7,Y) is an AE system, and
our proof of the HAE property of (T, X) is complete. m

12. The mincenter of an RN system. Unlike the case of transitive
WAP systems, where the mincenter (i.e. the closure of the union of the min-
imal subsets of X) consists of a single minimal equicontinuous subsystem,
the mincenter of a transitive RN system need not be minimal. In the G-W
examples the mincenter consists of a continuum of fixed points; moreover, as
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was shown in [26], a slight modification of the construction there will yield
examples of HAE systems whose mincenter consists of uncountably many
non-trivial minimal equicontinuous subsystems all isomorphic to a single
circle rotation. However, in Section 13 we will present a more sophisticated
modification which produces an example of an LE system with a mincenter
containing uncountably many non-isomorphic rotations. In the present sec-
tion we obtain some information about the mincenter of RN systems. This
will be used in the next section to draw a sharp distinction between LE and
HAE systems. For simplicity we deal with metrizable systems. Recall that
for such systems RN is the same as HAE.

The prolongation relation Prol(X) C X x X of a compact dynamical
system (G, X) is defined as follows:

Prol(X) = {(x,2') : there exist nets g, € G and x, € X

such that limz, = x and limg,z, = a:'}.
14 14

It is easy to verify that Prol(X) is a closed symmetric and G-invariant rela-
tion. For x5 € X we let

Prolzo] = {z € X : (zo,x) € Prol(X)}.

Note that always Og(x) C Prol[z], and if 79 € Og(x) then z € Prol[z|. For
closed invariant sets A C B C X we say that A is capturing in B if x € B
and Og(z) N A # 0 imply = € A (see [7]).

LEMMA 12.1. 1. Let (X, d) be a metric G-system, xo € Eq(X) and x €
Prol[zg]. Then x € Og(z0). Hence,

Prol[zo] = Og(wo).

2. If 29 € Eq(X) and w9 € Og(x), then x € Eq(X) and x € Og(xo);
that is, Eq(X) is a capturing subset of X.

Proof. 1. Given ¢ > 0 there exists § > 0 such that z € Bs(xg) implies
dg(zg,z) < e. There are nets g, € G and z, € X such that lim, z, =
xo and lim, g,x, = z. For sufficiently large v we have x, € Bs(zg) and
d(gyxy,x) < €, hence

d(gyxo,x) < d(gvxo, gvry) + d(guxy, T) < 2€,

hence z € Og(x0). Thus Prol[xg] C Og(zo). The inclusion Prol[zg] D
Og(wo) is always true.

2. Given € > 0 there exists a 0 > 0 such that dg(xg,2) < ¢ for every
z € Bgs(xp). There exists g € G with gz € Bs(x¢) and therefore an n > 0
with gB,(x) C Bs(xo). Now for every h € G and w € By (x) we have

d(hgx, hgw) < d(hgz, hzg) + d(hgw, hxg) < 2e.
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Thus also x € Eq(X). By assumption z € O¢() hence = € Prollxg] and
by part 1, x € Og(zp). =

PROPOSITION 12.2. Let (X,d) be a metrizable RN G-system, and M
its mincenter. Then Eq(M) is a disjoint union of minimal equicontinuous
systems, each a capturing subset of M.

Proof. Our system X is HAE by Theorem 9.14. Therefore the subsystem
(G,M) is AE. Let xyp € M be an equicontinuity point of M. Given € > 0
there exists a 0 < 0 < ¢ such that z € Bs(xg) N M implies d(gzo,gx) < €
for every g € G. Let ' € Bs(xg) be a minimal point. It then follows that
S ={g € G:gx € Bs(xg)} is a syndetic subset of G (i.e. F'S = G for some
finite subset F' of G). Collecting these estimates we get, for every g € S,

d(gl‘o, xO) < d(g:EO)gx/) + d(gxlv xO) < 2e.
Thus for each € > 0 the set N(xg, B:(z0)) = {g € G : d(gxo,x0) < €} is
syndetic, whence x( is minimal.

Thus every equicontinuity point xg of M is minimal and we apply Lem-
ma 12.1 to conclude that Eq(M) is a capturing subset of M. m

COROLLARY 12.3. The mincenter Z of a metrizable RN system (G, X)
1s transitive iff Z is minimal and equicontinuous.

REMARK 12.4. The Birkhoff center Y of a compact metrizable Z-dy-
namical system (7', X)) can be defined as the closure of its recurrent points.
A non-empty open set U C X such that T/U NU = () for all j € Z\ {0} is
called a wandering set. The complement of the union of all wandering sets is a
closed invariant subsystem Z; C X which contains Y. Repeating this process
(countably many times) we get by transfinite induction a countable ordinal 7
such that Z, =Y. Since an isolated transitive point of any compact metric
system is always an equicontinuity point it follows easily that the system
(T, X) is LE iff its Birkhoff center (7,Y’) is LE. The same statement does
not hold for RN systems. An example of a compact sensitive system (T, X)
whose Birkhoff center consists of fixed points was shown to us by E. Akin
(private communication).

13. A recurrent-transitive LE but not HAE system. As promised
in Section 10 we will sketch in the present section a modification of the G-W
construction that will yield a recurrent-transitive system which is LE but not
HAE. The possibility of introducing such a modification (in order to achieve
another goal) occurred to the authors of [26] already at the time when that
paper was written. The first author (E.G.) would like to thank B. Weiss for
his help in checking the details of the modified construction.

THEOREM 13.1. There exists a recurrent-transitive LE but not HAFE sys-
tem.
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Proof. In the original construction the basic “frames” «,, were defined by
the formula

an(t) = ao(t/pn), n=12,...,

where q is the original periodic kite-like function:

0 1

The kite-like function «g

and the sequence py, is defined by pg = 1 and p,+1 = 10k, p, for a sequence
of integers k, /' oo such that

[eS) P %) 1
n
= < Q.
n=1 Pn+1 ngl 10kn

In the modified construction the kite-like parts of v, will not be changed but
the lines between consecutive kites will contain larger and larger segments
in which the original straight line will be replaced by graphs of functions of
the form

(13.1) fo 1 t— sin(276t),

properly scaled so that they fit into our strip R x [0,1]. At the outset
the sequence k, will be chosen to grow sufficiently fast in order to leave
room for the insertion of the sine functions. The parameters 6 will be con-
structed inductively as a binary tree of irrational numbers {6, : ¢ € {0,1}"},
n =1,2,..., where at the n + 1 stage .9 = 6. and 6.1 is a new point in
[0, 1]. The numbers 6. will satisfy inequalities of the form

o0
(13.2) Ipn0cll < 1/n"  for all e € | J{0,1}*,

k=1
where ||A|| denotes the distance of the real number A from the closest integer.
The points on the circle which satisfy the inequality (13.2) at stage n + 1
form a union of finitely many disjoint open intervals, and the “neighbor” 6.,
of .9 = 6. will be chosen in that same interval which already contains 6.g.
When the construction is finished we end up with a Cantor set A C T con-
sisting of the closure of the set {0. : ¢ € Jp2,{0,1}*}. At stage n there
will be finitely many functions f, with parameters 6., ¢ € | J;_,{0,1}*, and
they will replace segments of the straight lines connecting the kites of a,.
Each of these functions will grow in amplitude very gradually from zero
to say 1/100 and then after running for a long time with maximal ampli-
tude 1/100 will symmetrically diminish in amplitude till it becomes again a
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straight line. Each function will appear once and their occurrences will be
separated by very long stretches of the straight line. Of course this picture
will be repeated periodically between any two consecutive kites of a,. Apart
from these changes the construction of the functions 3, will be repeated
unmodified as in [26].

We claim that the construction sketched above, when carefully carried
out, will yield an element w € {2 whose orbit closure X = cls{T"w : n € Z}
will be, like the original system, a recurrent-transitive LE system. However,
unlike the old system, whose minimal sets were all fixed points, our new
system will have, for each § € A, a minimal subset isomorphic to the irra-
tional rotation (Ryg, T). We will not verify these claims, whose proofs parallel
the proofs of the original construction in [26]. We will though demonstrate
that (7', X) is not HAE. Indeed, this is a direct consequence of the following
proposition. (A second proof will be given in Remark 14.9.)

PROPOSITION 13.2. Let (T, X) be a compact metric cascade and suppose
that there exists an uncountable subset A C T with the property that for each
A € A there exists a subsystem Y\ C X such that the system (T,Y)) is
isomorphic to the rotation (Ry,T) on the torus T = R/Z. Then (T, X) is
not HAE.

Proof. Suppose to the contrary that (7,X) is HAE and let Y =
cls(U{Y» : A € A}). By assumption the system (7,Y) is also HAE and
clearly Y coincides with its mincenter: Y = M(Y). Let Ay be a subset of
Y such that for each A € A there is exactly one point in the intersection
ApNY,, and let A = |J{T"Ap : n € Z}. If {U,,}59_, is a countable basis
for open sets in Y then the set O = |J{U,, : card(Uy, N A) < Xy} is open
and it meets at most countably many Y)’s. Omitting, at the outset, this
countable set from A we can and do assume that U,, N A is uncountable for
every m. By the AE property the set Y = Eq(Y") of equicontinuity points
is a dense G subset of Y, and by Proposition 12.2 each point of Yj belongs
to a minimal set. Since the set fix(Y") of fixed points in Y is closed, it has
an empty interior and it follows that the set Y7 = Y( \ fix(Y") is also a dense
G5 subset of Y.

Choose a point zy € Y7; then z5 € Z for some non-trivial minimal set Z.
Now the system Z can admit at most a countable set of eigenvalues and
therefore can be not disjoint from at most countably many of the systems
Y. We can therefore choose an infinite sequence {\,} C A and a sequence of
points y, € Yy, such that (i) lim, . yn = 20, (ii) the set {\, :n =1,2,...}
is independent over the rational numbers Q, and (iii) Z is disjoint from the
minimal system [[ 2, (Ry,,T). Thus the dynamical system

(T’ 'Q) = (T’Z) X H(Rkan)

n=1
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is minimal and in particular for some sequence m; we have

lim T™y, =y, forn=1,2,..., while lim T™zy = 21 # zp.

1— 00 1—00
Since lim,, . Yy = 20, this contradicts the fact that zy is an equicontinuity
point and the proof of the proposition is complete. m

This also concludes the proof of Theorem 13.1. =

14. An enveloping semigroup characterization of HNS. In this
section we give an enveloping semigroup characterization of Asplund func-
tions and HNS systems in terms of fragmented families (Definition 6.8). In
addition to fragmentability, our approach essentially uses Namioka’s theo-
rem. First we recall this fundamental result and an auxiliary definition. A
topological space X is said to be C’ech—complete if X is a G subset in some
compact Hausdorff space. If X is either a locally compact Hausdorff space
or a complete metric space then X is éech—complete. We need the following
version of Namioka’s theorem.

THEOREM 14.1 (Namioka’s joint continuity theorem, [47]). Let w : K X
X — M be a separately continuous function where M is a metric space, K
is compact and X 1is C’ech—complete. Then there exists a dense G set Xg in
X such that w is jointly continuous at every point of K X Xj.

Let E = E(X) be the enveloping semigroup of a compact G-system X.

Recall that
Bl i={pf: X = Rlpen, ps(x) = f(pr),
is a pointwise compact subset of RX, being a continuous image of E under
the map
a4r:E— EY qp(p) =py

(see Section 3).

For every f € C(X) define the map

wr: ExX =R, w(pzx):= f(px).

In turn wy induces the mapping E/ x X; — R, (py, fs(x)) — f(pz). Observe
that by the proof of Proposition 2.2.2 (with f; = ¢ : fg(X) = X — Xy)
we have (z1) = Y(x2) iff f(gz1) = f(gxe) for all g € G. It follows that
Y(x1) = Y(x2) iff f(pr1) = f(pas) for all p € E. Hence, B/ x X; — R and
the following commutative diagram is well defined:

ExX——X

‘Ifi J/fu lf
Ef x X; —R

We are now ready to prove the following result.
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THEOREM 14.2. Let X be a compact G-system. The following are equiv-
alent:

1. f e Asp(X).

2. Ef is a fragmented family.

3. Ef is a barely continuous family.

4. For every closed (G-invariant) subset Y C X there ezists a dense Gs
subset Yo of Y such that the induced map py : Yo — R, pr(y) = f(py),
s continuous for every member p of the enveloping semigroup E.

Proof. 1= 2: By Theorem 9.12 the family G/ := {gr : X = R}geq is
fragmented. Then so is the family Ef, being the pointwise closure of ell
(Lemma 6.9).

2 & 3: See Definition 6.8.2.

2 = 4: Since E is a fragmented family, for every closed non-empty sub-
set Y C X the family of restrictions E{/ = {prly : Y — R} is (locally)
fragmented. Now by Proposition 6.6 (see also Definition 6.8.1) there exists a
dense G subset Yy C Y such that every yo € Yy is a point of equicontinuity
of the family E{, Clearly this implies that p; : Yy — R is continuous for
every p € E.

4 = 1: We have to show by Theorem 9.12 that the G-map f; : X —
RUC(G) is norm fragmented. The action of G on RUC(G) preserves the
norm. Therefore, in this case ug = p holds, where p is the uniform structure
generated by the norm. By Lemma 9.4.1 it suffices to check that fy[y : Y —
(RUC(G), p) is locally fragmented for every closed non-empty G-subset Y
in X.

By our assumption we can pick a dense G subset Yy of Y such that the
induced map ps : Yo — R, p¢(y) = f(py), is continuous for every p € E(X).
It follows that

wilexy, : Ex Yo =R,  we(p,y) = f(py),

is separately continuous. Since Yj is Cech-complete, by Namioka’s theorem
there exists a dense subset Y7 of Y such that wy[gyxy, is jointly continuous
at every (p,y1) € E x Y7. Our aim is to prove that f;ly : Y — RUC(G) is
continuous at every y; € Y7. In fact we have to show that every y; € Y7 is
a point of equicontinuity of the family of maps {,f[y : Y — R}4eq. By the
compactness of F¥ and the inclusion G C E it is sufficient to check that the
map
wilpxy : ExY — R

is continuous at each (p,y1) € E x Y. In order to check the latter condition
fix € > 0. By the joint continuity of w¢lgxy; : E x Y7 — R, one can choose
an open neighborhood U of p in F and an open neighborhood O of y; in the
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space Y such that
|f(py1) — flay)| <e/3

for every ¢ € U and y € ONY;. We claim that | f(py1) — f(gz)| < € for every
(g,2) € U x O. Fix such a pair (g, z) and choose g := g,. € G such that the
corresponding g-translation g : X — X belongs to U and satisfies

|f(g92) — flaz)] < /3.
Since Y7 is dense in Y and ¢ : X — X is continuous, one can pick a € Y1NO
such that

|f(ga) — flg2)| <&/3.
Putting these estimates together we obtain the desired inequality |f(py1) —
f(gz)| < e. Thus, we have shown that f;[y : Y — RUC(G) is continuous at
every y1 € Y7. Since Y7 is dense in Y, we can conclude by Lemma 6.3.2 that
f¢ly is locally fragmented. m

As a corollary we obtain the following enveloping semigroup character-
ization of metric RN systems. It certainly can also be derived from Theo-
rem 9.14 and the result of Akin—Auslander—Berg mentioned earlier (see The-
orem 5.11).

COROLLARY 14.3. Let X be a compact metric G-system. The following
are equivalent:

1. (G,X) is RN.

2. For every closed (G-invariant) subspace Y C X there exists a dense
G5 subset Yy of Y such that for every p € E the induced map
p:Yy— X, p(y) := py, is continuous.

Proof. (2)=-(1) follows by Theorem 14.2. Now we prove (1)=(2). Since
X is a metric compact space we can choose a countable dense subset {f, :
n € N} in C(X). By Theorem 7.6.4, C(X) = Asp(X). By Theorem 14.2 for
a given closed (G-invariant) subset Y C X and every n € N there exists a
dense G subset Y;, of Y such that for p € £/ the induced map py, : Y, — R
is continuous. Then it is easy to see that Yy := [, oy Yn is the desired subset
of V. m

DEFINITION 14.4. We say that a compact right topological semigroup S
is an F-semigroup if the family of maps {), : S — S},cg, where A\, (s) = ps,
is a fragmented family. By Definitions 6.8.1 and 6.1.1 it is equivalent to say
that S/ := {p; : S — R}pes (where ps(z) = f(px)) is a fragmented family
for every f € C(S). Yet another way to formulate the definition is to require
that for every non-empty closed subset A C S, every f € C(S) and € > 0
there exists an open subset O C S such that A N O is non-empty and the
subset f(p(ANO)) is e-small in R for every p € S.
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Every compact semitopological semigroup is an F-semigroup. The ver-
ification is easy applying Namioka’s theorem to the map S x A — R,
(s,a) — f(sa), where A is a closed non-empty subset of S.

THEOREM 14.5. Let X be a compact G-system. Consider the following
conditions:

(a) X is HNS (equivalently, RN,pp).

(b) G:={g: X — X}4eq is a fragmented family.

(c) ( ) ={p: X — X},ep(x) is a fragmented family.
(d) (G,E(X)) is HNS (equivalently, RN,pp).

(e) ( ) is an F-semigroup.

Then we have:

1. Always, (a)<(b)e(c)=(d)<(e).

2. If X is point-transitive then (a)<(b)<(c)<(d)<(e).

Proof. 1. (a)<(b): The proof follows from Theorem 9.9.

(b)&(c): Use Lemma 6.9.

(a)=(d): By the definition (G, E) is a G-subsystem of X*. Since RN,
is closed under subdirect products we deduce that E is also in RNgpp.

(d)e(e): E(X) is an F-semigroup iff {\, : £ — E},cp is a fragmented
family iff the subfamily {\; : E — E},cq is a fragmented family (use once
again Lemma 6.9). The latter condition is equivalent to assertion (d) as
follows by the equivalence (a)<(b) (applied to the system (G, E)).

2. (d)=-(a): If zo is a transitive point of X then the map F — X, p — pzxo,
is a continuous onto G-map. Since RNy, is closed under quotients we find
that X also belongs to RNypp,. =

COROLLARY 14.6. G2 is an F-semigroup for every topological group G.

Proof. The compact G-system X := GASP is RNapp by Theorem 7.6.6.
Therefore, Theorem 14.5 implies that the enveloping semigroup E(G’ASP) is
an F-semigroup. Since (G*P, u(e)) is point-universal (Proposition 7.7),
by Proposition 2.6 there exists a G-isomorphism ¢ : (E(G**P),i(e)) —
(GAP up(e)) of pointed G-systems. In fact this map is an isomorphism of
(right topological) semigroups because ua(G) is dense in GAP and i(G) is
dense in F(GAP). u

COROLLARY 14.7. Let (G,X) be a compact HNS system. Then p :
X — X is fragmented (equivalently, Baire class 1, when X is metric) for
every p € E(X).

Proof. Use Theorem 14.5 (and Proposition 6.7.2). m

For the definition of Rosenthal compacts see Section 3.
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THEOREM 14.8. 1. Let X be a compact metrizable G-space. For every
f € Asp(X) the compact space ET ¢ RX is a Rosenthal compact.

2. Let X be a metrizable compact RN G-space. Then the enveloping
semigroup E is a (separable) Rosenthal compact with cardinality < 2o
(in particular, no subspace of E can be homeomorphic to SN).

Proof. 1. Since f € Asp(X), by Theorem 14.2, Ef = {pf: X = R}per
is a fragmented family. In particular, each map py : X — R is fragmented.
Since X is compact and metrizable we can apply Proposition 6.7. Hence,
each function py € B/ is of Baire class 1 (on the Polish space X). Therefore,
E7 is a Rosenthal compact.

2. C(X) = Asp(X) by Theorem 7.6.4. It follows by the first assertion
that E7 is a Rosenthal compact for every f € C(X). An application of the
dynamical version of the BFT theorem, Theorem 3.2, concludes the proof. m

REMARK 14.9. Theorem 14.8.2 can be used to obtain an alternative
proof of Proposition 13.2. In fact, as can be seen from Proposition 2.1, the
enveloping semigroup of the system (7', X) in Proposition 13.2 has cardinal-

ity 227,

Our next example is of a metric minimal cascade (7', X) which is not
RN yet its enveloping semigroup E = E(T, X): (a) is a separable Rosenthal
compact of cardinality 280, and (b) has the property that each p € E is of
Baire class 1. Thus this example shows that the converse of Theorem 14.8.2
does not hold and neither does that of Corollary 14.7.

EXAMPLE 14.10. Let T = R/Z be the one-dimensional torus, and let
a € R be a fixed irrational number and 7, : T — T the rotation by «,
T.0 = [+ a (mod1). We define a topological space X and a continuous
map 7 : X — T as follows. For 8 € T\ {na : n € Z} the preimage 7~ 1(3)
will be a singleton z3. On the other hand, for each n € Z, 7~ !(na) will
consist of exactly two points x,,, and z;/,. For convenience we will use the
notation 3% (B € T) for points of X, where (na)~ = z,,, (na)* = zf,
and f~ = ft = zg for B € T\ {na : n € Z}. A basis for the topology
at a point of the form zg, § € T\ {na : n € Z}, is the collection of sets
71 (B—¢,B+¢), € > 0. For (na)~ a basis will be the collection of sets of the
form {(na)”} Un "} (na —e,na), where ¢ > 0. Finally, for (na)™ a basis will
be the collection of sets of the form {(na)*} Un~!(na, na+¢). It is not hard
to check that this defines a compact metrizable zero-dimensional topology
on X (in fact X is homeomorphic to the Cantor set) with respect to which
7 is continuous. Next define T': X — X by the formula T* = (8 + ).
Again it is not hard to see that 7 : (T, X) — (Rq,T) is a homomorphism
of dynamical systems and that (7', X) is minimal and not equicontinuous
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(in fact it is almost-automorphic; see e.g. Veech [57]). In particular (T, X) is
not RN.
We now define for each v € T two distinct maps p$ : X — X by the
formulas
pI(BE) =@B+7T, py(BF) =B+
We leave the verification of the following claims as an exercise.

1. For every v € T and every sequence n; ,* oo with lim; ., n;a = vy and
nija < v for all 4, we have lim; .o, 7" = p_ in E(T, X). An analogous
statement holds for p.

2. B(T,X)={T":neZ}U{pf:yeT}

. The subspace {T" : n € Z} inherits from E the discrete topology.

4. The subspace E(T, X)\{T™ : n € Z} = {p= : v € T} is homeomorphic
to the “two arrows” space of Aleksandrov and Urysohn (see [21, p. 212],
and also Ellis’ example [19, Example 5.29]). It thus follows that E is
a separable Rosenthal compact of cardinality 280,

5. For each v € T the complement of the set C(pit) of continuity points
of p$ is the countable set {3 : 8+ v = na for some n € Z}. In
particular each element of E is of Baire class 1.

w

15. A dynamical version of Todorcevié’s theorem. A surprising
result of Todorcevié¢ asserts that a Rosenthal compact X which is not metriz-
able obeys the following alternative: either X contains an uncountable dis-
crete subspace or it is an at most two-to-one continuous preimage of a com-
pact metric space ([55, Theorem 3]). We present here the following dynamical
version.

PROPOSITION 15.1 (A dynamical Todorcevi¢ dichotomy). Let G be a
uniformly Lindeldf group and (G, X) a compact system with the property that
X is a Rosenthal compact. Then either X contains an uncountable discrete
subspace or there exists a metric dynamical system (G,Y) and a G-factor

7: (G, X) — (G,Y) such that |7~ (y)| < 2 for every y € Y.

Proof. 1f we rule out the first alternative in Todorcevié’s theorem then
it follows by that theorem that there exists a compact metric space Z
and a continuous map ¢ : X — Z with |¢71(2)| < 2 for every z € Z. By
[41, Theorem 2.11] there exist a compact metric G-space Y, a continuous
onto G-map f; : X — Y and a continuous map fy : ¥ — Z such that
¢ = fao fi. Clearly, |f{ ' (y)| <2 foreveryy € Y. u

We do not know whether Theorem 14.8.2 can be strengthened to the
statement that the enveloping semigroup of any compact metric RN system
is in fact metric. However, Proposition 15.1 yields the following.
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COROLLARY 15.2. Let X be a metric RN G-system, where G is an ar-
bitrary topological group. Then either the enveloping semigroup E = E(X)
contains an uncountable discrete subspace, or it admits a metric G-factor
7:(G,E) — (G,Y) such that |7~ 1(y)| < 2 for every y € Y.

Proof. This follows directly from Theorem 14.8.2 and Proposition 15.1
because the natural restriction G (see Section 3) is second countable (and
hence, uniformly Lindel6f). =

PROBLEM 15.3. By Theorem 14.8.2 the enveloping semigroup of the
G-W example is a separable Rosenthal compact (of cardinality 2%°¢). We
do not have a concrete description of this enveloping semigroup and do not
even know whether it is metrizable or if it contains an uncountable discrete
subspace.
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