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t. For an arbitrary topologi
al group G any 
ompa
t G-dynami
al sys-tem (G, X) 
an be linearly G-represented as a weak∗-
ompa
t subset of a dual Bana
hspa
e V ∗. As was shown in [45℄ the Bana
h spa
e V 
an be 
hosen to be re�exive i� themetri
 system (G, X) is weakly almost periodi
 (WAP). In the present paper we study thewider 
lass of 
ompa
t G-systems whi
h 
an be linearly represented as a weak∗-
ompa
tsubset of a dual Bana
h spa
e with the Radon�Nikodým property. We 
all su
h a system aRadon�Nikodým (RN) system. One of our main results is to show that for metrizable 
om-pa
t G-systems the three 
lasses: RN, HNS (hereditarily non-sensitive) and HAE (hered-itarily almost equi
ontinuous) 
oin
ide. We investigate these 
lasses and their relation topreviously studied 
lasses of G-systems su
h as WAP and LE (lo
ally equi
ontinuous). Weshow that the Glasner�Weiss examples of re
urrent-transitive lo
ally equi
ontinuous butnot weakly almost periodi
 
as
ades are a
tually RN. Using fragmentability and Namioka'stheorem we give an enveloping semigroup 
hara
terization of HNS systems and show thatthe enveloping semigroup E(X) of a 
ompa
t metrizable HNS G-system is a separableRosenthal 
ompa
t, hen
e of 
ardinality ≤ 2ℵ0 . We investigate a dynami
al version ofthe Bourgain�Fremlin�Talagrand di
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al version of the Todor£evi¢di
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enter of an RN system 27013. A re
urrent-transitive LE but not HAE system 27214. An enveloping semigroup 
hara
terization of HNS 27515. A dynami
al version of Todor£evi¢'s theorem 280Referen
es 281Introdu
tion. The main goal of this paper is to exhibit new and per-haps unexpe
ted 
onne
tions between the (la
k of) 
haoti
 behavior of a dy-nami
al system and the existen
e of linear representations of the system on
ertain Bana
h spa
es. The property of sensitive dependen
e on initial 
on-ditions appears as a basi
 
onstituent in several de�nitions of �
haos� (see,for example, [9, 16, 25, 11℄ and referen
es therein). In the present paper weintrodu
e the 
lasses of hereditarily not sensitive (HNS for short; intuitivelythese are the non-
haoti
 systems) and hereditarily almost equi
ontinuoussystems (HAE). It turns out that these 
lasses of dynami
al systems arewell behaved with respe
t to the standard operations on dynami
al systemsand they admit elegant 
hara
terizations in terms of Bana
h spa
e represen-tations.For an arbitrary topologi
al group G any 
ompa
t G-system X 
an belinearly G-represented as a weak∗-
ompa
t subset of a dual Bana
h spa
e V ∗.As was shown in [45℄ the Bana
h spa
e V 
an be 
hosen to be re�exive i� themetri
 G-system X is weakly almost periodi
 (WAP). We say that a dynami-
al system (G,X) is a Radon�Nikodým system (RN) if V ∗ 
an be 
hosen as aBana
h spa
e with the Radon�Nikodým property. One of our main results isto show that for metrizable 
ompa
t G-systems the three 
lasses of RN, HNSand HAE dynami
al systems 
oin
ide. For general 
ompa
t G-systems X weprove that X is in the 
lass HNS i� X is RN-approximable. In other words:a 
ompa
t system is non-
haoti
 if and only if it admits su�
iently many
G-representations in RN dual Bana
h spa
es. The link between the varioustopologi
al dynami
s aspe
ts of almost equi
ontinuity on the one hand andthe Bana
h spa
e RN properties on the other is the versatile notion of frag-mentability . It played a 
entral role in the works on RN 
ompa
ta (see e.g.Namioka [48℄) and their dynami
al analogues (see Megrelishvili [42, 43, 45℄).It also serves as an important tool in the present work.The following brief histori
al review will hopefully help the reader toget a 
learer perspe
tive on the 
ontext of our results. The theory of weaklyalmost periodi
 (WAP) fun
tions on topologi
al groups was developedby W. F. Eberlein [17℄, A. Grothendie
k [28℄ and I. Gli
ksberg andK. de Leeuw [15℄. About thirty years ago, W. A. Vee
h [58℄, in an attempt tounify and generalize the 
lassi
al theory of weakly almost periodi
 fun
tionson a dis
rete group G, introdu
ed a 
lass of fun
tions in ℓ∞(G) whi
h hedenoted by K(G). He showed that K(G) is a uniformly 
losed left and right
G-invariant subalgebra of ℓ∞(G) 
ontaining the algebra of weakly almost pe-
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 fun
tions WAP(G) and shares with WAP(G) the property that everyminimal fun
tion in K(G) is a
tually almost periodi
.In [51℄ Shtern has shown that for any 
ompa
t Hausdor� semitopologi
alsemigroup S there exists a re�exive Bana
h spa
e V su
h that S is topolog-i
ally isomorphi
 to a 
losed subsemigroup of B = {s ∈ L(V ) : ‖s‖ ≤ 1}.Here L(V ) is the Bana
h spa
e of bounded linear operators from V to itselfand B is equipped with the weak operator topology. Megrelishvili providedan alternative proof for this theorem in [43℄ and has shown in [45℄ that WAPdynami
al systems are 
hara
terized as those systems that have su�
ientlymany linear G-representations on weakly 
ompa
t subsets of re�exive Ba-na
h spa
es. In parti
ular, if V is a re�exive Bana
h spa
e then for everytopologi
al subgroup G of the linear isometry group Iso(V ) the natural a
-tion of G on the weak∗-
ompa
t unit ball V ∗
1 of V ∗ is WAP. Moreover, everyWAP metri
 
ompa
t G-spa
e X is a G-subsystem of V ∗

1 for a suitable re-�exive Bana
h spa
e V .A seemingly independent development is the new theory of almost equi-
ontinuous dynami
al systems (AE). This was developed in a series of papers:Glasner &Weiss [25℄, Akin, Auslander & Berg [1, 2℄ and Glasner &Weiss [26℄.In the latter the 
lass of lo
ally equi
ontinuous dynami
al systems (LE) wasintrodu
ed and studied. It was shown there that the 
olle
tion LE(G) oflo
ally equi
ontinuous fun
tions forms a uniformly 
losed G-invariant sub-algebra of ℓ∞(G) 
ontaining WAP(G) and having the property that ea
hminimal fun
tion in LE(G) is almost periodi
.Of 
ourse the 
lassi
al theory of WAP fun
tions is valid for a generaltopologi
al group G and it is not hard to see that the AE theory, as wellas the theory of K(G)-fun
tions�whi
h we 
all Vee
h fun
tions�extend tosu
h groups as well.Let V be a Bana
h spa
e, V ∗ its dual. A 
ompa
t dynami
al G-system
X is V ∗-representable if there exist a weakly 
ontinuous 
o-homomorphism
G → Iso(V ), where Iso(V ) is the group of linear isometries of a Bana
hspa
e V onto itself, and a G-embedding φ : X → V ∗

1 , where V ∗
1 is the weak∗-
ompa
t unit ball of the dual Bana
h spa
e V ∗ and the G-a
tion is thedual a
tion indu
ed on V ∗

1 from the G-a
tion on V . An old observation (dueto Teleman [53℄) is that every 
ompa
t dynami
al G-system X is C(X)∗-representable.The notion of an Eberlein 
ompa
t (Eb) spa
e in the sense of Amir andLindenstrauss [4℄ is well studied and it is known that su
h spa
es are 
har-a
terized by being homeomorphi
 to a weakly 
ompa
t subset of a Bana
h(equivalently: re�exive Bana
h) spa
e. Later the notion of Radon�Nikodým(RN) 
ompa
t topologi
al spa
es was introdu
ed. These 
an be 
hara
ter-ized as weak∗-
ompa
t sets in the duals V ∗ with the RN property. A Bana
hspa
e V whose dual has the Radon�Nikodým property is 
alled an Asplund
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e (see, for example, [22, 48℄ and Remark 6.2.3). We refer to the ex-
ellent 1987 paper of I. Namioka [48℄ where the theory of RN 
ompa
ts isexpounded.One of the main obje
ts of [45℄ was the investigation of RN systems(a dynami
al analog of RN 
ompa
ta) and the related 
lass of fun
tions
alled �Asplund fun
tions�. More pre
isely, 
all a dynami
al system whi
his linearly representable as a weak∗-
ompa
t subset of a dual Bana
h spa
ewith the Radon�Nikodým property a Radon�Nikodým system (RN for short).The 
lass of RN-approximable systems, that is, subsystems of produ
ts ofRN systems, will be denoted by RNapp. It was shown in [45℄ that WAP ⊂
RNapp ⊂ LE.Given a 
ompa
t dynami
al G-system X, a subgroup H < G and afun
tion f ∈ C(X), de�ne a pseudometri
 ̺H,f on X as follows:

̺H,f (x, x
′) = sup

h∈H
|f(hx) − f(hx′)|.We say that f is an Asplund fun
tion (notation: f ∈ Asp(X)) if the pseu-dometri
 spa
e (X, ̺H,f ) is separable for every 
ountable subgroup H < G.These are exa
tly the fun
tions whi
h 
ome from linear G-representationsof X on V ∗ with V Asplund. By [45℄, a 
ompa
t G-system X is RNapp i�

C(X) = Asp(X) and always WAP(X) ⊂ Asp(X).The �rst se
tion of the paper is a brief review of some known aspe
ts ofabstra
t topologi
al dynami
s whi
h provide a 
onvenient framework for ourresults. In the se
ond se
tion we dis
uss enveloping semigroups and semi-group 
ompa
ti�
ations. Our treatment di�ers slightly from the traditionalapproa
h and terminology and 
ontains some new observations. For moredetails we refer to the books [19, 23, 24, 60, 10, 6℄. See also [8, 38, 59℄.In [37℄ Köhler shows that the well known Bourgain�Fremlin�Talagranddi
hotomy, when applied to the family {fn : n ∈ N} of iterates of a 
on-tinuous interval map f : I → I, yields a 
orresponding di
hotomy for theenveloping semigroups. In the third se
tion we generalize this and obtain aBourgain�Fremlin�Talagrand di
hotomy for enveloping semigroups of metri
dynami
al systems.Se
tion 4 treats the property of m-approximability , i.e. of being approx-imable by metri
 systems. For many groups G every dynami
al G-systemis m-approximable and we 
hara
terize su
h groups as being exa
tly theuniformly Lindelöf groups.In Se
tion 5 we re
all some important notions like almost equi
ontinuity,WAP and LE and relate them to universal systems. We also study the relatednotion of lightness of a fun
tion f ∈ RUC(G), i.e. the 
oin
iden
e of thepointwise and the norm topologies on its G-orbit.Se
tion 6 is devoted to some results 
on
erning fragmentability. These willbe 
ru
ial at many points in the rest of the paper. In Se
tion 7 we investigate
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tions and their relations to fragmentability. In Se
tion 8 we dealwith the related 
lass of Vee
h fun
tions. As already mentioned the latter
lass K(G) is a generalization of Vee
h's de�nition [58℄. We show that everyAsplund fun
tion is a Vee
h fun
tion and that for separable groups thesetwo 
lasses 
oin
ide.In Se
tion 9 we introdu
e the dynami
al properties of HAE and HNS andshow that they are intimately related to the linear representation 
onditionof being an RN system. In parti
ular for metrizable 
ompa
t systems weestablish the following equalities and in
lusions:
Eb = WAP ⊂ RN = HAE = HNS = RNapp ⊂ LE.Here Eb stands for Eberlein systems�a dynami
al version of Eberlein 
om-pa
ts (see De�nition 7.5). Se
tion 10 is devoted to various examples andappli
ations. We show that for symboli
 systems the RN property is equiv-alent to having a 
ountable phase spa
e; and that any Z-dynami
al system

(f,X), where X is either the unit interval or the unit 
ir
le and f : X → Xis a homeomorphism, is an RN system.In Se
tion 11 we show that the Glasner�Weiss examples of re
urrent-transitive LE but not WAP metri
 
as
ades are a
tually HAE. In Se
tion 12we investigate the min
enter of an HAE system, and in Se
tion 13 we usea modi�ed 
onstru
tion to produ
e an example of a re
urrent-transitive, LEbut not HAE system. This example exhibits the sharp distin
tion betweenthe possible min
enters of LE and HAE systems.In Se
tion 14, using fragmented families of fun
tions and Namioka's joint
ontinuity theorem, we establish an enveloping semigroup 
hara
terization ofAsplund fun
tions and HNS systems. Our results imply that the Ellis semi-group E(X) of a 
ompa
t metrizable HNS system (G,X) is a Rosenthal
ompa
t. In parti
ular, by a result of Bourgain�Fremlin�Talagrand [12℄, wededu
e that E(X) is angeli
 (hen
e, it 
annot 
ontain a subspa
e homeo-morphi
 to βN). Finally in Se
tion 15 we show how a theorem of Todor£evi¢implies that for a metri
 RN system, E(X) either 
ontains an un
ountabledis
rete subspa
e or admits an at most two-to-one metri
 G-fa
tor.We are indebted to Stevo Todor£evi¢ for enlightening 
omments. Thanksare due to Hanfeng Li for a 
riti
al reading of the manus
ript and his 
on-sequent fruitful suggestions, in
luding improvements in the statement andproof of Propositions 5.14 and 9.5. We would like to thank Ethan Akin for a
areful reading of the paper and for suggesting several improvements. Finally,we thank Benjy Weiss for many helpful 
onversations.1. Topologi
al dynami
s ba
kground. Usually all the topologi
alspa
es we deal with are assumed to be Hausdor� and 
ompletely regular.However, o

asionally we will 
onsider a pseudometri
 on a spa
e, in whi
h
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ase of 
ourse the resulting topology need not be even T0. Let G×X → Xbe a 
ontinuous (left) a
tion of the topologi
al group G on the topologi
alspa
e X. As usual, we say that (G,X), or X (when the group is understood),is a G-spa
e or a G-a
tion. Every G-invariant subset Y ⊂ X de�nes a G-subspa
e of X. Re
all that every topologi
al group G 
an be treated as a
G-spa
e under the left regular a
tion of G on itself. IfX is a 
ompa
t G-spa
ethen sometimes we 
all it also a G-system or just a system. We say that a
G-spa
e X is a subdire
t produ
t of a 
lass Γ of G-spa
es if X is a G-subspa
eof a G-produ
t of some members of Γ .The notations (X, τ) and (X,µ) are used for a topologi
al and a uni-form spa
e respe
tively. When the a
ting group is the group Z of integers,we sometimes write (T,X) instead of (Z, X), where T : X → X is thehomeomorphism whi
h 
orresponds to the element 1 ∈ Z (su
h systems aresometimes 
alled 
as
ades). We write gx for the image of x ∈ X underthe homeomorphism ğ : X → X whi
h 
orresponds to g ∈ G. As usual,
Gx = OG(x) = {gx : g ∈ G} is the orbit of x and OG(x) = cls(Gx) isthe 
losure in X of OG(x). If (G, Y ) is another G-system then a surje
tive
ontinuous G-map π : X → Y (that is, gπ(x) = π(gx) for all (g, x) ∈ G×X)is 
alled a homomorphism. We also say that Y is a G-fa
tor of X. When
(G,X) is a dynami
al system and Y ⊂ X is a non-empty 
losed G-invariantsubset, we say that the dynami
al system (G, Y ), obtained by restri
tionto Y , is a subsystem of (G,X).Denote by C(X) the Bana
h algebra of all real-valued bounded fun
tionson a topologi
al spa
e X under the supremum norm. Let G be a topolog-i
al group. We write RUC(G) for the Bana
h subalgebra of C(G) of rightuniformly 
ontinuous (1) real-valued bounded fun
tions on G. These arethe fun
tions whi
h are uniformly 
ontinuous with respe
t to the right uni-form stru
ture on G. Thus, f ∈ RUC(G) i� for every ε > 0 there exists aneighborhood V of the identity element e ∈ G su
h that supg∈G |f(vg) −
f(g)| < ε for every v ∈ V . It is equivalent to say that the orbit map
G → C(G), g 7→ gf , is norm 
ontinuous where gf is the left translationof f de�ned by gf(x) = Lg(f)(x) := f(gx). Analogously 
an be de�nedthe algebra LUC(G) of left uniformly 
ontinuous fun
tions and the righttranslations fg(x) = Rg(f)(x) := f(xg). It is easy to see that UC(G) :=
RUC(G) ∩ LUC(G) is a left and right G-invariant 
losed subalgebra of
RUC(G).More generally: for a given (not ne
essarily 
ompa
t) G-spa
e X a fun
-tion f ∈ C(X) will be 
alled right uniformly 
ontinuous if the orbit map
G→ C(X), g 7→ gf := Lg(f), is norm 
ontinuous, where Lg(f)(x) := f(gx).The map C(X) × G → C(X), (f, g) 7→ gf , de�nes a right a
tion. The set

(1) Some authors 
all these fun
tions left uniformly 
ontinuous.
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RUC(X) of all right uniformly 
ontinuous fun
tions on X is a uniformly
losed G-invariant subalgebra of C(X).A G-
ompa
ti�
ation of a G-spa
e X is a dense 
ontinuous G-map ν :
X → Y into a 
ompa
t G-system Y . A 
ompa
ti�
ation ν : X → Y isproper when ν is a topologi
al embedding. We say that a G-
ompa
ti�
ation
ν : G → S of X := G (the left regular a
tion) is a right topologi
al semi-group 
ompa
ti�
ation of G if S is a right topologi
al semigroup (that is, forevery x ∈ S the map ̺s : S → S, ̺s(x) = xs, is 
ontinuous) and ν is ahomomorphism of semigroups. There exists a 
anoni
al 1-1 
orresponden
e(see for example [59℄) between the G-
ompa
ti�
ations of X and uniformly
losed G-subalgebras (�subalgebra� will always mean a subalgebra 
ontain-ing the 
onstants) of RUC(X). The G-
ompa
ti�
ation ν : X → Y indu
esan isometri
 G-embedding of G-algebras

jν : C(Y ) → RUC(X), φ 7→ φ ◦ ν,and the algebra Aν (
orresponding to ν) is de�ned as the image jν(C(Y )).Conversely, if A is a uniformly 
losed G-subalgebra of RUC(X), then itsGelfand spa
e |A| ⊂ (A∗,weak∗) has a stru
ture of a dynami
al system
(G, |A|) and the map νA : X → Y := |A|, x 7→ evax, where evax(ϕ) := ϕ(x)is the multipli
ative fun
tional of evaluation at x, de�nes a G-
ompa
ti�-
ation. If ν1 : X → Y1 and ν2 : X → Y2 are two G-
ompa
ti�
ations then
Aν1 ⊂ Aν2 i� ν1 = α ◦ ν2 for some G-homomorphism α : Y2 → Y1. Thealgebra Aν determines the 
ompa
ti�
ation ν uniquely, up to equivalen
e of
G-
ompa
ti�
ations.The G-algebra RUC(X) de�nes the 
orresponding Gelfand spa
e
|RUC(X)| (whi
h we denote by βGX) and the maximal G-
ompa
ti�
ation
iβ : X → βGX. Note that this map may not be an embedding even for Polish
X and G (see [40℄); it follows that there is no proper G-
ompa
ti�
ation forsu
h X. If X is a 
ompa
t G-system then βGX 
an be identi�ed with X and
C(X) = RUC(X).A point x0 ∈ X is a transitive point (notation: x0 ∈ Trans(X)) if
OG(x0) = X, and the G-spa
e X is 
alled point-transitive (or just transi-tive) if Trans(X) 6= ∅. It is topologi
ally transitive if for any two non-emptyopen subsets U, V ⊂ X there exists g ∈ G with gU ∩ V 6= ∅. Every point-transitive G-spa
e is topologi
ally transitive. When X is a metrizable sys-tem, topologi
al transitivity is equivalent to point-transitivity and, in fa
t,to the existen
e of a dense Gδ set of transitive points. For a G-spa
e (G,X)with G lo
ally 
ompa
t we say that a point x ∈ X is a re
urrent point ifthere is a net G ∋ gi → ∞ with x = limi→∞ gix. A system (G,X) with are
urrent transitive point is 
alled a re
urrent-transitive system. Note thata transitive in�nite Z-system is re
urrent-transitive i� X has no isolatedpoints.
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alled weakly mixing if the produ
t system (G,X×X)(where g(x, x′) = (gx, gx′)) is topologi
ally transitive. A system (G,X) is
alled minimal if every point of X is transitive.A triple (G,X, x0) with X 
ompa
t and a distinguished transitive point
x0 is 
alled a pointed dynami
al system (or sometimes an ambit). For ho-momorphisms π : (X,x0) → (Y, y0) of pointed systems we require that
π(x0) = y0. When su
h a homomorphism exists it is unique. A pointeddynami
al system (G,X, x0) 
an be treated as a G-
ompa
ti�
ation νx0

:
G → X, νx0

(g) = gx0. We asso
iate with every F ∈ C(X) the fun
-tion jx0
(F ) = f ∈ RUC(G) de�ned by f(g) = F (gx0). Then the map

jx0
is a
tually the above-mentioned isometri
 embedding jνx0

: C(X) →
RUC(G). Let us denote its image by jx0

(C(X)) = A(X,x0). We have
gf = g(jx0

(F )) = jx0
(F ◦ g). The Gelfand spa
e |A(X,x0)| of the algebra

A(X,x0) is naturally identi�ed with X and in parti
ular the multipli
a-tive fun
tional evae : f 7→ f(e) is identi�ed with the point x0. Moreoverthe a
tion of G on A(X,x0) by left translations indu
es an a
tion of Gon |A(X,x0)| and under this identi�
ation the pointed systems (X,x0) and
(|A(X,x0)|, evae) are isomorphi
.Conversely, if A is a G-invariant uniformly 
losed subalgebra of RUC(G)(here and in what follows, when we say that a subalgebra of RUC(G) is
G-invariant we mean left G-invariant, that is, invariant with respe
t to thea
tion A×G→ A, (f, g) 7→ gf), then its Gelfand spa
e |A| has a stru
tureof a pointed dynami
al system (G, |A|, evae). In parti
ular, we have, 
orre-sponding to the algebra RUC(G), the universal ambit (G,GR, evae) wherewe denote the Gelfand spa
e |RUC(G)| = βGG by GR. (See for example [19℄or [60℄ for more details.)It is easy to 
he
k that for any 
olle
tion {(G,Xθ, xθ) : θ ∈ Θ} of pointedsystems we have

A
( ∨

{(Xθ, xθ) : θ ∈ Θ}
)

=
∨

{A(Xθ, xθ) : θ ∈ Θ},where ∨
{(Xθ, xθ) : θ ∈ Θ} is the orbit 
losure of the point x in the prod-u
t spa
e ∏

θ∈ΘXθ whose θ-
oordinate is xθ, and the algebra on the righthand side is the 
losed subalgebra of RUC(G) generated by the union of thesubalgebras A(Xθ, xθ).Definition 1.1. 1. We say that a fun
tion f ∈ C(X) on a G-spa
e
X 
omes from a G-system Y if there exist a G-
ompa
ti�
ation ν :
X→ Y (so, ν is onto if X is 
ompa
t) and a fun
tion F ∈ C(Y ) su
hthat f = ν ◦F (equivalently, f ∈ Aν). Then ne
essarily f ∈ RUC(X).Only the maximal G-
ompa
ti�
ation iβ : X → βGX has the propertythat every f ∈ RUC(X) 
omes from iβ.
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tion f ∈ C(G) 
omes from a pointed system (Y, y0) (and thenne
essarily f ∈ RUC(G)) if for some 
ontinuous fun
tion F ∈ C(Y )we have f(g) = F (gy0) for all g ∈ G, i.e. f = jy0(F ) (equivalently, if
f ∈ A(Y, y0)). De�ning ν : X = G → Y by ν(g) = gy0 we observethat this is indeed a parti
ular 
ase of 1.1.1.3. A fun
tion f ∈ RUC(X) is 
alled minimal if it 
omes from a minimalsystem.2. The enveloping semigroup. The enveloping (or Ellis) semigroup

E = E(G,X) = E(X) of a dynami
al system (G,X) is de�ned as the 
lo-sure in XX (with its 
ompa
t, usually non-metrizable, pointwise 
onvergen
etopology) of the set Ğ = {ğ : X → X}g∈G 
onsidered as a subset of XX .With the operation of 
omposition of maps this is a right topologi
al semi-group. Moreover, the map i : G → E(X), g 7→ ğ, is a right topologi
alsemigroup 
ompa
ti�
ation of G.Proposition 2.1. The enveloping semigroup of a dynami
al system
(G,X) is isomorphi
 (as a dynami
al system) to the pointed produ
t

(E′, ω0) =
∨

{(OG(x), x) : x ∈ X} ⊂ XX .Proof. It is easy to see that the map p 7→ pω0, (G,E, i(e)) → (G,E′, ω0),is an isomorphism of pointed systems.Let X be a (not ne
essarily 
ompa
t) G-spa
e. Given f ∈ RUC(X) let
I = [−‖f‖, ‖f‖] ⊂ R and Ω = IG, the produ
t spa
e equipped with the
ompa
t produ
t topology. We let G a
t on Ω by gω(h) = ω(hg), g, h ∈ G.De�ne the 
ontinuous map

f♯ : X → Ω, f♯(x)(g) = f(gx),and the 
losure Xf := cls(f♯(X)) in Ω. Note that Xf = f♯(X) whenever Xis 
ompa
t.Denoting the unique 
ontinuous extension of f to βGX by f̃ we nowde�ne a map
ψ : βGX → Xf , ψ(y)(g) = f̃(gy), y ∈ βGX, g ∈ G.Let pre : Ω → R denote the proje
tion of Ω = IG onto the e-
oordinate andlet Fe := pre↾Xf

: Xf → R be its restri
tion to Xf . Thus, Fe(ω) := ω(e) forevery ω ∈ Xf .For every f ∈ RUC(X) denote by Af the smallest 
losed G-invariantsubalgebra of RUC(X) whi
h 
ontains f . There is then a naturally de�ned G-a
tion on the Gelfand spa
e |Af | and a G-
ompa
ti�
ation (homomorphismof dynami
al systems if X is 
ompa
t) πf : X → |Af |. Next 
onsider themap π : βGX → |Af |, the 
anoni
al extension of πf .
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tion of G on Ω is not in general 
ontinuous. However, the restri
teda
tion on Xf is 
ontinuous for every f ∈ RUC(X). This follows from these
ond assertion of the next proposition.Proposition 2.2. 1. Ea
h ω ∈ Xf is an element of RUC(G).2. The map ψ : βGX → Xf is a 
ontinuous homomorphism of G-systems. The dynami
al system (G, |Af |) is isomorphi
 to (G,Xf )and the diagram
X

πf

��

iβ
//

π

""FF
FF

FF
FF

F
βGX

f♯||xxxxxxxx

ψ
��

f̃

!!B
BB

BB
BB

BB

|Af | // Xfoo Fe // R
ommutes.3. f = Fe ◦ f♯. Thus every f ∈ RUC(X) 
omes from the system Xf .Moreover , if f 
omes from a system Y and a G-
ompa
ti�
ation ν :
X → Y then there exists a homomorphism α : Y → Xf su
h that
f♯ = α ◦ ν. In parti
ular , f ∈ Af ⊂ Aν .Proof. 1. f ∈ RUC(X) implies that f♯(X) is a uniformly equi
ontin-uous subset of IG (endowing G with its right uniform stru
ture). Thus,the pointwise 
losure cls(f♯(X)) = Xf is also uniformly equi
ontinuous. Inparti
ular, for every ω ∈ Xf the fun
tion ω : G → I is right uniformly
ontinuous.2. Suppose iβ(xν) ∈ iβ(X) is a net 
onverging to y ∈ βGX. Then

ψ(y)(g) = f̃(gy) = limν f(gxν) = limν f♯(xν)(g). Thus ψ(y) = limν f♯(xν)is indeed an element of Xf and it is easy to see that ψ is a 
ontinuous
G-homomorphism. In parti
ular, we see that Xf , being a G-fa
tor of βGX,is indeed a G-system (i.e. the G-a
tion on Xf is jointly 
ontinuous).Now we use the map π : βGX → |Af |. By de�nition, the elements of βGXare 
ontinuous multipli
ative linear fun
tionals on the algebra RUC(X), andfor y ∈ βGX its value π(y) ∈ |Af | is the restri
tion y↾Af

to the subalgebra
Af ⊂ RUC(X). For g ∈ G, as above, let gf ∈ Af ⊂ RUC(X) be de�nedby gf(x) = f(gx). Then π(y1) = π(y2) implies y1(gf) = f̃(gy1) = f̃(gy2) =
y2(gf) for every g ∈ G.Conversely, assuming f̃(gy1) = f̃(gy2) for every g ∈ G, we observe that,as y1 and y2 are multipli
ative fun
tionals, we also have y1(h) = y2(h) forevery h in the subalgebra A0 generated by the family {gf : g ∈ G}. Sin
e
A0 is dense in Af and as y1 and y2 are 
ontinuous we dedu
e that π(y1) =
y1↾Af

= y2↾Af
= π(y2).We 
learly have ψ(y1) = ψ(y2) ⇔ f̃(gy1) = f̃(gy2) for every g ∈ G. Thusfor y1, y2 ∈ βGX we have π(y1) = π(y2) ⇔ ψ(y1) = ψ(y2) ⇔ f̃(gy1) =
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f̃(gy2) for every g ∈ G, and we �nd that indeed |Af | and Xf are isomorphi

G-systems.The veri�
ation of the 
ommutativity of the diagram is straightforward.3. Clearly, Fe(f♯(x)) = f♯(x)(e) = f(ex) = f(x) for every x ∈ X. Forthe rest use the G-isomorphism |Af | ↔ Xf (assertion 2). If f = F ◦ ν forsome F ∈ C(Y ) then f ∈ Aν . This implies the in
lusion of G-subalgebras
Af ⊂ Aν , whi
h leads to the desired G-homomorphism α : Y → Xf .Remark 2.3. 1. Below we use the map f♯ : X → Xf and Proposition 2.2in two parti
ular 
ases. First, for a 
ompa
t G-spa
e X when 
learly

βGX 
an be repla
ed by X. We also frequently 
onsider the 
ase ofthe left regular a
tion of G on X := G (see Proposition 2.4). Here the
anoni
al maximal G-
ompa
ti�
ation iβ : X → βGX is a
tually the
ompa
ti�
ation G → GR and the orbit Gf = {Rg(f)}g∈G = f♯(G)of f ∈ RUC(G) is pointwise dense in Xf = cls(f♯(G)) ⊂ Ω = IG.2. βGX is a subdire
t produ
t of the G-systems Xf where f ∈ RUC(X).This follows easily from Proposition 2.2 and the fa
t that elementsof C(βGX) = {f̃ : f ∈ RUC(X)} separate points and 
losed subsetsof βGX.3. Proposition 2.2.3 a
tually says that the 
ompa
ti�
ation f♯ :X→Xfis minimal (in fa
t, the smallest) among all G-
ompa
ti�
ations ν :
X → Y su
h that f ∈ RUC(X) 
omes from ν. The maximal 
om-pa
ti�
ation in the same setting is 
learly iβ : X → βGX.Proposition 2.4. 1. Consider the left regular a
tion of G on X := G.For every f ∈ RUC(G) we have Gf ⊂ Xf = OG(f) ⊂ Ω, f♯(e) = fand Fe(gf) = f(g) for every g ∈ G.2. The pointed G-system (|Af |, evae) is isomorphi
 to (Xf , f) (hen
e
Af = A(Xf , f)).3. f = Fe ◦ f♯. Thus every f ∈ RUC(G) 
omes from the pointed system
(Xf , f). Moreover , if f 
omes from a pointed system (Y, y0) and ν :
(G, e) → (Y, y0) is the 
orresponding G-
ompa
ti�
ation then thereexists a homomorphism α : (Y, y0) → (Xf , f) su
h that f♯ = α ◦ ν. Inparti
ular , f ∈ Af ⊂ A(Y, y0).4. Denote by XH

f ⊂ IH the dynami
al system 
onstru
ted for the sub-group H < G and the restri
tion f↾H (e.g., XG
f = Xf ). If H < G isa dense subgroup then, for every f ∈ RUC(G), the dynami
al systems

(H,Xf ) and (H,XH
f ) are 
anoni
ally isomorphi
.Proof. For assertions 1, 2 and 3 use Proposition 2.2 and Remark 2.3.1.4. Let j : Xf → XH
f be the restri
tion of the natural proje
tion

IG→ IH . Clearly, j : (H,Xf ) → (H,XH
f ) is a surje
tive homomorphism. If

j(ω) = j(ω′) then ω(h) = ω′(h) for every h ∈ H. Sin
e by Proposition 2.2.1
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ontinuous fun
tion on G and sin
e we assume that H isdense in G, we 
on
lude that ω = ω′ so that j is an isomorphism.Definition 2.5. We say that a pointed dynami
al system (G,X, x0)is point-universal if for every x ∈ X there is a homomorphism πx :
(X,x0) → (OG(x), x). A 
losed G-invariant subalgebra A ⊂ RUC(G) is
alled point-universal if the 
orresponding Gelfand system (G, |A|, evae) ispoint-universal.Proposition 2.6. The following 
onditions on the pointed dynami
alsystem (G,X, x0) are equivalent :1. (X,x0) is point-universal.2. A(X,x0) =

⋃
x∈X A(OG(x), x).3. (X,x0) is isomorphi
 to its enveloping semigroup (E(X), i(e)).Proof. 1 ⇒ 2: Clearly, A(X,x0) = A(OG(x0), x0) ⊂

⋃
x∈X A(OG(x), x).Suppose f(g) = F (gx) for all g ∈ G and for some F ∈ C(OG(x)) and

x ∈ X. Sin
e (X,x0) is point-universal there exists a homomorphism πx :
(X,x0) → (OG(x), x). Hen
e f(g) = F (gx) = F (gπx(x0)) = F (πx(gx0)) =
(F ◦ πx)(gx0) = jx0

(F ◦ πx)(g) and we 
on
lude that f = jx0
(F ◦ πx) ∈

A(X,x0).
2 ⇒ 3: Proposition 2.1 guarantees the existen
e of a pointed isomor-phism between the systems (E(X), i(e)) and ∨

x∈X(OG(x), x). Now, usingour assumption we have
A(E(X), i(e)) = A

( ∨

x∈X

(OG(x), x)
)

=
∨

x∈X

A(OG(x), x) = A(X,x0),when
e the isomorphism of (X,x0) and (E(X), i(e)).
3 ⇒ 1: For any �xed x ∈ X the map πx : E(X) → X de�ned by

πx(p) = px is a G-homomorphism with πx(i(e)) = x. Our assumption that
(X,x0) and (E(X), i(e)) are isomorphi
 now implies the point-universalityof (X,x0).Proposition 2.7. A transitive system (G,X, x0) is point-universal i�the map G→ X, g 7→ gx0, is a right topologi
al semigroup 
ompa
ti�
ationof G.Proof. The ne
essity of the 
ondition follows dire
tly from Proposi-tion 2.6. Suppose now that the map G→ X, g 7→ gx0, is a right topologi
alsemigroup 
ompa
ti�
ation of G. Given x ∈ X we observe that the map ̺x :
(X,x0) → (X,x), ̺x(z) = zx, is a homomorphism of pointed systems, sothat (G,X, x0) is point-universal.In parti
ular, for every G-system X the enveloping semigroup (E(X),
i(e)), as a pointed G-system, is point-universal. Here, as before, i : G →
E(X), g 7→ ğ, is the 
anoni
al enveloping semigroup 
ompa
ti�
ation.
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ompa
t system and
A = A(X,x0) the 
orresponding (always left G-invariant) subalgebra of
RUC(G). The following 
onditions are equivalent :1. (G,X, x0) is point-universal.2. Xf ⊂ A for every f ∈ A (in parti
ular , A is also right G-invariant).Proof. 1 ⇒ 2: Let f : G → R belong to A. Consider the G-
ompa
ti�-
ation f♯ : G → Xf := cls(Gf) as de�ned by Proposition 2.4. We have toshow that ϕ ∈ A for every ϕ ∈ Xf . Consider the orbit 
losure Xϕ = cls(Gϕ)in Xf . By De�nition 1.1.2 there exists a 
ontinuous fun
tion F : X → Rsu
h that f(g) = F (gx0) for every g ∈ G. That is, f 
omes from the pointedsystem (X,x0). For some net gi ∈ G we have ϕ(g) = limi f(ggi) for every
g ∈ G and with no loss in generality we have x1 = limi gix0 ∈ X. Then

ϕ(g) = lim
i
f(ggi) = lim

i
F (ggix0) = F (gx1).Thus ϕ 
omes from the pointed system (OG(x1), x1) and in view of Propo-sition 2.6 we 
on
lude that indeed ϕ ∈ A.

2 ⇒ 1: De�ne the G-ambit
(Y, y0) :=

∨
{(Xf , f) : f ∈ A}.First we show that A(X,x0) = A(Y, y0). Indeed, as we know,

A(Y, y0) =
∨

{A(Xf , f) : f ∈ A}.Proposition 2.4 implies that f ∈ Af = A(Xf , f) for every f ∈ A(X,x0).Thus
f ∈ Af = A(Xf , f) ⊂ A(Y, y0) ∀f ∈ A(X,x0).Therefore, A(X,x0) ⊂ A(Y, y0). On the other hand, Af = A(Xf , f)

⊂ A(X,x0) (for every f ∈ A(X,x0)) be
ause A(X,x0) is left G-invariant and
Af is the smallest 
losed left G-invariant subalgebra of RUC(G) whi
h 
on-tains f . This implies that A(Y, y0) ⊂ A(X,x0). Thus, A(X,x0) = A(Y, y0).Denote this algebra simply by A.Suppose py0 = qy0 for p, q ∈ E(Y ) (the enveloping semigroup of (G, Y )).By our assumption, Xf ⊂ A for every f ∈ A. Then every y ∈ Y , 
onsideredas an element of the produ
t spa
e ∏

f∈AXf , has the property that its f -
oordinate, say yf , is again an element ofA and it follows that yf appears as a
oordinate of y0 as well. Therefore also pyf = qyf and it follows that py = qy.Thus the map p 7→ py0 from (E(Y ), i(e)) to (Y, y0) is an isomorphism. ByProposition 2.6, (Y, y0) (and hen
e also (X,x0)) is point-universal.(Observe that Gf = {Rg(f)}g∈G ⊂ Xf := cls(Gf). Therefore, the 
on-dition Xf ⊂ A for all f ∈ A trivially implies that A is right invariant.)Proposition 2.9. Let P be a property of 
ompa
t G-dynami
al systemswhi
h is preserved by produ
ts, subsystems and G-isomorphisms.



236 E. GLASNER AND M. MEGRELISHVILI1. Let X be a (not ne
essarily 
ompa
t) G-spa
e and let PX ⊂ C(X)be the 
olle
tion of fun
tions 
oming from systems having property P .Then there exists a maximal G-
ompa
ti�
ation XP of X with prop-erty P . Moreover , j(C(XP)) = PX . In parti
ular , PX is a uniformly
losed , G-invariant subalgebra of RUC(X).2. Let P ⊂ C(G) be the set of fun
tions 
oming from systems with prop-erty P . Then (GP , evae) is the universal point-transitive 
ompa
t G-system having property P . Moreover P is a point-universal subalgebraof RUC(G). (Thus, P is uniformly 
losed , right and left G-invariant ,and Xf ⊂ P for every f ∈ P.)3. If in addition P is preserved by fa
tors then f ∈ P i� Xf has prop-erty P .Proof. 1. We only give an outline of the rather standard pro
edure.There is a 
omplete set {νi : X → Yi}i∈I of equivalen
e 
lasses of G-
ompa
ti�
ations of X su
h that ea
h Yi has property P . De�ne the de-sired 
ompa
ti�
ation ν : X → Y = cls(ν(X)) ⊂
∏
i∈I Yi via the diagonalprodu
t. Then we get the suprema of our 
lass of G-
ompa
ti�
ations. Infa
t, Y has property P be
ause the given 
lass is 
losed under subdire
tprodu
ts. f ∈ P means that it 
omes from some Yi via the 
ompa
ti�
ation

νi : X → Yi. Denote Y by XP . Now using the natural proje
tion of Y on Yiit follows that f 
omes from Y = XP . This implies j(C(XP)) = PX .2. The 
onstru
tion of the maximal ambit (GP , evae) with property Pis similar. In fa
t it is a parti
ular 
ase of the �rst assertion identifying
G-ambits (Y, y0) and G-
ompa
ti�
ations νy0 : G → Y , νy0(g) = gy0, of
X := G. As to the point-transitivity of P note that a

ording to the de�-nition the uniformly 
losed subalgebra P ⊂ RUC(G) is the set of fun
tions
oming from systems with property P . Every subsystem of GP has property
P . In parti
ular, (OG(x), x) has property P . Therefore, P 
ontains the al-gebra A(OG(x), x) for every x ∈ X. By Proposition 2.6 it follows that Pis point-universal. Thus Proposition 2.8 guarantees that Xf ⊂ P for every
f ∈ P (and that P is right and left G-invariant).3. Use Proposition 2.2.3.3. A dynami
al version of the Bourgain�Fremlin�Talagrand the-orem. Let E = E(X) be the enveloping semigroup of a G-system X. Forevery f ∈ C(X) de�ne

Ef := {pf : X → R}p∈E = {f ◦ p : p ∈ E}, pf (x) = f(px).Then Ef is a pointwise 
ompa
t subset of RX , being a 
ontinuous image of
E under the map qf : E → Ef , p 7→ pf .Re
all that a topologi
al spa
e K is Rosenthal 
ompa
t [27℄ if it is hom-eomorphi
 to a pointwise 
ompa
t subset of the spa
e B1(X) of fun
tions
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lass on a Polish spa
e X. All metri
 
ompa
t spa
es areRosenthal. An example of a separable non-metrizable Rosenthal 
ompa
t isthe Helly 
ompa
t of all (not only stri
tly) in
reasing selfmaps of [0, 1] inthe pointwise topology. Another is the �two arrows� spa
e of Aleksandrovand Urysohn (see Example 14.10 below). A topologi
al spa
e K is angeli
 ifthe 
losure of every subset A ⊂ K is the set of limits of sequen
es from Aand every relatively 
ountably 
ompa
t set in K is relatively 
ompa
t. Notethat the se
ond 
ondition is super�uous if K is 
ompa
t. Clearly, βN, theStone��e
h 
ompa
ti�
ation of the natural numbers N, is not angeli
, andhen
e it 
annot be embedded into a Rosenthal 
ompa
t spa
e.The following theorem is due to Bourgain�Fremlin�Talagrand [12, The-orem 3F℄, generalizing a result of Rosenthal. The se
ond assertion (BFT di-
hotomy) is presented as in the book of Todor£evi¢ [54℄ (see Proposition 1of Se
tion 13).Theorem 3.1. 1. Every Rosenthal 
ompa
t spa
e K is angeli
.2. (BFT di
hotomy) Let X be a Polish spa
e and let {fn}
∞
n=1 ⊂ C(X)be a sequen
e of real-valued fun
tions whi
h is pointwise bounded (i.e.for ea
h x ∈ X the sequen
e {fn(x)}

∞
n=1 is bounded in R). Let K bethe pointwise 
losure of {fn}

∞
n=1 in RX . Then either K ⊂ B1(X) (i.e.

K is Rosenthal 
ompa
t) or K 
ontains a homeomorphi
 
opy of βN.Next we will show how the BFT di
hotomy leads to a 
orrespondingdynami
al di
hotomy (see also [37℄). In the proof we will use the followingobservation. Let G be an arbitrary topologi
al group. For every 
ompa
t
G-spa
e X, denote by j : G → Homeo(X), g 7→ ğ, the asso
iated (always
ontinuous) homomorphism into the group of all selfhomeomorphisms of X.Then the topologi
al group Ğ = j(G) (we will 
all it the natural restri
-tion) naturally a
ts on X. If X is a 
ompa
t metri
 spa
e then Homeo(X),equipped with the topology of uniform 
onvergen
e, is a Polish group. Hen
e,the subgroup Ğ = j(G) is se
ond 
ountable. In parti
ular one 
an always�nd a 
ountable dense subgroup G0 of Ğ.Theorem 3.2 (A dynami
al BFT di
hotomy). Let (G,X) be a metri
dynami
al system and let E = E(X) be its enveloping semigroup. We havethe following alternative: either1. E is a separable Rosenthal 
ompa
t (hen
e cardE ≤ 2ℵ0), or2. the 
ompa
t spa
e E 
ontains a homeomorphi
 
opy of βN, hen
e

cardE = 22ℵ0 .The �rst possibility holds i� Ef is a Rosenthal 
ompa
t for every f ∈ C(X).Proof. Sin
e X is 
ompa
t and metrizable, one 
an 
hoose a sequen
e
{fn}n∈N in C(X) whi
h separates the points of X. For every pair s, t of
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t elements of E there exist a point x0 ∈ X and a fun
tion fn0
fromour sequen
e su
h that fn0

(sx0) 6= fn0
(tx0). It follows that the 
ontinuousdiagonal map

Φ : E →
∏

n∈N

Efn , p 7→ (f1 ◦ p, f2 ◦ p, . . . ),separates the points of E and hen
e is a topologi
al embedding.Now if for ea
h n the spa
e Efn is a Rosenthal 
ompa
t then so is E ∼=
Φ(E) ⊂

∏∞
n=1E

fn , be
ause the 
lass of Rosenthal 
ompa
ts is 
losed under
ountable produ
ts and 
losed subspa
es. On the other hand the map qf :

E → Ef , p 7→ f ◦p, is a 
ontinuous surje
tion for ea
h f ∈ C(X). Therefore,
Ef = cls(qf (G0)) = cls{f ◦ g : g ∈ G0}, where G0 is a 
ountable densesubgroup of Ğ. By Theorem 3.1 (BFT di
hotomy), if at least one Efn isnot Rosenthal then it 
ontains a homeomorphi
 
opy of βN and it is easy tosee that so does its preimage E. (In fa
t if βN ∼= Z ⊂ Efn then any 
losedsubset Y of E whi
h proje
ts onto Z and is minimal with respe
t to theseproperties is also homeomorphi
 to βN.)Again an appli
ation of the BFT di
hotomy yields the fa
t that in the�rst 
ase E is angeli
. Clearly, the 
ardinality of every separable angeli
spa
e is at most 2ℵ0 . Now in order to 
omplete the proof observe that forevery 
ompa
t metri
 G-system X the spa
e E, being the pointwise 
losureof Ğ in XX , is separable, hen
e cardE ≤ 22ℵ0 .The last assertion 
learly follows from the above proof.4. Metri
 approximation of dynami
al systems. Let (X,µ) be auniform spa
e and let ε ∈ µ. We say that X is ε-Lindelöf if the uniform 
over
{ε(x) : x ∈ X}, where ε(x) = {y ∈ X : (x, y) ∈ ε}, has a 
ountable sub
over.If X is ε-Lindelöf for ea
h ε ∈ µ, then it is 
alled uniformly Lindelöf [42℄.We note that (X,µ) is uniformly Lindelöf i� it is ℵ0-pre
ompa
t in the senseof Isbell [30℄. If X, as a topologi
al spa
e, is either separable, Lindelöf or


 (see [30, p. 24℄), then (X,µ) is uniformly Lindelöf. For a metrizableuniform stru
ture µ, (X,µ) is uniformly Lindelöf i�X is separable. Uniformly
ontinuous maps send uniformly Lindelöf subspa
es onto uniformly Lindelöfsubspa
es.A topologi
al group G is ℵ0-bounded (in the sense of Guran [29℄) if forevery neighborhood U of e there exists a 
ountable subset C ⊂ G su
h that
G = CU . Clearly, G being ℵ0-bounded means exa
tly that G is uniformlyLindëlof with respe
t to its right (or left) uniform stru
ture. By [29℄ a group
G is ℵ0-bounded i� G is a topologi
al subgroup of a produ
t of se
ond
ountable topologi
al groups. If G is either separable or Lindelöf (σ-
ompa
t,for instan
e) then G is uniformly Lindelöf.Re
all our notation for the �natural restri
tion� Ğ = j(G), where for a
ompa
t G-system (G,X), the map j : G → Homeo(X) is the asso
iated
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ontinuous homomorphism of G into the group of all selfhomeomorphismsof X (see Se
tion 3).We say that a 
ompa
t G-system X is m-approximable if it is a subdire
tprodu
t ofmetri
 
ompa
t G-systems (see also the notion of quasi-separablityin the sense of [36, 60℄). By Keynes [36℄, every transitive system X with
σ-
ompa
t a
ting group G is m-approximable. The following generalizationprovides a simple 
riterion for m-approximability.Proposition 4.1. Let X be a 
ompa
t G-system. The following 
ondi-tions are equivalent :1. X is an inverse limit of metrizable 
ompa
t G-systems (of dimension

≤ dimX).2. (G,X) is m-approximable.3. Ğ is uniformly Lindelöf.Proof. 1 ⇒ 2 is trivial.For 2 ⇒ 3 observe that for every metri
 
ompa
t G-fa
tor Xi of X the
orresponding natural restri
tion Gi ⊂ Homeo(Xi) of G is se
ond 
ountablewith respe
t to the 
ompa
t open topology. By our assumption it follows thatthe group Ğ ⊂ Homeo(X) 
an be topologi
ally embedded into the produ
t∏
iGi of se
ond 
ountable groups. Hen
e Ğ is uniformly Lindelöf by thetheorem of Guran mentioned above.The impli
ation 3 ⇒ 1 has been proved (one 
an assume that G = Ğ) in[39, p. 82℄ and [41, Theorem 2.19℄ (see also [56, Lemma 10℄).Proposition 4.2. Let G be a topologi
al group. The following 
onditionsare equivalent :1. G is uniformly Lindelöf.2. The greatest ambit GR is m-approximable.3. Every 
ompa
t G-system is m-approximable.4. For every G-spa
e X and ea
h f ∈ RUC(X) the G-system Xf ismetrizable.Proof. 1 ⇒ 4: Given f ∈ RUC(X) the orbit mapG→ RUC(X), g 7→ gf ,is uniformly 
ontinuous, where G is endowed with its right uniform stru
-ture. Sin
e G is uniformly Lindelöf the orbit fG = {gf}g∈G is also uni-formly Lindelöf, hen
e separable in the Bana
h spa
e RUC(X) (inspired by[56, Lemma 10℄). It follows that the Bana
h G-algebra Af generated by fGis also separable. By Proposition 2.2.2, Xf is metrizable.
4 ⇒ 2: Consider the G-spa
e X := G. Assuming that ea
h Xf is metriz-able, we see, by Remark 2.3.2, that GR = βGX is an m-approximable G-system.
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2 ⇒ 1: Sin
e G naturally embeds as an orbit into GR, we see that themap j : G → Ğ ⊂ Homeo(GR) is a homeomorphism. If GR is m-approx-imable then by Proposition 4.1, Ğ (and hen
e G) is uniformly Lindelöf.
1 ⇒ 3: Immediate by Proposition 4.1.
3 ⇒ 2: Trivial.5. Almost equi
ontinuity, lo
al equi
ontinuity and variations.By a uniform G-spa
e (X,µ) we mean a G-spa
e (X, τ) where τ is a (
om-pletely regular Hausdor�) topology, with a 
ompatible uniform stru
ture µ,so that the topology top(µ) de�ned by µ is τ .Definition 5.1. Let (X,µ) be a uniform G-spa
e.1. A point x0 ∈ X is a point of equi
ontinuity (notation: x0 ∈ Eq(X))if for every entourage ε ∈ µ, there is a neighborhood U of x0 su
hthat (gx0, gx) ∈ ε for every x ∈ U and g ∈ G. The G-spa
e X isequi
ontinuous if Eq(X) = X. As usual,X is uniformly equi
ontinuousif for every ε ∈ µ there is δ ∈ µ su
h that (gx, gy) ∈ ε for every

g ∈ G and (x, y) ∈ δ. For X 
ompa
t, equi
ontinuity and uniformequi
ontinuity 
oin
ide.2. The G-spa
e X is almost equi
ontinuous (AE for short) if Eq(X) isdense in X.3. We say that the G-spa
eX is hereditarily almost equi
ontinuous (HAEfor short) if every 
losed uniform G-subspa
e of X is AE.The following fa
t is well known at least for metri
 
ompa
t G-spa
es.See for example [2, Proposition 3.4℄. Note that neither metrizability nor
ompa
tness of (X,µ) are needed in the proof.Lemma 5.2. If (X,µ) is a point-transitive (2) uniform G-spa
e and
Eq(X) is not empty then Eq(X) = Trans(X).Let π : G × X → X be a separately 
ontinuous (at least) a
tion on auniform spa
e (X,µ). Following [3, Ch. 4℄ de�ne the inje
tive map

π♯ : X → C(G,X), π♯(x)(g) = gx,where C(G,X) is the 
olle
tion of 
ontinuous maps from G into X. Givena subgroup H < G endow C(H,X) with the uniform stru
ture of uniform
onvergen
e whose basis 
onsists of the sets of the form
ε̃ = {(f, f ′) ∈ C(H,X) : (f(h), f ′(h)) ∈ ε for all h ∈ H} (ε ∈ µ).We use the map π♯ : X → C(H,X) to de�ne a uniform stru
ture µHon X, as follows. For ε ∈ µ set

[ε]H := {(x, y) ∈ X ×X : (hx, hy) ∈ ε for all h ∈ H}.The 
olle
tion {[ε]H : ε ∈ µ} is a basis for µH .(2) By Lemma 9.2.5 one 
an assume that X is only topologi
ally transitive.
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urs i� the a
tion of H on (X,µ) isuniformly equi
ontinuous. If (X,µ) is metrizable and d denotes some 
om-patible metri
 on X, then the 
orresponding µH is uniformly equivalent tothe following metri
:
dH(x, x′) = supg∈Hd(gx, gx

′).Remark 5.3. 1. It is easy to 
hara
terize µG for G-subsets of RUC(G)(e.g., for Xf = cls(f♯(X)) ⊂ RUC(G)), where µ is the pointwiseuniform stru
ture on RUC(G). The 
orresponding µG is the metri
uniform stru
ture inherited from the norm of RUC(G).2. The arguments of [1, Theorem 2.6℄ show that the uniform spa
e
(X,µG) is 
omplete for every 
ompa
t (not ne
essarily metri
) G-system (X,µ).Lemma 5.4. Let (X,µ) be a uniform G-spa
e. The following 
onditionsare equivalent :1. x0 is a point of equi
ontinuity of the G-spa
e (X,µ).2. x0 is a point of 
ontinuity of the map π♯ : X → C(G,X).3. x0 is a point of 
ontinuity of the map idX : (X,µ) → (X,µG).Proof. Straightforward.Corollary 5.5. Given a 
ompa
t system (G, (X,µ)) (with the unique
ompatible uniform stru
ture µ) the following 
onditions are equivalent :1. (G, (X,µ)) is (uniformly) equi
ontinuous.2. µG = µ.3. π♯ : X → C(G,X) is 
ontinuous.4. µG is pre
ompa
t.Proof. By Remark 5.3.2 the uniform spa
e (X,µG) is 
omplete. Thuspre
ompa
t implies 
ompa
t. This establishes 4 ⇒ 1.The impli
ations 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial upon taking into a

ountLemma 5.4.Lemma 5.6. The uniform stru
ture µG de�ned above is 
ompatible withsubdire
t produ
ts. More pre
isely :1. Let G a
t on the uniform spa
e (X,µ) and let Y be a G-invariantsubset. Then (µG)↾Y = (µ↾Y )G.2. Let {(Xi, µi) : i ∈ I} be a family of uniform G-spa
es. Then (

∏
i µi)G

=
∏
i(µi)G.Proof. Straightforward.Definition 5.7. 1. Let us say that a subset K of a uniform G-spa
e

(X,µ) is light if the topologies indu
ed by the uniformities µ and µG
oin
ide on K. We say that X is orbitwise light if all orbits are lightin X.
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ally equi
ontinuous (LE for short) if everypoint x0 ∈ X is a point of equi
ontinuity of the uniform G-subspa
e
cls(Gx0). That is, for every x0 ∈ X and every element ε of the uni-form stru
ture µ there exists a neighborhood O of x0 in X su
h that
(gx, gx0) ∈ ε for every g ∈ G and every x ∈ O∩ cls(Gx0) (see [26℄). Itis easy to see that the latter 
ondition, equivalently, 
an be repla
edby the weaker 
ondition: x ∈ O ∩Gx0 (this explains Lemma 5.8.1 be-low). It follows by Lemma 5.2 that X is LE i� every point-transitive
losed G-subspa
e of X is AE.Lemma 5.8. 1. x0 ∈ X is a point of equi
ontinuity of cls(Gx0) i� Gx0is light in X.2. X is LE i� X is orbitwise light.3. A pointed system (X,x0) is AE i� the orbit Gx0 is light in X.4. Let f ∈ RUC(X). A subset K ⊂ Xf = cls(f♯(X)) is light i� thepointwise and norm topologies 
oin
ide on K ⊂ RUC(G).Proof. 1. Straightforward.2. Follows dire
tly from assertion 1.3. X is point-transitive and AE. Therefore the nonempty set Eq(X) 
o-in
ides with the set of transitive points (Lemma 5.2). In parti
ular, x0 ∈

Eq(X). Thus, Gx0 is light in X = cls(Gx0) by assertion 1.Conversely, let Gx0 be a light subset and x0 be a transitive point. Thenagain by the �rst assertion x0 ∈ Eq(X). Hen
e Eq(X) (
ontaining Gx0) isdense in X.4. For the last assertion see Remark 5.3.1.Given a G-spa
e X the 
olle
tion AP(X) of fun
tions in RUC(X) 
omingfrom equi
ontinuous systems is the G-invariant uniformly 
losed algebra ofalmost periodi
 fun
tions, where a fun
tion f ∈ C(X) is almost periodi
 i�the set of translates {Lg(f) : g ∈ G}, where Lg(f)(x) = f(gx), forms apre
ompa
t subset of the Bana
h spa
e C(X). This happens i� Xf is norm
ompa
t i� (G,Xf ) is an AP system.A fun
tion f ∈ C(X) is 
alled weakly almost periodi
 (WAP for short, no-tation: f ∈ WAP(X)) if the set of translates {Lg(f) : g ∈ G} forms a weaklypre
ompa
t subset of C(X). We say that a dynami
al system (G,X) isweakly almost periodi
 if C(X) = WAP(X). The 
lassi
al theory shows that
WAP(G) is a left and right G-invariant, uniformly 
losed, point-universalalgebra 
ontaining AP(G) and that every minimal fun
tion in WAP(G) is in
AP(G). In fa
t f ∈ WAP(X) i� Xf is weakly 
ompa
t i� (G,Xf ) is a WAPsystem.The following 
hara
terization of WAP dynami
al systems is due toEllis [18℄ (see also Ellis and Nerurkar [20℄) and is based on a result of



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 243Grothendie
k [28℄ (namely: pointwise 
ompa
t bounded subsets in C(X)are weakly 
ompa
t for every 
ompa
t X).Theorem 5.9. Let (G,X) be a dynami
al system. The following 
ondi-tions are equivalent :1. (G,X) is WAP.2. The enveloping semigroup E(X) 
onsists of 
ontinuous maps.Remark 5.10. When (G,X) is WAP the enveloping semigroup E(X)is a semitopologi
al semigroup; i.e. for ea
h p ∈ E both ̺p : q 7→ qp and
λp : q 7→ pq are 
ontinuous maps. The 
onverse holds if in addition we assumethat (G,X) is point-transitive. As one 
an verify, the enveloping semigroupof the dynami
al system des
ribed in Example 10.7 below is isomorphi
 tothe Bohr 
ompa
ti�
ation of the integers (use Proposition 2.1). In parti
ularit is a topologi
al group; however, the original system is not even AE andtherefore not WAP as we will shortly see.The next 
hara
terization, of AE metri
 systems, is due to Akin, Aus-lander and Berg [2℄.Theorem 5.11. Let (G,X) be a 
ompa
t metrizable system. The follow-ing 
onditions are equivalent :1. (G,X) is almost equi
ontinuous.2. There exists a dense Gδ subset X0 ⊂ X su
h that every member ofthe enveloping semigroup E is 
ontinuous on X0.Combining these results Akin, Auslander and Berg [2℄ dedu
e that every
ompa
t metri
 WAP system is AE. Sin
e every subsystem of a WAP systemis WAP it follows from Theorems 5.9 and 5.11 that every metrizable WAPsystem is both AE and LE. This result is retrieved, and generalized, in [45℄for all 
ompa
t RNapp G-systems using linear representation methods.Note that a point-transitive LE system is of 
ourse AE but there arenontransitive LE systems whi
h are not AE (e.g., see Remark 10.9.1 below).It was shown in [26℄ that the LE property is preserved under produ
ts,under passage to a subsystem and under fa
tors X → Y provided that X ismetrizable (for arbitrary systems X see Proposition 5.14 below).Let LE(X) be the set of fun
tions on a G-spa
e X 
oming from LEdynami
al systems. It then follows from Proposition 2.9 that LE(G) is auniformly 
losed point-universal left and right G-invariant subalgebra of
RUC(G) and that LE(X), for 
ompa
t X, is the G-subalgebra of C(X) that
orresponds to the unique maximal LE fa
tor of (G,X). The results andmethods of [26℄ show that WAP(X) ⊂ LE(X) and that a minimal fun
tionin LE(X) is almost periodi
 (see also Corollary 5.15.2 below).
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ontrast to the well behaved 
lasses of WAP and LEsystems, it is well known that the 
lass of AE systems is 
losed neither underpassage to subsystems nor under taking fa
tors; see [25, 1℄ and Remark 10.9.1below.By Proposition 2.9 we see that for every G-spa
e X the 
lasses AP(X),
WAP(X), LE(X) form G-invariant Bana
h subalgebras of RUC(X). Re-
all that for a topologi
al group G we denote the greatest ambit of G by
GRUC(G) = GR = |RUC(G)|. It is well known that the maximal 
ompa
t-i�
ation uR : G → GR is a right topologi
al semigroup 
ompa
ti�
ationof G. We adopt the following notation. For a G-invariant 
losed subalgebra
A of RUC(G) let GA denote the 
orresponding fa
tor GR → GA, and for a
G-spa
e X and a 
losed G-subalgebra A ⊂ RUC(X), let XA = |A| denotethe 
orresponding fa
tor βGX → XA.In the next proposition we sum up some old and new observations 
on-
erning some subalgebras of RUC(X) and RUC(G).Proposition 5.13. Let G be a topologi
al group.1. For every G-spa
e X we have the in
lusions

RUC(X) ⊃ LE(X) ⊃ Asp(X) ⊃ WAP(X) ⊃ AP(X),and the 
orresponding G-fa
tors
βGX → XLE → XAsp → XWAP → XAP.2. For every topologi
al group G we have the in
lusions

RUC(G) ⊃ UC(G) ⊃ LE(G) ⊃ Asp(G) ⊃ WAP(G) ⊃ AP(G),and the 
orresponding G-fa
tors
GR → GUC → GLE → GAsp → GWAP → GAP.3. The 
ompa
ti�
ations GAP and GWAP of G are respe
tively a topo-logi
al group and a semitopologi
al semigroup; GR and GAsp are righttopologi
al semigroup 
ompa
ti�
ations of G.Proof. For the properties of Asp(X) we refer to Se
tion 7, Theorem 7.6.6and Lemma 9.8.2.In order to show that UC(G) ⊃ LE(G) we only have to 
he
k that

LUC(G) ⊃ LE(G). Let f ∈ LE(G). By the de�nition f 
omes from apoint-transitive LE system (X,x0). Therefore for some 
ontinuous fun
tion
F : X → R we have f(g) = F (gx0). Let µ be the natural uniform stru
tureon X. For a given ε > 0 
hoose an entourage δ ∈ µ su
h that |F (x)−F (y)| <
ε for every (x, y) ∈ δ. Sin
e x0 is a point of equi
ontinuity we 
an 
hoosea neighborhood O of x0 su
h that (gx, gx0) ∈ δ for every (g, x) ∈ G × O.Now pi
k a neighborhood U of e ∈ G su
h that Ux0 ⊂ O. Then 
learly
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|F (gux0)−F (gx0)| < ε for every (g, u) ∈ G×U ; equivalently, |f(gu)−f(g)|
< ε. This means that f ∈ LUC(G).Now we show the hereditariness of LE under fa
tors.Proposition 5.14. Let X be a 
ompa
t LE G-system. If π : X → Y isa G-homomorphism then (G, Y ) is LE.Proof. We have to show that ea
h point y0 in the spa
e Y is an equi
onti-nuity point of the subsystem OG(y0). Fix y0 ∈ Y and assume, with no loss ingenerality, that OG(y0) = Y . Furthermore, sin
e by Zorn's Lemma there is asubsystem of X whi
h is minimal with the property that it proje
ts onto Y ,we may and do assume that X itself is minimal with respe
t to this property.Denoting by Y0 the subset of transitive points in Y it then follows that theset X0 = π−1(Y0) 
oin
ides with the set of transitive points in X. Let ε be anelement of the uniform stru
ture of Y (i.e. a neighborhood of the identity in
Y ×Y ). Then the preimage δ := π−1(ε) is an element of the uniform stru
tureof X. Let q be a preimage of y0. Then q ∈ Eq(X) sin
e q is transitive and Xis LE (see Lemma 5.2). Thus there exists an open neighborhood Uq of q su
hthat (gx, gq) ∈ δ for all g ∈ G and x ∈ Uq. Let V be the union of all su
h
Uq's for q running over the preimages of y0. Then V is an open neighborhoodof π−1(y0). Set W to be Y \ π(X \ V ). Then W is an open neighborhoodof y0 and W ⊂ π(V ). For any y ∈ W we 
an �nd some preimage q of y0and some point x ∈ Uq su
h that π(x) = y. Then (gx, gq) ∈ δ for all g ∈ G,whi
h means that (gy, gy0) ∈ ε for all g ∈ G. Therefore y0 ∈ Eq(Y ).Corollary 5.15. Let G be a topologi
al group, X a G-spa
e and f ∈
RUC(X). Then1. f ∈ LE(X) ⇔ Xf is LE.2. If f ∈ LE(X) is a minimal fun
tion then f ∈ AP(X).Proof. 1. Use Propositions 5.14 and 2.9.3.2. Observe that every minimal LE system is AP.Our next result is an intrinsi
 
hara
terization of the LE property of afun
tion.First re
all that for the left regular a
tion of G on X := G, the spa
e
Xf 
an be de�ned as the pointwise 
losure of the orbit Gf (Remark 2.3.1)in RUC(G).Definition 5.16. We say that a fun
tion f ∈ RUC(G) is1. light (notation: f ∈ light(G)) if the pointwise and norm topologies 
o-in
ide on the orbit Gf = {Rg(f)}g∈G = {fg}g∈G ⊂ Xf (with X := G)as a subset of RUC(G);2. hereditarily light (notation: f ∈ hlight(G)) if the pointwise and normtopologies 
oin
ide on the orbit Gh for every h ∈ Xf .



246 E. GLASNER AND M. MEGRELISHVILIBy Lemma 5.8.4 and De�nition 5.7.1, f ∈ light(G) (resp. f ∈ hlight(G))i� Gf is a light subset of the G-system Xf (resp. i� Xf is orbitwise light).Proposition 5.17. For every topologi
al group G and f ∈ RUC(G) wehave:1. UC(G) ⊃ light(G).2. f ∈ light(G) ⇔ Xf is AE.3. f ∈ hlight(G) ⇔ Xf is LE.Proof. 1. f ∈ light(G) means that the pointwise and norm topologies
oin
ide on Gf . It follows that the orbit map G → RUC(G), g 7→ fg, isnorm 
ontinuous. This means that f is also left uniformly 
ontinuous.2. Sin
e f is a transitive point of Xf = cls(Gf) we 
an use Lemma 5.8.3.3. Use Lemma 5.8.2.Theorem 5.18. LE(G) = hlight(G) for every topologi
al group G.Proof. Follows from Proposition 5.17.3 and Corollary 5.15.1.Remark 5.19. 1. By [45, Theorem 8.5℄, for every topologi
al group Gand every f ∈ WAP(G) the pointwise and norm topologies 
oin
ideon fG = {Lg(f)}g∈G = {gf}g∈G. Using the involution
UC(G) → UC(G), f 7→ f∗ (f∗(g) := f(g−1))(observe that Gf∗ = (fG)∗) we get the 
oin
iden
e of the above-mentioned topologies also on Gf∗. Sin
e (WAP(G))∗ = WAP(G) we
an 
on
lude that WAP(G) ⊂ light(G) for every topologi
al group G.Theorem 5.18 provides a stronger in
lusion LE(G) ⊂ light(G) (sin
e

WAP(G) ⊂ LE(G) by Proposition 5.13.2).2. In view of Proposition 5.17.2 a minimal fun
tion is light i� it is AP.Thus, for example, the fun
tion f(n) = cos(n2) on the integers, whi
h
omes from a minimal distal but not equi
ontinuous Z-system on the
2-torus, is not light.6. Fragmented maps and families. The following de�nition is ageneralized version of fragmentability (impli
itly it appears in a paper ofNamioka and Phelps [49℄) in the sense of Jayne and Rogers [33℄.Definition 6.1 ([42℄). Let (X, τ) be a topologi
al spa
e and (Y, µ) auniform spa
e.1. We say that X is (τ, µ)-fragmented by a (not ne
essarily 
ontinuous)fun
tion f : X → Y if for every non-empty subset A of X and every
ε ∈ µ there exists an open subset O of X su
h that O∩A is non-emptyand the set f(O∩A) is ε-small in Y . We also say in that 
ase that thefun
tion f is fragmented . Note that it is enough to 
he
k the 
ondition
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losed subsets A ⊂ X and for ε ∈ µ from a subbase γof µ (that is, the �nite interse
tions of elements of γ form a base ofthe uniform stru
ture µ).2. If the 
ondition holds only for every non-empty open subset A of Xthen we say that f is lo
ally fragmented .3. When the in
lusion map i : X ⊂ Y is (lo
ally) fragmented we say that
X is (lo
ally) (τ, µ)-fragmented, or more simply, (lo
ally) µ-fragmented .Remark 6.2. 1. Note that in De�nition 6.1.1 when Y = X, f = idXand µ is a metri
 uniform stru
ture, we get the usual de�nition offragmentability [33℄. For the 
ase of fun
tions see also [32℄.2. Namioka's joint 
ontinuity theorem [47℄ (see also Theorem 14.1 below)implies that every weakly 
ompa
t subset K of a Bana
h spa
e is(weak, norm)-fragmented (that is, idK : (K,weak) → (K, norm) isfragmented).3. Re
all that a Bana
h spa
e V is an Asplund spa
e if the dual of everyseparable Bana
h subspa
e is separable, i� every bounded subset Aof the dual V ∗ is (weak∗, norm)-fragmented, i� V ∗ has the Radon�Nikodým property. Re�exive spa
es and spa
es of the type c0(Γ ) areAsplund. For more details 
f. [13, 22, 48℄.4. A topologi
al spa
e (X, τ) is s
attered (i.e., every non-empty subspa
ehas an isolated point) i� X is (τ, ̺)-fragmented, where ̺(x, y) = 1 i�
x 6= y.Following [46℄ we say that f : X → Y is barely 
ontinuous if for everynon-empty 
losed subset A ⊂ X, the restri
ted map f↾A has at least onepoint of 
ontinuity.Lemma 6.3. 1. If f is (τ, µ)-
ontinuous then X is (τ, µ)-fragmented by f.2. Suppose that there exists a dense subset of (τ, µ)-
ontinuity pointsof f . Then X is lo
ally (τ, µ)-fragmented by f .3. X is (τ, µ)-fragmented by f i� X is hereditarily lo
ally fragmentedby f (that is, for every 
losed subset A ⊂ X the restri
ted fun
tion
f↾A is (relatively) lo
ally (τ, µ)-fragmented).4. Every barely 
ontinuous f is fragmented.5. Fragmentability is preserved under produ
ts. More pre
isely , if fi :
(Xi, τ) → (Yi, µi) is fragmented for every i ∈ I then the produ
t map

f :=
∏

i∈I

fi :
∏

i∈I

Xi →
∏

i∈I

Yiis (τ, µ)-fragmented with respe
t to the produ
t topology τ and theprodu
t uniform stru
ture µ.6. Let α : X → Y be a 
ontinuous map. If f : Y → (Z, µ) is a fragmentedmap then the 
omposition f ◦ α : X → (Z, µ) is also fragmented.



248 E. GLASNER AND M. MEGRELISHVILIProof. Assertions 1, 2 and 6 are straightforward.For 3 and 4 use the fa
t that it is enough to 
he
k the fragmentability
ondition only for 
losed subsets A ⊂ X.The veri�
ation of 5 is straightforward if we take into a

ount that it isenough to 
he
k the fragmentability (see De�nition 6.1.1) for ε ∈ γ, where
γ is a subbase of µ.Fragmentability has good stability properties, being 
losed under passageto subspa
es (trivial), produ
ts (Lemma 6.3.5) and quotients. Here we in-
lude the details for quotients. The following lemma is a generalized versionof [42, Lemma 4.8℄, whi
h in turn was inspired by Lemma 2.1 of Namioka'spaper [48℄.Lemma 6.4. Let (X1, τ1) and (X2, τ2) be 
ompa
t (Hausdor� ) spa
es,and let (Y1, µ1) and (Y2, µ2) be uniform spa
es. Suppose that F : X1 → X2is a 
ontinuous surje
tion, f : (Y1, µ1) → (Y2, µ2) is uniformly 
ontinuous,and φ1 : X1 → Y1 and φ2 : X2 → Y2 are maps su
h that the diagram

(X1, τ1)

F
��

φ1
// (Y1, µ1)

f
��

(X2, τ2)
φ2

// (Y2, µ2)
ommutes. If X1 is fragmented by φ1 then X2 is fragmented by φ2.Proof. We modify the proof of [42, Lemma 4.8℄. In the de�nition of frag-mentability it su�
es to 
he
k the 
ondition for 
losed subsets. So, let ε ∈ µ2and let A be a non-empty 
losed, and hen
e 
ompa
t, subset of X2. Choose
δ ∈ µ1 su
h that (f × f)(δ) ⊂ ε. By Zorn's Lemma, there exists a mini-mal 
ompa
t subset M of X1 su
h that F (M) = A. Sin
e X1 is fragmentedby φ1, there exists V ∈ τ1 su
h that V ∩M 6= ∅ and φ1(V ∩M) is δ-small.Then the set fφ1(V ∩M) is ε-small. Consider the set W := A \ F (M \ V ).Then(a) φ2(W ) is ε-small, being a subset of fφ1(V ∩M) = φ2F (V ∩M);(b) W is relatively open in A;(
) W is non-empty (otherwise, M \ V is a proper 
ompa
t subset of Msu
h that F (M \ V ) = A).The next lemma provides a key to understanding the 
onne
tion betweenfragmentability and separability properties.Lemma 6.5. Let (X, τ) be a separable metrizable spa
e and (Y, ̺) a pseu-dometri
 spa
e. Suppose that X is (τ, ̺)-fragmented by a surje
tive map
f : X → Y . Then Y is separable.Proof. Assume (to the 
ontrary) that the pseudometri
 spa
e (Y, ̺) isnot separable. Then there exist an ε > 0 and an un
ountable subset H
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h that ̺(h1, h2) > ε for all distin
t h1, h2 ∈ H. Choose a subset
A of X su
h that f(A) = H and f is bije
tive on A. Sin
e X is se
ond
ountable, the un
ountable subspa
e A of X (in its relative topology) isa disjoint union of a 
ountable set and a non-empty 
losed perfe
t set M
omprising the 
ondensation points of A (this follows from the proof of theCantor�Bendixson theorem; see e.g. [35℄). By fragmentability there existsan open subset O of X su
h that O ∩M is non-empty and f(O ∩M) is
ε-small. By the property of H the interse
tion O ∩M must be a singleton,
ontradi
ting the fa
t that no point of M is isolated.Proposition 6.6. If X is lo
ally fragmented by f : X → Y , where
(X, τ) is a Baire spa
e and (Y, ̺) is a pseudometri
 spa
e, then f is 
ontin-uous at the points of a dense Gδ subset of X.Proof. For a �xed ε > 0 
onsider

Oε := {union of all τ -open subsets O of X with diam̺ f(O) ≤ ε}.The lo
al fragmentability implies that Oε is dense in X. Clearly, ⋂
{O1/n :

n ∈ N} is the required dense Gδ subset of X.A topologi
al spa
e X is hereditarily Baire if every 
losed subspa
e of
X is a Baire spa
e. Re
all that for metrizable spa
es X and Y a fun
tion
f : X → Y is of Baire 
lass 1 if f−1(U) ⊂ X is an Fσ subset for everyopen U ⊂ Y . If X is separable then a real-valued fun
tion f : X → R is ofBaire 
lass 1 i� f is the pointwise limit of a sequen
e of 
ontinuous fun
tions(see e.g. [35℄).Proposition 6.7. Let (X, τ) be a hereditarily Baire (e.g., Polish or 
om-pa
t) spa
e, and (Y, ̺) a pseudometri
 spa
e. Consider the following asser-tions:(a) X is (τ, ̺)-fragmented by f : X → Y ;(b) f is barely 
ontinuous;(
) f is of Baire 
lass 1.Then:1. (a)⇔(b).2. If X is Polish and Y is a separable metri
 spa
e then (a)⇔(b)⇔(
).Proof. For (a)⇔(b) 
ombine Lemma 6.3 and Proposition 6.6.The equivalen
e (b)⇔(
) for Polish X and separable Y is well known (see[35, Theorem 24.15℄) and a
tually goes ba
k to Baire.The following new de�nition will play a 
ru
ial role in Se
tion 14.Definition 6.8. 1. We say that a family of fun
tions F = {f : (X, τ)

→ (Y, µ)} is fragmented if the 
ondition of De�nition 6.1.1 holds si-



250 E. GLASNER AND M. MEGRELISHVILImultaneously for all f ∈ F . That is, f(O ∩ A) is ε-small for every
f ∈ F . It is equivalent to say that the mapping

π♯ : X → Y F , π♯(x)(f) = f(x),is (τ, µU)-fragmented, where µU is the uniform stru
ture of uniform
onvergen
e on the set Y F of all mappings from F into (Y, µ).2. Analogously one 
an de�ne the notions of a lo
ally fragmented familyand a barely 
ontinuous family . The latter means that every 
losednon-empty subset A ⊂ X 
ontains a point a ∈ A su
h that FA =
{f↾A : f ∈ F} is equi
ontinuous at a. If µ is pseudometrizable thenso is µU. Therefore if in addition (X, τ) is hereditarily Baire thenit follows by Proposition 6.7.1 that F is fragmented i� F is barely
ontinuous.Fragmented families, like equi
ontinuous families, are stable under point-wise 
losures as the following lemma shows.Lemma 6.9. Let F = {f : (X, τ) → (Y, µ)} be a fragmented familyof fun
tions. Then the pointwise 
losure F of F in Y X is also a (τ, µ)-fragmented family.Proof. Use a straightforward �3ε-tri
k� argument.7. Asplund fun
tions and RN systems. Let H be a subgroup of G.Re
all that we denote by µH the uniform stru
ture on the uniform G-spa
e

(X,µ) inherited by the in
lusion π♯ : X → C(H,X). Pre
isely, µH is gener-ated by the basis {[ε]H : ε ∈ µ}, where
[ε]H := {(x, y) ∈ X ×X : (hx, hy) ∈ ε for all h ∈ H}.For every f ∈ C(X) and H < G denote by ̺H,f the pseudometri
 on Xde�ned by

̺H,f (x, y) = sup
h∈H

|f(hx) − f(hy)|.Then µcls(H) = µH and ̺cls(H),f = ̺H,f .Definition 7.1. 1. A 
ontinuous fun
tion f : X → R on the 
ompa
t
G-spa
e X is an Asplund fun
tion [45℄ if for every 
ountable sub-group H ⊂ G the pseudometri
 spa
e (X, ̺H,f ) is separable. It is ans-Asplund fun
tion (notation: f ∈ Asps(X)) when (X, ̺G,f ) is sepa-rable. A pseudometri
 d on a set X is 
alled Asplund (respe
tively,
s-Asplund) if for every 
ountable subgroup H < G (respe
tively, for
H = G) the pseudometri
 spa
e (X, dH) is separable, where

dH(x, y) = sup
h∈H

d(hx, hy).
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tion f ∈ RUC(X) on a (not ne
-essarily 
ompa
t) G-spa
e X is an Asplund fun
tion (notation: f ∈
Asp(X)) if f 
omes (in the sense of De�nition 1.1) from an Asplundfun
tion F on a G-system Y and a G-
ompa
ti�
ation ν : X → Y . ByRemark 7.2.2 below, equivalently, one 
an take ea
h of the following
G-
ompa
ti�
ations (see Remark 2.3.3): f♯ : X → Xf (minimal pos-sible) or iβ : X → βGX (maximal). Analogously we de�ne the 
lass
Asps(X) of s-Asplund fun
tions on a G-spa
e X.3. In parti
ular, a fun
tion f ∈ RUC(G) is an Asplund fun
tion(s-Asplund fun
tion) if it is Asplund (s-Asplund) for the G-spa
e
X := G with respe
t to the regular left a
tion. Notation: f ∈ Asp(G)(resp. f ∈ Asps(G)).Remark 7.2. 1. Note that in the de�nition of Asplund fun
tions F :
X → R, equivalently, H 
an run over all uniformly Lindelöf subgroupsof G. Indeed, as in the proof of Proposition 4.2, the orbit FH =
{hF}h∈H is norm separable. Let K < G be a 
ountable subgroup of
H su
h that FK is dense in FH. Then ̺H,F = ̺K,F .2. Let q : Y1 → Y2 be a G-homomorphism of 
ompa
t G-spa
es. Itis straightforward to show that a 
ontinuous bounded fun
tion F :
Y2 → R is Asplund (resp. s-Asplund) i� the fun
tion f = F ◦ q : Y1 →
R is Asplund (resp. s-Asplund).3. Of 
ourse every s-Asplund fun
tion is Asplund. If G, or the naturalrestri
tion Ğ, is uniformly Lindelöf (e.g. Ğ is se
ond 
ountable if X is
ompa
t and metrizable) then 
learly the 
onverse is also true. Thusin this 
ase Asp(X) = Asps(X).4. Let (G,X) be a dynami
al system and d a pseudometri
 on X. Sup-pose F : X → R is d-uniformly 
ontinuous. If d is Asplund or s-Asplund then so is F .Let X be a G-spa
e. By Proposition 2.2.1, Xf := cls(f♯(X)) is a subsetof RUC(G) for every f ∈ RUC(X). Let rG : Xf →֒ RUC(G) be the in
lusionmap. For every subgroup H < G we 
an de�ne the natural restri
tion oper-ator qH : RUC(G) → RUC(H). Denote by rH := qH ◦ rG : Xf → RUC(H)the 
omposition and let ξH,f be the 
orresponding pseudometri
 indu
ed on

Xf by the norm of RUC(H). Pre
isely,
ξH,f (ω, ω

′) = sup
h∈H

|ω(h) − ω′(h)|.Finally, de�ne the 
omposition fH♯ := rH ◦ f♯ : X → RUC(H). The 
orre-sponding pseudometri
 indu
ed by fH♯ on X is just ̺H,f .



252 E. GLASNER AND M. MEGRELISHVILILemma 7.3. Let X be a G-spa
e and f ∈ RUC(X). Let Fe : Xf → Rbe the map Fe(ω) = ω(e) (de�ned before Proposition 2.2). The following areequivalent :1. f ∈ Asp(X).2. Fe ∈ Asp(Xf ).3. (Xf , ξH,f ) is separable for every 
ountable (uniformly Lindelöf ) sub-group H < G.4. rH(Xf ) is norm separable in RUC(H) for every 
ountable (uniformlyLindelöf ) subgroup H < G.Proof. 1 ⇔ 2 follows by De�nition 7.1.2, Remark 7.2.2 and Proposi-tion 2.2.3.
3 ⇔ 4 is 
lear by the de�nitions of ξH,f and rH .
2 ⇔ 3: Fe ∈ Asp(Xf ) means, by De�nition 7.1.1, that for every
ountable (uniformly Lindelöf) subgroup H < G the pseudometri
 spa
e

(Xf , ̺H,Fe) is separable, where
̺H,Fe(ω, ω

′) = sup
h∈H

|Fe(hω) − Fe(hω
′)|.Re
all that by the de�nition of Fe : Xf → R we have Fe(hω) = (hω)(e)

= ω(h). Hen
e
ξH,f (ω, ω

′) = sup
h∈H

|ω(h) − ω′(h)| = sup
h∈H

|Fe(hω) − Fe(hω
′)| = ̺H,Fe(ω, ω

′).Therefore the pseudometri
s ξH,f and ̺H,Fe 
oin
ide on Xf . This 
learly
ompletes the proof.Corollary 7.4. Let X be a G-spa
e and f ∈ RUC(X). The followingare equivalent :1. f ∈ Asps(X).2. Fe ∈ Asps(Xf ).3. Xf is norm separable in RUC(G).Proof. The proof of Lemma 7.3 shows that in fa
t ξH,f and ̺H,Fe 
oin
ideon Xf for every H < G. Consider the parti
ular 
ase of H := G taking intoa

ount that rG(Xf ) = Xf .The following de�nition of RN dynami
al systems (a natural general-ization of RN 
ompa
ta in the sense of Namioka [48℄) and Eberlein sys-tems (a natural generalization of Eberlein 
ompa
ta in the sense of Amir�Lindenstrauss [4℄) were introdu
ed in [45℄. For the de�nition and propertiesof Asplund spa
es see Remark 6.2.3 and [13, 48, 22℄.Definition 7.5. Let (G,X) be a 
ompa
t dynami
al system.1. A 
ontinuous (proper) representation of (G,X) on a Bana
h spa
e
V is a pair (h, α), where h : G → Iso(V ) is a strongly 
ontinuous
o-homomorphism of topologi
al groups and α : X → V ∗ is a weak∗-
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ontinuous bounded G-mapping (resp. embedding) (with respe
t tothe dual a
tion G× V ∗ → V ∗, (gϕ)(v) := ϕ(h(g)(v))).2. (G,X) is a Radon�Nikodým system (RN for short) if there exists aproper representation of (G,X) on an Asplund Bana
h spa
e V . If we
an 
hoose V to be re�exive, then (G,X) is 
alled an Eberlein system.The 
lasses of Radon�Nikodým and Eberlein 
ompa
t systems will bedenoted by RN and Eb respe
tively.3. (G,X) is 
alled an RN-approximable system (RNapp) if it 
an be rep-resented as a subdire
t produ
t (or equivalently, as an inverse limit)of RN systems.Note that 
ompa
t spa
es whi
h are not RN are ne
essarily non-metriz-able, while there are many natural metri
 
ompa
t G-systems whi
h arenot RN.The next theorem 
olle
ts some useful properties whi
h were obtainedre
ently in [45℄.Theorem 7.6. Let (G,X) be a 
ompa
t G-system.1. X is WAP i� X is a subdire
t produ
t of Eberlein G-systems. A metri
system X is WAP i� X is Eberlein.2. The system (G,X) is RN i� there exists a representation (h, α) of
(G,X) on a Bana
h spa
e V su
h that : h : G → Iso(V ) is a 
o-homomorphism (no 
ontinuity assumptions on h), α : X → V ∗ is abounded weak∗ G-embedding and α(X) is (weak

∗, norm)-fragmented.3. f : X → R is an Asplund fun
tion i� f arises from an Asplundrepresentation (that is, there exists a 
ontinuous representation (h, α)of (G,X) on an Asplund spa
e V , su
h that f(x) = α(x)(v) for some
v ∈ V ), or equivalently , i� f 
omes from an RN (or RNapp) G-fa
tor
Y of X.4. The system (G,X) is RNapp i� Asp(X) = C(X).5. RN is 
losed under 
ountable produ
ts and RNapp is 
losed underquotients. For metri
 
ompa
t systems RNapp = RN holds.6. Asp(X) is a 
losed G-invariant subalgebra of C(X) 
ontaining
WAP(X). The 
anoni
al 
ompa
ti�
ation uA : G → GAsp is the uni-versal RNapp 
ompa
ti�
ation of G. Moreover , uA is a right topolog-i
al semigroup 
ompa
ti�
ation of G.7. (G,X) is RN i� (G, (C(X)∗1,weak∗)) is RN i� (G,P (X)) is RN ,where P (X) denotes the spa
e of all probability measures on X (withthe indu
ed a
tion of G).The proofs of assertions 1, 2 and 3 use several ideas from Bana
h spa
etheory; mainly the notion of Asplund sets and Stegall's generalization of afa
torization 
onstru
tion by Davis, Figiel, Johnson and Peª
zy«ski [14, 13,48, 52, 22℄.



254 E. GLASNER AND M. MEGRELISHVILIProposition 7.7. Let G be an arbitrary topologi
al group. Then (GAsp,
uA(e)) is point-universal (hen
e Xf ⊂ Asp(G) for every f ∈ Asp(G)).Proof. P := Asp(G) is an algebra of fun
tions 
oming from RNapp sys-tems. Sin
e the 
lass RNapp is preserved by produ
ts and subsystems we 
anapply Proposition 2.9.2.Let (X, τ) be a topologi
al spa
e. As usual, a metri
 ̺ on the set X issaid to be lower semi
ontinuous if the set {(x, y) : ̺(x, y) ≤ t} is 
losed in
X × X for ea
h t > 0. A typi
al example is any subset X ⊂ V ∗ of a dualBana
h spa
e equipped with the weak∗ topology and the norm metri
. Itturns out that every lower semi
ontinuous metri
 on a 
ompa
t Hausdor�spa
e X arises in this way (Lemma 7.8.1). This important result has beenestablished in [31℄ using ideas of Ghoussoub and Maurey.Lemma 7.8. 1 ([31℄). Let (X, τ) be a 
ompa
t spa
e and let ̺ ≤ 1 be alower semi
ontinuous metri
 on (X, τ). Then there is a dual Bana
hspa
e V ∗ and a homeomorphi
 embedding α : (X, τ) → (V ∗

1 ,weak∗)su
h that
‖α(x) − α(y)‖ = ̺(x, y)for all x, y ∈ X.2. If in addition X is a G-spa
e and ̺ is G-invariant , then assertion 1admits a G-generalization. More pre
isely , there is a linear isometri
(not ne
essarily jointly 
ontinuous) right a
tion V ×G→ V su
h that

α : X → V ∗
1 is a G-map.Proof. 2. As in the proof of [31, Theorem 2.1℄ the required Bana
h spa
e

V is de�ned as the spa
e of all 
ontinuous real-valued fun
tions f on (X, τ)whi
h satisfy a uniform Lips
hitz 
ondition of order 1 with respe
t to ̺,endowed with the norm
p(f) = max{‖f‖Lip, ‖f‖},where ‖f‖ = sup{|f(x)| : x ∈ X} and the seminorm ‖f‖Lip is de�nedto be the least 
onstant K su
h that |f(x1) − f(x2)| ≤ K̺(x1, x2) for all

x1, x2 ∈ X. Then α : (X, τ) → (V ∗
1 ,weak∗) is de�ned by α(x)(f) = f(x).De�ne now the natural right a
tion π : V ×G→ V by π(f, g) = fg = gf ,where gf(x) := f(gx). Then 
learly p(fg) = p(f) and α : X → V ∗

1 is a
G-map.Theorem 7.9. Let (G,X) be a 
ompa
t dynami
al system. The following
onditions are equivalent :1. (G,X) is RN.2. X is fragmented with respe
t to some bounded lower semi
ontinuous

G-invariant metri
 ̺.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 255Proof. 1 ⇒ 2: Our G-system X, being RN, is a G-subsystem of the ball
V ∗

1 = (V ∗
1 ,weak∗) for some Asplund spa
e V . By a well known 
hara
-terization of Asplund spa
es, V ∗

1 is (weak∗, norm)-fragmented. Hen
e, X isalso fragmented by the lower semi
ontinuous G-invariant metri
 ̺(x1, x2) =
‖x1 − x2‖ on X, inherited from the norm of V ∗.

2 ⇒ 1: We 
an suppose that ̺ ≤ 1. Using Lemma 7.8.1 we 
an�nd a Bana
h spa
e V and a weak∗ embedding α : (X, τ) → V ∗
1 su
hthat α is (̺, norm)-isometri
. Sin
e X is (τ, ̺)-fragmented, α(X) ⊂ V ∗

1 is
(weak∗, norm)-fragmented. Moreover, by Lemma 7.8.2, there exists a 
o-homomorphism (without 
ontinuity assumptions) h : G→ Iso(V ) (the righta
tion V × G → V leads to the 
o-homomorphism h) su
h that the map
α : X → V ∗

1 is G-equivariant with respe
t to the dual a
tion of G on V ∗de�ned by (gϕ)(v) := ϕ(h(g)(v)). Therefore we get a representation (h, α)of (G,X) on V su
h that α(X) ⊂ V ∗
1 is (weak∗, norm)-fragmented. By The-orem 7.6.2 we dedu
e that the G-system (X, τ) is RN.8. Vee
h fun
tions. The algebra K(G) was de�ned by Vee
h in [58℄,for a dis
rete group G, as the algebra of fun
tions f ∈ ℓ∞(G) su
h that forevery 
ountable subgroup H < G the 
olle
tion Xf↾H

= OH(η0) ⊂ ΩH =

[−‖f‖, ‖f‖]H , with η0 = f↾H , 
onsidered as a subspa
e of the Bana
h spa
e
ℓ∞(H), is norm separable. Repla
ing ℓ∞(G) and ℓ∞(H) by RUC(G) and
RUC(H), respe
tively, we de�ne, for any topologi
al group G, the algebra
K(G) ⊂ RUC(G) as follows.Definition 8.1. Let G be a topologi
al group. We say that a fun
tion
f ∈ RUC(G) is a Vee
h fun
tion if for every 
ountable (equivalently: separa-ble) subgroup H < G the 
orresponding H-dynami
al system (H,Xf↾H

, η0),when 
onsidered as a subspa
e of the Bana
h spa
e RUC(H) (see Proposi-tion 2.4.4), is norm separable (that is, rH(Xf↾H
) ⊂ RUC(H) is separable;see the de�nitions before Lemma 7.3). We denote by K(G) the 
olle
tion ofVee
h fun
tions in RUC(G).Theorem 8.2. For any topologi
al group G we have:1. K(G) is a 
losed left G-invariant subalgebra of RUC(G).2. The algebra K(G) is point-universal.3. Asp(G) ⊂ K(G).4. K(G) = Asp(G) = Asps(G) for every separable G.Proof. 1. For every f ∈ K(G) let (G,Xf , f) be the 
orresponding pointeddynami
al system as 
onstru
ted in Proposition 2.4. If fi, i = 1, 2, arein K(G) and H < G is a 
ountable subgroup then the subsets Xfi↾H

,
i = 1, 2, are norm separable in RUC(H) and therefore so is X = {ω + η :
ω ∈ Xf1↾H

, η ∈ Xf2↾H
}. Sin
eX(f1+f2)↾H

⊂ X it follows that f1+f2 ∈ K(G).Likewise f1 · f2 ∈ K(G), and we 
on
lude that K(G) is a subalgebra. Uni-
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onvergent 
ountable sums are treated similarly and it follows that
K(G) is uniformly 
losed. The left G-invarian
e is 
lear.2. Given f ∈ K(G) one shows, as in [58, Lemma 3.4℄, that every element
ω ∈ Xf is also in K(G). Now use Proposition 2.8.3. By Lemma 7.3, a fun
tion f ∈ RUC(G) is Asplund i� rH(Xf ) isnorm separable in RUC(H) for every 
ountable subgroup H < G. Con-sider cls(Hf), the H-orbit 
losure in Xf (for f ∈ Xf = cls(Gf)). Then
rH(cls(Hf)) is also separable in RUC(H). On the other hand, it is easy tosee that the set rH(Xf↾H

) 
oin
ides with rH(cls(Hf)). Hen
e, rH(Xf↾H
) isalso separable in RUC(H). This exa
tly means that f ∈ K(G).4: Let f ∈ K(G). Then the 
olle
tion Xf↾H

is norm separable for everyseparable subgroupH < G. In parti
ular,Xf (forH := G) is norm separable.Now by Corollary 7.4 we 
an 
on
lude that f ∈ Asps(G).9. Hereditary AE and NS systems. We begin with a generalizedversion of sensitivity. The fun
tional version (De�nition 9.1.3) will be 
on-venient in the proof of Theorem 14.2.Definition 9.1. 1. The uniform G-spa
e (X,µ) has sensitive depen-den
e on initial 
onditions (or simply, is sensitive) if there exists an
ε ∈ µ su
h that for every x ∈ X and any neighborhood U of x thereexists y ∈ U and g ∈ G su
h that (gx, gy) /∈ ε (for metri
 
as
adessee for example [9, 16, 25℄). Thus a (metri
) G-spa
e (X,µ) is non-sensitive, NS for short, if for every (ε > 0) ε ∈ µ there exists an opennon-empty subset O of X su
h that gO is ε-small in (X,µ) for all
g ∈ G, or equivalently, O is [ε]G-small in (X,µG) (respe
tively: whose
dG-diameter is less than ε, where d is the metri
 on X and as usual
dG(x, x′) = supg∈G d(gx, gx

′)).2. We say that (G,X) is hereditarily non-sensitive (HNS for short) ifevery non-empty 
losed G-subspa
e A of X is not sensitive.3. More generally, we say that a map f : (X, τ) → (Y, µ) is not sensitiveif there exists an open non-empty subset O of X su
h that f(gO)is ε-small in (Y, µ) for every g ∈ G. The fun
tion f is hereditarilynon-sensitive if for every 
losed G-subspa
e A of X the restri
tedfun
tion f↾A : A→ (Y, µ) is not sensitive. Using these notions we 
ande�ne the 
lasses of NS and HNS fun
tions. Observe that (X,µ) is NSi� the map idX : (X, top(µ)) → (X,µ) is NS.Let (X,µ) be a uniform G-spa
e and ε ∈ µ. De�ne Eqε as the union ofall non-empty top(µ)-open [ε]G-small subsets in X. More pre
isely,
Eqε :=

⋃
{U ∈ top(µ) : (gx, gx′) ∈ ε for all (x, x′, g) ∈ U × U ×G}.Then Eqε is an open G-invariant subset of X and Eq(X) =

⋂
{Eqε : ε ∈ µ}.
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e.1. X is NS if and only if Eqε 6= ∅ for every ε ∈ µ. Therefore, if
Eq(X) 6= ∅ then (X,µ) is NS.2. X is lo
ally µG-fragmented i� Eqε is dense in X for every ε ∈ µ.Thus, if X is lo
ally µG-fragmented then X is NS.3. If X is NS then Eq(X) ⊃ Trans(X).4. If X is NS and topologi
ally transitive then Eq(X) = Trans(X) andso X is point-transitive i� Eq(X) 6= ∅.5. If Eq(X) 6= ∅ and X is topologi
ally transitive then Eq(X) =
Trans(X).Proof. The �rst two assertions are trivial.3. If X is NS then Eqε is not empty for every ε ∈ µ. Any transitive pointis 
ontained in any non-empty invariant open subset of X. In parti
ular,

Trans(X) ⊂ Eqε. Hen
e, Trans(X) ⊂
⋂
{Eqε : ε ∈ µ} = Eq(X).4. By assertion 3 it now su�
es to show that if X is topologi
ally tran-sitive then Eq(X) ⊂ Trans(X). Let x0 ∈ Eq(X), y ∈ X and let ε ∈ µ.We have to show that the orbit Gx0 interse
ts the ε-neighborhood ε(y) :=

{x ∈ X : (x, y) ∈ ε} of y. Choose δ ∈ µ su
h that δ ◦ δ ⊂ ε. Sin
e
x0 ∈ Eq(X) there exists a neighborhood U of x0 su
h that (gx0, gx) ∈ δfor every (x, g) ∈ U × G. Sin
e X is topologi
ally transitive we 
an 
hoose
g0 ∈ G su
h that g0U ∩ δ(y) 6= ∅. This implies that (g0x, y) ∈ δ for some
x ∈ U . Then (g0x0, y) ∈ δ ◦ δ ⊂ ε.5. Combine assertions 1 and 4.Corollary 9.3. A weakly mixing NS system is trivial.Proof. Let (G,X) be a weakly mixing NS system. Let ε be a neighbor-hood of the diagonal and 
hoose a symmetri
 neighborhood of the diagonal
δ with δ ◦δ ◦δ ⊂ ε. By the NS property and Lemma 9.2.1, Eqδ is non-empty.Thus there exists a non-empty open subset U ⊂ X su
h thatW =

⋃
g∈G gU×

gU ⊂ δ. By weak mixing the open invariant set W is dense in X ×X andhen
e X ×X ⊂ ε. Sin
e ε is arbitrary we 
on
lude that X is trivial.Next we provide some useful results whi
h link our dynami
al and topo-logi
al de�nitions (and involve fragmentability and sensitivity).Lemma 9.4. 1. Let f : X → Y be a G-map from a topologi
al G-spa
e
(X, τ) into a uniform G-spa
e (Y, µ). Then the following are equiva-lent :(a) f : (X, τ) → (Y, µ) is HNS.(b) f : (X, τ) → (Y, µG) is fragmented.(
) f : (A, τ↾A) → (Y, µG) is lo
ally fragmented for every 
losed non-empty G-subset A ofX.



258 E. GLASNER AND M. MEGRELISHVILI2. (X,µ) is HNS i� idX : (X, τ) → (X,µG) is fragmented.3. HAE ⊂ HNS.Proof. 1. (a)⇒(b): Suppose that f : (X, τ) → (Y, µ) is HNS. We haveto show that f is (τ, µG)-fragmented. Let A be a non-empty subset of Xand [ε]G ∈ µG. Consider the 
losed G-subspa
e Z := cls(GA) of X. Then byour assumption f↾Z : Z → (Y, µ) is NS. Hen
e there exists a relatively opennon-empty subset W ⊂ Z su
h that (f(gx), f(gy)) = (gf(x), gf(y)) ∈ ε forevery (g, x, y) ∈ G ×W ×W . Therefore, f(W ) is [ε]G-small. Sin
e GA isdense in Z, the interse
tion W ∩GA is non-empty. There exists g0 ∈ G su
hthat g−1
0 W ∩A 6= ∅. On the other hand, 
learly, f(g−1

0 W ) is also [ε]G-small.Thus the same is true for f(g−1
0 W ∩A).(b)⇒(
): This is trivial by De�nition 6.1.(
)⇒(a): Let A be a 
losed non-empty G-subspa
e of X and ε ∈ µ. Take anon-empty open subset O of the spa
e A (say, O = A). Sin
e f : A→ (Y, µG)is lo
ally fragmented one 
an 
hoose a non-empty open subset U ⊂ O su
hthat f(U) is [ε]G-small in Y . This means, in parti
ular, that f↾A : A→ (Y, µ)is NS for every 
losed G-subspa
e A. Hen
e, f is HNS.2. This is a parti
ular 
ase of the �rst assertion for f = idX : (X,µ) →

(X,µ).3. Let (G,X) be HAE. For every 
losed non-empty G-subsystem A thereexists a point of equi
ontinuity of (G,A). By Lemma 9.2.1, (G,A) is NS.Therefore, (G,X) is HNS.Proposition 9.5. Let X be a 
ompa
t G-system with its unique uniformstru
ture µ. Consider the following 
onditions:(a) X is AE.(b) X is lo
ally µG-fragmented.(
) X is NS.Then we have:1. Always, (a)⇒(b)⇒(
).2. If µG is metrizable (e.g., if µ is metrizable) then (a)⇔(b)⇒(
).3. If X is point-transitive then (a)⇔(b)⇔(
).4. If X is topologi
ally transitive then (a)⇒(b)⇔(
).Proof. 1. (a)⇒(b): Let U be a non-empty open subset of X and ε ∈ µ.Sin
e X is AE we 
an 
hoose a point x0 ∈ Eq(X) ∩ U . Now we 
an pi
kan open neighborhood O ⊂ U of x0 su
h that (gx, gx′) ∈ ε for every g ∈ Gand x, x′ ∈ O. Therefore, (x, x′) ∈ [ε]G. This proves that X is lo
ally µG-fragmented.(b)⇒(
): Trivial by Lemma 9.2.2.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 2592. (a)⇐(b): If µG is metrizable then Proposition 6.6 guarantees that
idX : (X,µ) → (X,µG) is 
ontinuous at the points of a dense Gδ subset(say, Y ) of X. By Lemma 5.4, Y ⊂ Eq(X). Hen
e, Eq(X) is also densein X. Therefore, X is AE.3. (
)⇒(a): Observe that Trans(X) ⊂ Eq(X) by Lemma 9.2.3.4. (b)⇐(
): Sin
e X is NS the subset Eqε is non-empty for every ε ∈ µ(Lemma 9.2.1). Sin
e the open set Eqε is invariant and X is topologi
allytransitive we see that Eqε is dense for every ε ∈ µ. By Lemma 9.2.2 thismeans that X is lo
ally µG-fragmented.The equivalen
e of AE and NS for transitive metri
 systems is shownin [25, 1℄. The referee proposed the following problem. Does there exist atopologi
ally transitive NS system whi
h is not point-transitive? That is,
an it happen for a topologi
ally transitive system that every Eqε is densebut the interse
tion Eq is empty?Corollary 9.6. For every topologi
al group G and f ∈ RUC(G) thefollowing are equivalent :1. f ∈ light(G).2. Xf is AE.3. Xf is lo
ally norm fragmented (with respe
t to the norm of RUC(G)).4. Xf is NS.Proof. Use Propositions 9.5.3 and 5.17.2. It should be noted here that if
µ is the natural pointwise uniform stru
ture on Xf = cls(Gf) ⊂ RUC(G)then the norm of RUC(G) indu
es on Xf the uniform stru
ture µG (Re-mark 5.3.1).Lemma 9.7. HNS is 
losed under quotients of 
ompa
t G-systems.Proof. Let f : X → Y be a G-quotient. Denote by µX and µY theoriginal uniform stru
tures on X and Y respe
tively. Assume that X is HNS,or equivalently (see Lemma 9.4.2), that X is (µX)G-fragmented. Sin
e f :
(X,µX) → (Y, µY ) is uniformly 
ontinuous, it is easy to see that so is the G-map f : (X, (µX)G) → (Y, (µY )G). We 
an now apply Lemma 6.4. It followsthat Y is (µY )G-fragmented. Hen
e, Y is HNS (use again Lemma 9.4.2).Note that the 
lass NS is not 
losed under quotients (see [25℄).Lemma 9.8. 1. Every RN 
ompa
t G-system X is HAE. In parti
ular ,su
h a system is always LE and HNS.2. Asp(X) ⊂ LE(X) for every G-spa
e X.Proof. 1. By De�nition 7.5 there exists a representation (h, α) of (G,X)on an Asplund spa
e V su
h that h : G → Iso(V ) is a 
o-homomorphismand α : (X, τ) → (V ∗,weak∗) is a bounded weak∗ G-embedding. Sin
e V isAsplund, it follows that α(X) is (weak∗, norm)-fragmented. The map idX :
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(X, τ) → (X, norm) has a dense subset of points of 
ontinuity by Proposi-tion 6.6. The norm indu
es on X the metri
 uniform stru
ture whi
h ma-jorizes the original uniform stru
ture µ on X. On the other hand the normis G-invariant. It follows that every point of 
ontinuity of idX : (X,µ) →
(X, norm) is a point of equi
ontinuity for the system (G,X). Clearly, thesame is true for every restri
tion on a 
losed G-invariant non-empty sub-set Y of X. Hen
e X is HAE. Then 
learly X is LE (see De�nition 5.7.2).Lemma 9.4.3 implies that X is also HNS.2. Use the �rst assertion and Theorem 7.6.3 (taking into a

ount De�ni-tion 7.1.2).In the following theorem we show that the 
lasses HNS and RNapp 
o-in
ide. Loosely speaking, we 
an rephrase this by saying that a 
ompa
t
G-system X admits su�
iently many good (namely: Asplund) representa-tions if and only if X is �non-
haoti
�.Theorem 9.9. For a 
ompa
t G-spa
e X (with its unique 
ompatibleuniform stru
ture µ) the following are equivalent :1. X is RNapp.2. X is HNS.3. π♯ : X → C(G,X) is a fragmented map.4. Ğ = {ğ : X → X}g∈G is a fragmented family.5. (X,µH) is uniformly Lindelöf for every 
ountable (equivalently , uni-formly Lindelöf ) subgroup H < G.Proof. 1 ⇒ 2: The �rst assertion means that (X,µ) is a subdire
t prod-u
t of a 
olle
tion Xi of RN G-systems (with the uniform stru
ture µi). ByLemma 9.8.1 everyXi is HNS. Lemma 9.4.2 guarantees that ea
hXi is (µi)G-fragmented. Then X is µG-fragmented. Indeed, this follows by Lemma 5.6and the fa
t that fragmentability is 
losed under passage to produ
ts (Lem-ma 6.3.5) and subspa
es. Now, by Lemma 9.4.2, X is HNS.

2 ⇔ 3: π♯ : X → C(G,X) is fragmented i� X is µG-fragmented. Hen
e,we 
an use Lemma 9.4.2.
3 ⇔ 4: See De�nition 6.8.1.
2 ⇒ 5: Let X ∈ HNS and H < G be a uniformly Lindelöf subgroup. Wehave to show that (X,µH) is uniformly Lindelöf. The system (H,X) (beingm-approximable by Proposition 4.1) is a subdire
t produ
t of a family of
ompa
t metri
 H-systems {Xi : i ∈ I}. Uniform produ
t of uniformlyLindelöf spa
es is uniformly Lindelöf. Therefore by Lemma 5.6 it su�
es toestablish that every (Xi, (µi)H) is uniformly Lindelöf. Sin
e µi and (µi)Hare metrizable, this is equivalent to showing that (µi)H is separable. Sin
e

(H,X) is HNS, Lemma 9.7 shows that the H-quotient (H,Xi) is also HNS.
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e, idXi
: (Xi, µi) → (Xi, (µi)H) is fragmented by Lemma 9.4.2. Now,Lemma 6.5 guarantees that (Xi, (µi)H) is separable.

5 ⇒ 1: We have to show thatX is RNapp. Equivalently, by Theorem 7.6.4we need to 
he
k that C(X) = Asp(X). Let F ∈ C(X) and H < G be a
ountable subgroup. By our assumption, (X,µH) is uniformly Lindelöf. Sin
e
F : (X,µ) → R is uniformly 
ontinuous, so is idX : (X,µH) → (X, ̺H,F ).Therefore, (X, ̺H,F ) is uniformly Lindelöf as well. Sin
e ̺H,F is a pseu-dometri
, we 
on
lude that (X, ̺H,F ) is separable. This proves that F ∈
Asp(X).Remark 9.10. 1. Every pre
ompa
t uniform spa
e is uniformly Lin-delöf. Note here that (X,µG) is pre
ompa
t i� (G,X) is equi
on-tinuous (
f. Corollary 5.5). Therefore, RNapp, and its equivalent 
on-
ept HNS, 
an be viewed as a natural generalization of equi
ontinu-ity.2. Theorem 9.9 implies that RNapp (or HNS) is �
ountably determined�.That is, (G,X) is RNapp i� (H,X) is RNapp for every 
ountable sub-group H < G.3. Let H < G be a syndeti
 subgroup (that is, there exists a 
ompa
tsubset K ⊂ G su
h that G = KH) of a uniformly Lindelöf group G.Then a system (G,X) is RNapp i� (H,X) is RNapp. Indeed, K a
ts

µ-uniformly equi
ontinuously on X. Thus if (X,µH) is uniformly Lin-delöf then so is (X,µKH).4. RNapp ⊂ LE by Lemma 9.8.1 (or by [45, Theorem 6.10℄).We now have the following diagram for 
ompa
t G-systems:
Eb //

))RRRRRRRRRRRRRRRR RN // HAE // HNS = RNapp
// LE

WAP

77ooooooooooo

Remark 9.11. 1. We do not know (even for 
as
ades) if HAE 6= HNS fornon-metrizable systems. All other impli
ations, in general, are proper:2. RN 6= HAE, Eb 6= WAP. Indeed, take a system (G,X) with trivial Gand a 
ompa
t X whi
h is not RN in the sense of Namioka, and hen
enot Eberlein, as a 
ompa
t spa
e (e.g. X := βN). Su
h a G-system,however, is trivially WAP and also HAE.3. Eb 6= RN. Take a trivial a
tion on a 
ompa
t RN spa
e whi
h is notEberlein.4. RNapp 6= LE even for transitive metri
 systems (
f. Remark 10.9.1 andTheorem 11.1).5. WAP 6= HNS. See again Theorem 11.1.
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ompa
t G-system X the following are equivalent :1. f ∈ Asp(X).2. fG♯ : X → RUC(G) is fragmented.3. f♯ : X → Xf is HNS.4. f : X → R is HNS.5. Ğf := {ğf : X → R}g∈G (where ğf (x) = f(gx)) is a fragmentedfamily.6. Xf ⊂ RUC(G) is norm fragmented.7. The G-system Xf is RN.Proof. 1 ⇒ 2: By Theorem 7.6.3 there exist a G-quotient α : (X,µX) →
(Y, µY ) with Y ∈ RN and F ∈ C(Y ) su
h that f = F ◦ α. Then f♯ =
F♯ ◦ α. Therefore, by Lemma 6.3.6, it is enough to show that F♯ : Y →
RUC(G) is fragmented, or equivalently, that Y is ̺G,F -fragmented (see re-marks before Lemma 7.3). By our assumption (Y, µY ) is RN. Therefore, The-orem 9.9 guarantees that Y is (µY )G-fragmented. Sin
e idY : (Y, (µY )G) →
(Y, ̺G,F ) is uniformly 
ontinuous, it follows that Y is ̺G,F -fragmented, asrequired.

2 ⇔ 3: Use Lemma 9.4.1 taking into a

ount Remark 5.3.1.
3 ⇔ 4: Let f♯ : X → Xf be HNS. Then f♯↾A : A → Xf is NS for everynon-empty invariant 
losed subset of A ⊂ X. Therefore by De�nition 9.1(observe that the uniform stru
ture of Xf ⊂ RG is the pointwise uniformstru
ture inherited from RG) for every ε > 0 and every �nite subset S ⊂ Gthere exists a relatively open non-empty subset O ⊂ A su
h that

|f♯(gx)(s) − f♯(gx
′)(s)| < ε for all (s, g) ∈ S ×G and all (x, x′) ∈ O ×O.Now sin
e |f♯(gx)(s) − f♯(gx

′)(s)| = |f(sgx) − f(sgx′)| and g runs over allelements of G our 
ondition is equivalent to the inequality
|f(gx) − f(gx′)| < ε for all g ∈ G.The latter means that f(gO) is ε-small for every g ∈ G. Equivalently, f :

X → R is HNS.
2 ⇔ 5: See De�nition 6.8.1.
2 ⇒ 6: Let f♯ : X → Xf be the 
anoni
al G-quotient. Then by Lem-ma 6.4 (with Y1 = Y2 = RUC(G)) the fragmentability of fG♯ : X → RUC(G)guarantees the fragmentability of rG : Xf → RUC(G). This means that Xfis norm fragmented.
6 ⇒ 7: The norm on RUC(G) is lower semi
ontinuous with respe
t tothe pointwise topology. Hen
e, Theorem 7.9 ensures that the G-system Xfis RN.
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7 ⇒ 1: Sin
e Xf is RN, by Theorem 7.6.3 and Proposition 2.2.3 we seethat f ∈ Asp(X).Remark 9.13. Note in the following list how, for a G-spa
e X, topolog-i
al properties of Xf 
orrespond to dynami
al properties of f ∈ RUC(X)and provide an interesting dynami
al hierar
hy:
Xf is norm 
ompa
t ⇔ f is AP,
Xf is weakly 
ompa
t ⇔ f is WAP,
Xf is norm fragmented ⇔ f is Asplund,
Xf is orbitwise light ⇔ f is LE.In the domain of 
ompa
t metri
 systems NS and AE are distin
t prop-erties. In 
ontrast to this fa
t, if these 
onditions hold hereditarily then theyare equivalent.Theorem 9.14. Let (X, d) be a 
ompa
t metri
 G-spa
e. The followingproperties are equivalent :1. X is RN.2. X is HAE.3. Every 
losed G-subsystem Y of X has a point of equi
ontinuity.4. X is HNS.5. X is dG-fragmented (re
all that dG(x, x′) = supg∈Gd(gx, gx

′)).6. (X, dG) is separable (that is, d is an s-Asplund metri
).7. Every 
ontinuous fun
tion F : X → R is s-Asplund.Proof. Sin
e X is metri
, Ğ ⊂ Homeo(X) is se
ond 
ountable. So we 
anand do assume, for simpli
ity, that G is se
ond 
ountable.By Theorem 7.6.5, RN = RNapp in the domain of 
ompa
t metri
 sys-tems. Hen
e, it follows by our diagram above that 1 ⇔ 2 ⇔ 4.
2 ⇒ 3: Trivial.
3 ⇒ 4: By the assumption Eq(Y ) 6= ∅ for every subsystem (G, Y ). Thus,

Y is NS by Lemma 9.2.1. It follows that X is HNS.
4 ⇔ 5: By Lemma 9.4.2.
5 ⇒ 6: Apply Lemma 6.5 to the map idX : (X, d) → (X, dG).
6 ⇒ 7: By our assumption (X, dG) is separable. Sin
e idX : (X, dG) →

(X, ̺G,F ) is uniformly 
ontinuous, we dedu
e that (X, ̺G,F ) is also separable.Hen
e, f ∈ Asps(X).
7 ⇒ 1: Every s-Asplund fun
tion is Asplund. Hen
e, C(X) = Asp(X).By assertions 4 and 5 of Theorem 7.6 we 
an 
on
lude that X is RN.Summing up we have the following simple diagram (with two properin
lusions) for metri
 
ompa
t systems:

Eb = WAP → RN = HAE = HNS = RNapp → LE.



264 E. GLASNER AND M. MEGRELISHVILI10. Some examplesCorollary 10.1. The 
lass of 
ompa
t metrizable HNS (hen
e also RN ,HAE ) systems is 
losed under fa
tors and 
ountable produ
ts.Proof. RN = HAE = HNS by Theorem 9.14. Now use Lemma 9.7 andTheorem 7.6.5.Corollary 10.2. Every s
attered (e.g., 
ountable) 
ompa
t G-spa
e Xis RN (see also [45℄).Proof. Apply Theorem 7.9 using Remark 6.2.4.A metri
 G-spa
e (X, d) is 
alled expansive if there exists a 
onstant
c > 0 su
h that dG(x, y) := supg∈G d(gx, gy) > c for any distin
t x, y ∈ X.Corollary 10.3. An expansive 
ompa
t metri
 G-spa
e (X, d) is RNi� X is 
ountable.Proof. If X is RN then by Theorem 9.14, (X, dG) is separable. On theother hand, (X, dG) is dis
rete for every expansive system (X, d). Thus, Xis 
ountable.For a 
ountable dis
rete group G and a �nite alphabet S the 
ompa
tspa
e SG is a G-spa
e under left translations (gω)(h) = ω(g−1h), ω ∈ SG,
g, h ∈ G. A 
losed invariant subset X ⊂ SG de�nes a subsystem (G,X).Su
h systems are 
alled subshifts or symboli
 dynami
al systems.Corollary 10.4. For a 
ountable dis
rete group G and a �nite alphabet
S let X ⊂ SG be a subshift. The following properties are equivalent :1. X is RN.2. X is 
ountable.Moreover if X ⊂ SG is an RN subshift and x ∈ X is a re
urrent point thenit is periodi
 (i.e. Gx is a �nite set).Proof. It is easy to see (and well known) that every subshift is expansive.For the last assertion re
all that if x is a re
urrent point with an in�niteorbit then its orbit 
losure 
ontains a homeomorphi
 
opy of the Cantorset.For some (one-dimensional) 
ompa
t spa
es every selfhomeomorphismwill produ
e an RN system.Proposition 10.5. 1. For ea
h element f ∈ Homeo(I), the homeomor-phism group of the unit interval I = [0, 1], the 
orresponding dynami
alsystem (f, I) is HNS.2. For ea
h element f ∈ Homeo(S1), the homeomorphism group of the
ir
le S1 = {z ∈ C : |z| = 1}, the 
orresponding dynami
al system

(f, S1) is HNS.
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h with no loss of gener-ality we assume is orientation preserving. Consider the dynami
al system
(f, I) and for a set A ⊂ I de�ne Of (A) =

⋃
n∈Z

fn(A). Let us note �rstthat for every x ∈ [0, 1] the sequen
e . . . , f−2(x), f−1(x), x, f(x), f2(x), . . .is in
reasing, hen
e the orbit 
losure of x is just the orbit together withthe points limn→∞ f−n(x) and limn→∞ fn(x). In parti
ular the dynami
alsystem (f, I) is LE.Next we show that (f, I) is NS. If this is not the 
ase then there exists an
ε > 0 su
h that for every non-empty open set U ⊂ I there exists n ∈ Z su
hthat diam(fnU) ≥ ε. Let (a, b) ⊂ I be an open interval and let {Uk}k∈N bea 
ountable basis for open sets in (a, b). If for every k the set (a, b)∩Of (Uk)is dense in (a, b) then the orbit of any point x ∈ (a, b)∩

⋂∞
k=1Of (Uk) will bedense in (a, b), whi
h is impossible.We 
on
lude that for every interval (a, b) and every proper subinterval

J1 there is another subinterval J2 ⊂ (a, b) whi
h is disjoint from Of (J1). Byindu
tion we 
an �nd an in�nite sequen
e of disjoint intervals Jj in (a, b)su
h that for every j the set Jj+1, and hen
e also Of (Jj+1), is disjoint from⋃
i≤j Of (Ji). Sin
e for ea
h j the set Of (Jj) 
ontains an interval of lengthat least ε we arrive at a 
ontradi
tion. This 
on
ludes the proof that (f, I)is NS.Next 
onsider any non-empty 
losed invariant subset Y ⊂ I. If Y 
ontainsan isolated point then 
learly the system (f, Y ) is NS. Thus we now assumethat Y is a perfe
t set. We 
an then repeat the argument that showed that

(f, I) is NS for the system (f, Y ) and arrive at the same kind of 
ontradi
tionsin
e again an orbit of a single point in Y 
annot be everywhere dense in anon-empty set of the form (a, b) ∩ Y .2. We will use Poin
aré's 
lassi�
ation of the systems (S1, f) whose na-ture is well understood (see for example [34, Se
tion 11.2℄). Again we 
anassume with no loss of generality that our homeomorphism f preserves theorientation on S1. Let r(f) ∈ R denote the rotation number of f . If r(f)is rational then some power of f has a �xed point and we are redu
ed tothe 
ase of a homeomorphism of I = [0, 1]. Thus we 
an assume that r(f) isirrational. There are two 
ases to 
onsider.The �rst 
ase is when the system (S1, f) is minimal; then f is 
onjugateto an irrational rotation and is therefore equi
ontinuous.In the se
ond 
ase, when (S1, f) is not minimal, there exists a uniqueminimal subset K ⊂ S1 with K a Cantor set and there are wandering in-tervals J ⊂ S1. For su
h an interval, given an ε > 0 there exists an N su
hthat for every n ∈ Z with |n| ≥ N , diam(fn(J)) < ε; hen
e the NS propertyof (S1, f) follows.For the HNS property 
onsider an arbitrary subsystem (Y, f)with Y ⊂ S1.Again distinguish between the 
ases when Y has an isolated point and when
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t set. The presen
e of an isolated point ensures NS. Finally, when
Y is perfe
t it is either equal to K, hen
e equi
ontinuous, or we 
an still usethe existen
e of the wandering intervals in (S1, f) to obtain a non-empty set
J ∩ Y with the property that the diameter of its images under the iteratesof f tends to zero.Examples 10.6. Of 
ourse it is easy to �nd non-RN metri
 systems.Here are some �random� examples.1. The 
as
ades on the torus T2 de�ned by a hyperboli
 automorphism,or the horo
y
le �ows, being weakly mixing (see Corollary 9.3), arenot RN. Likewise Anosov di�eomorphisms on a 
ompa
t manifold,being expansive (see [5℄), are not RN by Corollary 10.3.2. Systems whi
h 
ontain non-equi
ontinuous minimal subsystems fail tobe RN.3. Let X be 
ompa
t metri
 and un
ountable and set G = Homeo(X).Then in many 
ases (like X = [0, 1]) the a
tion is expansive, hen
enot RN (Corollary 10.3).4. As we have seen, any un
ountable subshift is not RN. Thus, for ex-ample, the well known �generator of the Morse 
as
ade�

w = . . . 01101001100101100̇110100110010110 . . .
onsidered as a fun
tion w : Z → R is not an Asplund fun
tion on thegroup Z.A point-transitive LE system is, by de�nition, AE but there are non-transitive LE systems whi
h are not AE.Example 10.7. As 
an be easily seen, the Z-system (T,D), where D =
{z ∈ C : |z| ≤ 1} is the unit disk in the 
omplex plane and T : D → D is thehomeomorphism given by the formula Tz = z exp(2πi|z|), is an LE systemwhi
h is not AE.There exist many 
ompa
t metrizable transitive AE systems whi
h fail tobe HAE. This follows, for example, from the lemma below. We will use thefollowing 
onstru
tion whi
h is due to Takens. For a metri
 
as
ade (T,X)de�ne an asymptoti
 pseudo-orbit to be a bi-in�nite sequen
e {xn} su
h that
lim|n|→∞ d(Txn, xn+1) = 0. Note that (T,X) is 
hain transitive i� it admitsan asymptoti
 pseudo-orbit with alpha and omega limit point sets the wholespa
e.Lemma 10.8. Let (T,X) be a metri
 
as
ade.1. If (T,X) is a 
hain re
urrent Z-spa
e then X is isomorphi
 to asubsystem of a 
ompa
t metri
 transitive AE 
as
ade (T, Y ).2. If (T,X) is transitive-re
urrent then X is also a retra
t of the ambienttransitive AE system (T, Y ).
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 sequen
e in (0, 1) with
limn→∞ tn = 1, limn→∞ t−n = 0. Let S be the 
ir
le represented as the in-terval [0, 1] with 0 identi�ed with 1. Let {xn} be an asymptoti
 pseudo-orbitin X. Identify X with the subset X×{0} ⊂ X×S and let Y = X∪{(xn, tn) :
n ∈ Z}. Extend T to Y by T (xn, tn) = (xn+1, tn+1). This 
ompletes the proofof part 1. For part 2 note that if the pseudo-orbit is a
tually an orbit thenthe �rst 
oordinate proje
tion from Y to X is a Z-retra
tion.Remark 10.9. 1. If we apply the 
onstru
tion of Lemma 10.8 to the(
learly 
hain re
urrent) system (T,X) = (T,D) of Example 10.7, weobtain a transitive (but not re
urrent-transitive) metri
 LE system

(T, Y ) whi
h is not HAE (nor RNapp). Applying Lemma 10.8 to atransitive non-AE system (T,X) (e.g. a minimal weakly mixing sys-tem), we obtain an example of an AE system with both a subsystemand a fa
tor whi
h are not AE (see [25℄).2. As noted above, HAE is preserved under both passage to subsystemsand the operation of taking fa
tors. In the next se
tion we will showthat the Glasner�Weiss family of re
urrent-transitive LE but not WAPsystems 
onsists, in fa
t, of HAE systems. On the other hand, in Se
-tion 13 we will modify these examples so that the resulting dynami
alsystem will still be re
urrent-transitive, LE, but no longer HAE. Thuseven among metri
 re
urrent-transitive Z-systems we have the properin
lusions
WAP ⊂ HAE ⊂ LE.Then we 
an 
on
lude that the following in
lusions are also proper:

WAP(Z) ⊂ Asp(Z) ⊂ LE(Z).3. It is interesting to 
ompare some of the 
urrent de�nitions of 
haosand the 
orresponding 
lasses of dynami
al systems (see, for exam-ple, [16, 25, 11℄) with the 
lass of G-systems X su
h that Asp(X) =
{
onstants}. The latter are the systems whi
h admit only trivial repre-sentations on Asplund Bana
h spa
es. Every weakly mixing 
ompa
tsystem belongs to this 
lass be
ause by Corollary 9.3 every Asplundfun
tion (in fa
t, every 
ontinuous NS fun
tion) on su
h a system is
onstant.4. By Theorem 1.3 of [25℄ and the variational prin
iple, an LE (e.g.,RN) 
as
ade has topologi
al entropy zero. This probably holds for amu
h broader 
lass of a
ting groups but we have not investigated thisdire
tion.11. The G-W examples are HAE. In this se
tion we assume thatthe reader is familiar with the details of the paper [26℄. In parti
ular we usethe notations of that paper with no further 
omments.



268 E. GLASNER AND M. MEGRELISHVILITheorem 11.1. The G-W examples of re
urrent-transitive LE but notWAP systems are a
tually HAE.Proof. Re
all that Ω is the spa
e of 
ontinuous maps x : R → 2I , where
I = [0, 1] and 2I is the 
ompa
t metri
 spa
e of 
losed subsets of I equippedwith the Hausdor� metri
 d. (In fa
t, the values x assumes are either intervalsor points.) The topology on Ω is that of uniform 
onvergen
e on 
ompa
tsets: xn → x if for every ε > 0 and every M > 0 there exists N > 0 su
hthat for all n > N , sup|t|≤M d(xn(t), x(t)) < ε. On Ω there is a natural R-a
tion de�ned by translations: (T tx)(s) = x(s+ t). The 
ompa
t metrizabledynami
al system (T,X), where T = T 1, is obtained as the orbit 
losureX =
cls{Tnω : n ∈ Z} for a 
arefully 
onstru
ted (kite-like) element ω ∈ Ω (seealso the �gure in Se
tion 13). The fa
t that ω : R → 2I is a Lips
hitz fun
tionimplies that ea
h member of X is Lips
hitz as well with the same 
onstant,so that X as a family of fun
tions is equi
ontinuous. The 
ompa
tness of Xfollows from the Arzelà�As
oli theorem. We next sum up some of the salientfa
ts we have about (T,X):(a) For every x ∈ X there is a unique interval [a, b] ⊂ [0, 1] su
h that:(i) x(t) ⊂ [a, b], ∀t ∈ R,(ii) there exists a sequen
e tl ∈ R with limx(tl) = [a, b].We set

N(x) = [a, b].(b) The fun
tion x 7→ N(x) is lower semi
ontinuous, that is, limν xν = x
⇒ lim infν N(xν) ⊃ N(x).(
) Call intervals [a, b] ⊂ [0, 1] of the form N(x), x ∈ X, admissible.Then for every admissible [a, b] ⊂ [0, 1] there exists a unique element
ωab ∈ X with N(ωab) =ωab(0) = [a, b]. (In parti
ular ω01 =ω.)(d) Let J = {ωab ∈ X : 0 ≤ a ≤ b ≤ 1}. Then J is a 
losed subsetof X and N : J → {(a, b) : 0 ≤ a ≤ b ≤ 1} ⊂ [0, 1] × [0, 1] isa homeomorphism onto the set of admissible intervals. (Not everysubinterval of [0, 1] is admissible. For example neither [0, 9/10] norany degenerate interval with 9/10 < a = b ≤ 1 is attained.)(e) De�ning Xab = OT (ωab) we have x ∈ Xab i� N(x) ⊂ [a, b].(f) For ea
h admissible interval [a, b] ⊂ [0, 1] the subsystem (T,Xab)is AE, with Eq(Xab) = {x ∈ X : N(x) = [a, b]}.These fa
ts, perhaps ex
ept (b), are either stated expli
itly and proved in[26℄ or 
an be easily dedu
ed from the results in that paper. For 
ompletenesswe provide a proof for (b).Proof of (b). With no loss in generality we assume lim infν N(xν)

= limν N(xν) = [a, b] and we then have to show that [a, b] ⊃ N(x). There
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e mi su
h that limi T
mix(0) = N(x). Therefore, given ε > 0,there exists an i with(11.1) d(Tmix(0),N(x)) < ε.Next 
hoose ν su
h that(11.2) d(Tmixν(0), Tmix(0)) < εand(11.3) d(N(xν), [a, b]) < ε.Now, by (11.3) we have

[a− ε, b+ ε] ⊃ N(xν) ⊃ Tmixν(0),hen
e by (11.1) and (11.2),
[a− 3ε, b+ 3ε] ⊃ N(x).Sin
e ε > 0 is arbitrary we 
on
lude that indeed [a, b] ⊃ N(x).Of 
ourse this list implies the LE property of (T,X). However, we areafter the stronger property HAE. For this purpose 
onsider now an arbitrary
losed invariant non-empty subset Y of X. Let JY be the subset of Y whi
h
onsists of those elements y ∈ J ∩Y for whi
h N(y) = y(0) is maximal; thatis, if z ∈ Y and N(z) ⊃ N(y) then N(z) = N(y).

Claim 1. The restri
tion N↾Y : Y → [0, 1]× [0, 1] is 
ontinuous at pointsof JY .Proof. Suppose Y ∋ yn → y ∈ JY . By the lower semi
ontinuity of N,
[a, b] = lim inf

n
N(yn) ⊃ N(y).Choose a subsequen
e ni su
h that N(yni

) → [a, b]. Then for some sequen
e
mi we have Tmiyni

(0) → [a, b]. By 
ompa
tness we 
an assume with noloss in generality that Tmiyni
→ z for some z ∈ Y . Now, Tmiyni

(0) →
z(0) = [a, b] ⊃ N(y), when
e N(y) = [a, b]. It follows easily that limnN(yn)
= N(y).In item (d) of the above list we noted that J is a 
losed subset of X and
N : J → [0, 1] × [0, 1] is a homeomorphism into. Set K = N(J ∩ Y ) and let
K0 ⊂ K be the subset of maximal elements in K; i.e. [a, b] ∈ K0 i� [a, b] ∈ Kand K ∋ [c, d] ⊃ [a, b] implies [c, d] = [a, b]. Clearly K0 is a 
losed subset ofthe 
losed set K and for every [c, d] ∈ K there exists some [a, b] ∈ K0 with
[c, d] ⊂ [a, b].
Claim 2. K0 = N(JY ).Proof. Let [a, b] be an element ofK0; then [a, b]=N(y) for some y ∈J ∩Y .If [c, d] = N(z) ⊃ [a, b] for some z ∈ Y , then for some z′ ∈ OT (z) ⊂ Y we



270 E. GLASNER AND M. MEGRELISHVILIhave z′(0) = [c, d] = N(z′). In parti
ular z′ ∈ J ∩ Y and N(z′) = [c, d] ∈ K.Hen
e [c, d] = [a, b] and it follows that y ∈ JY .Conversely, if y ∈ JY with y(0) = [a, b] = N(y) and N(z) = z(0) =
[c, d] ⊃ [a, b] for z ∈ Y , then [c, d] = [a, b] and [a, b] ∈ K0.
Claim 3. JY is 
losed and non-empty ; in fa
t Y = cls{TnJY : n ∈ Z}.Proof. The fa
t that JY is 
losed and non-empty is a dire
t 
onsequen
eof Claim 2. Clearly N(Y ) = N(J ∩Y ) = K and it follows that every [a, b] =

N(y) ∈ N(Y ) is a subset of some [c, d] = N(ωab) ∈ K0. By item (e) we have
y ∈ Xab = OT (ωab) and our 
laim follows.
Claim 4. Every ωab ∈ JY with a < b is in Eq(Y ).Proof. The key fa
t in proving the in
lusion JY \ {
onstant fun
tions}

⊂ Eq(Y ) is a 
ertain uniformity of the fun
tion ε′ = ε′(ε, b − a) pro-vided by Lemma 3.5 of [26℄. In essen
e, as 
an be seen by 
ombining Lem-mas 3.5, 3.6 and 1.1 of [26℄, this fun
tion is the equi
ontinuity modulusfun
tion for D(z, w) = supn∈Zd(T
nz, Tnw) on orbit 
losures in (T,X); i.e.given a point x ∈ X with N(x) = [a, b] and ε > 0, the ε′-neighborhood of x,

Bε′(x)∩OT (x), in OT (x) is (ε,D)-small. The point is that the ε′ = ε′(ε, b−a)provided by Lemma 3.5 of [26℄ is uniform in x as long as b − a is boundedaway from zero.Therefore, given a point ωab ∈ JY with a < b, and ε > 0, we 
an 
hoose apoint ωa′b′ ∈ J with a′ < a < b < b′ so that a−a′, b′−b are su�
iently smallto ensure that ωab ∈ Bε′(ωa′b′). Of 
ourse by (e) we have ωab ∈ OT (ωa′b′).By Claim 1, ωab is a 
ontinuity point for the restri
tion of the map Nto Y and it follows that there exists a neighborhood V of ωab su
h that
N(y) ⊂ [a′, b′] for every y ∈ V , hen
e y ∈ OT (ωa′b′). We now 
on
lude that
Bε′(ωa′b′) ∩ V is an (ε,D)-small neighborhood of ωab in the subsystem Y ,and the proof that ωab is an equi
ontinuity point of the system (T, Y ) is
omplete.We next observe that T a
ts as the identity on the open subset

U = Y \ cls{Tnωab : ωab ∈ JY , a < b, n ∈ Z}(when non-empty) and thus every point in U is an equi
ontinuity point.This observation together with Claims 3 and 4 shows that the set Eq(Y ) ofequi
ontinuity points is dense in Y . That is, (T, Y ) is an AE system, andour proof of the HAE property of (T,X) is 
omplete.12. The min
enter of an RN system. Unlike the 
ase of transitiveWAP systems, where the min
enter (i.e. the 
losure of the union of the min-imal subsets of X) 
onsists of a single minimal equi
ontinuous subsystem,the min
enter of a transitive RN system need not be minimal. In the G-Wexamples the min
enter 
onsists of a 
ontinuum of �xed points; moreover, as
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ation of the 
onstru
tion there will yieldexamples of HAE systems whose min
enter 
onsists of un
ountably manynon-trivial minimal equi
ontinuous subsystems all isomorphi
 to a single
ir
le rotation. However, in Se
tion 13 we will present a more sophisti
atedmodi�
ation whi
h produ
es an example of an LE system with a min
enter
ontaining un
ountably many non-isomorphi
 rotations. In the present se
-tion we obtain some information about the min
enter of RN systems. Thiswill be used in the next se
tion to draw a sharp distin
tion between LE andHAE systems. For simpli
ity we deal with metrizable systems. Re
all thatfor su
h systems RN is the same as HAE.The prolongation relation Prol(X) ⊂ X × X of a 
ompa
t dynami
alsystem (G,X) is de�ned as follows:
Prol(X) = {(x, x′) : there exist nets gν ∈ G and xν ∈ Xsu
h that lim

ν
xν = x and lim

ν
gνxν = x′}.It is easy to verify that Prol(X) is a 
losed symmetri
 and G-invariant rela-tion. For x0 ∈ X we let

Prol[x0] = {x ∈ X : (x0, x) ∈ Prol(X)}.Note that always OG(x) ⊂ Prol[x], and if x0 ∈ OG(x) then x ∈ Prol[x0]. For
losed invariant sets A ⊂ B ⊂ X we say that A is 
apturing in B if x ∈ Band OG(x) ∩A 6= ∅ imply x ∈ A (see [7℄).Lemma 12.1. 1. Let (X, d) be a metri
 G-system, x0 ∈ Eq(X) and x ∈
Prol[x0]. Then x ∈ OG(x0). Hen
e,

Prol[x0] = OG(x0).2. If x0 ∈ Eq(X) and x0 ∈ OG(x), then x ∈ Eq(X) and x ∈ OG(x0);that is, Eq(X) is a 
apturing subset of X.Proof. 1. Given ε > 0 there exists δ > 0 su
h that z ∈ Bδ(x0) implies
dG(x0, z) < ε. There are nets gν ∈ G and xν ∈ X su
h that limν xν =
x0 and limν gνxν = x. For su�
iently large ν we have xν ∈ Bδ(x0) and
d(gνxν , x) < ε, hen
e

d(gνx0, x) ≤ d(gνx0, gνxν) + d(gνxν , x) < 2ε,hen
e x ∈ OG(x0). Thus Prol[x0] ⊂ OG(x0). The in
lusion Prol[x0] ⊃
OG(x0) is always true.2. Given ε > 0 there exists a δ > 0 su
h that dG(x0, z) < ε for every
z ∈ Bδ(x0). There exists g ∈ G with gx ∈ Bδ(x0) and therefore an η > 0with gBη(x) ⊂ Bδ(x0). Now for every h ∈ G and w ∈ Bη(x) we have

d(hgx, hgw) < d(hgx, hx0) + d(hgw, hx0) < 2ε.
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e x ∈ Prol[x0] andby part 1, x ∈ OG(x0).Proposition 12.2. Let (X, d) be a metrizable RN G-system, and Mits min
enter. Then Eq(M) is a disjoint union of minimal equi
ontinuoussystems, ea
h a 
apturing subset of M .Proof. Our system X is HAE by Theorem 9.14. Therefore the subsystem
(G,M) is AE. Let x0 ∈ M be an equi
ontinuity point of M . Given ε > 0there exists a 0 < δ < ε su
h that x ∈ Bδ(x0) ∩M implies d(gx0, gx) < εfor every g ∈ G. Let x′ ∈ Bδ(x0) be a minimal point. It then follows that
S = {g ∈ G : gx′ ∈ Bδ(x0)} is a syndeti
 subset of G (i.e. FS = G for some�nite subset F of G). Colle
ting these estimates we get, for every g ∈ S,

d(gx0, x0) ≤ d(gx0, gx
′) + d(gx′, x0) ≤ 2ε.Thus for ea
h ε > 0 the set N(x0, Bε(x0)) = {g ∈ G : d(gx0, x0) ≤ ε} issyndeti
, when
e x0 is minimal.Thus every equi
ontinuity point x0 of M is minimal and we apply Lem-ma 12.1 to 
on
lude that Eq(M) is a 
apturing subset of M .Corollary 12.3. The min
enter Z of a metrizable RN system (G,X)is transitive i� Z is minimal and equi
ontinuous.Remark 12.4. The Birkho� 
enter Y of a 
ompa
t metrizable Z-dy-nami
al system (T,X) 
an be de�ned as the 
losure of its re
urrent points.A non-empty open set U ⊂ X su
h that T jU ∩ U = ∅ for all j ∈ Z \ {0} is
alled a wandering set . The 
omplement of the union of all wandering sets is a
losed invariant subsystem Z1 ⊂ X whi
h 
ontains Y . Repeating this pro
ess(
ountably many times) we get by trans�nite indu
tion a 
ountable ordinal ηsu
h that Zη = Y . Sin
e an isolated transitive point of any 
ompa
t metri
system is always an equi
ontinuity point it follows easily that the system

(T,X) is LE i� its Birkho� 
enter (T, Y ) is LE. The same statement doesnot hold for RN systems. An example of a 
ompa
t sensitive system (T,X)whose Birkho� 
enter 
onsists of �xed points was shown to us by E. Akin(private 
ommuni
ation).13. A re
urrent-transitive LE but not HAE system. As promisedin Se
tion 10 we will sket
h in the present se
tion a modi�
ation of the G-W
onstru
tion that will yield a re
urrent-transitive system whi
h is LE but notHAE. The possibility of introdu
ing su
h a modi�
ation (in order to a
hieveanother goal) o

urred to the authors of [26℄ already at the time when thatpaper was written. The �rst author (E.G.) would like to thank B. Weiss forhis help in 
he
king the details of the modi�ed 
onstru
tion.Theorem 13.1. There exists a re
urrent-transitive LE but not HAE sys-tem.
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onstru
tion the basi
 �frames� αn were de�ned bythe formula
αn(t) = α0(t/pn), n = 1, 2, . . . ,where α0 is the original periodi
 kite-like fun
tion:

0.1
0

1

1The kite-like fun
tion α0and the sequen
e pk is de�ned by p0 = 1 and pn+1 = 10knpn for a sequen
eof integers kn ր ∞ su
h that
∞∑

n=1

pn
pn+1

=

∞∑

n=1

1

10kn
<∞.In the modi�ed 
onstru
tion the kite-like parts of αn will not be 
hanged butthe lines between 
onse
utive kites will 
ontain larger and larger segmentsin whi
h the original straight line will be repla
ed by graphs of fun
tions ofthe form(13.1) fθ : t 7→ sin(2πθt),properly s
aled so that they �t into our strip R × [0, 1]. At the outsetthe sequen
e kn will be 
hosen to grow su�
iently fast in order to leaveroom for the insertion of the sine fun
tions. The parameters θ will be 
on-stru
ted indu
tively as a binary tree of irrational numbers {θε : ε ∈ {0, 1}n},

n = 1, 2, . . . , where at the n + 1 stage θε0 = θε and θε1 is a new point in
[0, 1]. The numbers θε will satisfy inequalities of the form(13.2) ‖pnθε‖ ≪ 1/nn for all ε ∈ ∞⋃

k=1

{0, 1}k,where ‖λ‖ denotes the distan
e of the real number λ from the 
losest integer.The points on the 
ir
le whi
h satisfy the inequality (13.2) at stage n + 1form a union of �nitely many disjoint open intervals, and the �neighbor� θε1of θε0 = θε will be 
hosen in that same interval whi
h already 
ontains θε0.When the 
onstru
tion is �nished we end up with a Cantor set Λ ⊂ T 
on-sisting of the 
losure of the set {θε : ε ∈
⋃∞
k=1{0, 1}

k}. At stage n therewill be �nitely many fun
tions fθ with parameters θε, ε ∈ ⋃n
k=1{0, 1}

k, andthey will repla
e segments of the straight lines 
onne
ting the kites of αn.Ea
h of these fun
tions will grow in amplitude very gradually from zeroto say 1/100 and then after running for a long time with maximal ampli-tude 1/100 will symmetri
ally diminish in amplitude till it be
omes again a



274 E. GLASNER AND M. MEGRELISHVILIstraight line. Ea
h fun
tion will appear on
e and their o

urren
es will beseparated by very long stret
hes of the straight line. Of 
ourse this pi
turewill be repeated periodi
ally between any two 
onse
utive kites of αn. Apartfrom these 
hanges the 
onstru
tion of the fun
tions βn will be repeatedunmodi�ed as in [26℄.We 
laim that the 
onstru
tion sket
hed above, when 
arefully 
arriedout, will yield an element ω ∈ Ω whose orbit 
losure X = cls{Tnω : n ∈ Z}will be, like the original system, a re
urrent-transitive LE system. However,unlike the old system, whose minimal sets were all �xed points, our newsystem will have, for ea
h θ ∈ Λ, a minimal subset isomorphi
 to the irra-tional rotation (Rθ,T). We will not verify these 
laims, whose proofs parallelthe proofs of the original 
onstru
tion in [26℄. We will though demonstratethat (T,X) is not HAE. Indeed, this is a dire
t 
onsequen
e of the followingproposition. (A se
ond proof will be given in Remark 14.9.)Proposition 13.2. Let (T,X) be a 
ompa
t metri
 
as
ade and supposethat there exists an un
ountable subset Λ ⊂ T with the property that for ea
h
λ ∈ Λ there exists a subsystem Yλ ⊂ X su
h that the system (T, Yλ) isisomorphi
 to the rotation (Rλ,T) on the torus T = R/Z. Then (T,X) isnot HAE.Proof. Suppose to the 
ontrary that (T,X) is HAE and let Y =
cls(

⋃
{Yλ : λ ∈ Λ}). By assumption the system (T, Y ) is also HAE and
learly Y 
oin
ides with its min
enter: Y = M(Y ). Let A0 be a subset of

Y su
h that for ea
h λ ∈ Λ there is exa
tly one point in the interse
tion
A0 ∩ Yλ, and let A =

⋃
{TnA0 : n ∈ Z}. If {Um}∞m=1 is a 
ountable basisfor open sets in Y then the set O =

⋃
{Um : card(Um ∩ A) ≤ ℵ0} is openand it meets at most 
ountably many Yλ's. Omitting, at the outset, this
ountable set from Λ we 
an and do assume that Um ∩A is un
ountable forevery m. By the AE property the set Y0 = Eq(Y ) of equi
ontinuity pointsis a dense Gδ subset of Y , and by Proposition 12.2 ea
h point of Y0 belongsto a minimal set. Sin
e the set fix(Y ) of �xed points in Y is 
losed, it hasan empty interior and it follows that the set Y1 = Y0 \ fix(Y ) is also a dense

Gδ subset of Y .Choose a point z0 ∈ Y1; then z0 ∈ Z for some non-trivial minimal set Z.Now the system Z 
an admit at most a 
ountable set of eigenvalues andtherefore 
an be not disjoint from at most 
ountably many of the systems
Yλ. We 
an therefore 
hoose an in�nite sequen
e {λn} ⊂ Λ and a sequen
e ofpoints yn ∈ Yλn

su
h that (i) limn→∞ yn = z0, (ii) the set {λn : n = 1, 2, . . . }is independent over the rational numbers Q, and (iii) Z is disjoint from theminimal system ∏∞
n=1(Rλn

,T). Thus the dynami
al system
(T,Ω) = (T, Z) ×

∞∏

n=1

(Rλn
,T)
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ular for some sequen
e mi we have
lim
i→∞

Tmiyn = yn for n = 1, 2, . . . , while lim
i→∞

Tmiz0 = z1 6= z0.Sin
e limn→∞ yn = z0, this 
ontradi
ts the fa
t that z0 is an equi
ontinuitypoint and the proof of the proposition is 
omplete.This also 
on
ludes the proof of Theorem 13.1.14. An enveloping semigroup 
hara
terization of HNS. In thisse
tion we give an enveloping semigroup 
hara
terization of Asplund fun
-tions and HNS systems in terms of fragmented families (De�nition 6.8). Inaddition to fragmentability, our approa
h essentially uses Namioka's theo-rem. First we re
all this fundamental result and an auxiliary de�nition. Atopologi
al spa
e X is said to be �e
h-
omplete if X is a Gδ subset in some
ompa
t Hausdor� spa
e. If X is either a lo
ally 
ompa
t Hausdor� spa
eor a 
omplete metri
 spa
e then X is �e
h-
omplete. We need the followingversion of Namioka's theorem.Theorem 14.1 (Namioka's joint 
ontinuity theorem, [47℄). Let w : K ×
X → M be a separately 
ontinuous fun
tion where M is a metri
 spa
e, Kis 
ompa
t and X is �e
h-
omplete. Then there exists a dense Gδ set X0 in
X su
h that w is jointly 
ontinuous at every point of K ×X0.Let E = E(X) be the enveloping semigroup of a 
ompa
t G-system X.Re
all that

Ef := {pf : X → R}p∈E , pf (x) = f(px),is a pointwise 
ompa
t subset of RX , being a 
ontinuous image of E underthe map
qf : E → Ef , qf (p) = pf(see Se
tion 3).For every f ∈ C(X) de�ne the map

wf : E ×X → R, wf (p, x) := f(px).In turn wf indu
es the mapping Ef×Xf → R, (pf , f♯(x)) 7→ f(px). Observethat by the proof of Proposition 2.2.2 (with f♯ = ψ : βG(X) = X → Xf )we have ψ(x1) = ψ(x2) i� f(gx1) = f(gx2) for all g ∈ G. It follows that
ψ(x1) = ψ(x2) i� f(px1) = f(px2) for all p ∈ E. Hen
e, Ef ×Xf → R andthe following 
ommutative diagram is well de�ned:

E ×X

qf
��

f♯

��

// X

f

��
Ef ×Xf

// RWe are now ready to prove the following result.



276 E. GLASNER AND M. MEGRELISHVILITheorem 14.2. Let X be a 
ompa
t G-system. The following are equiv-alent :1. f ∈ Asp(X).2. Ef is a fragmented family.3. Ef is a barely 
ontinuous family.4. For every 
losed (G-invariant) subset Y ⊂ X there exists a dense Gδsubset Y0 of Y su
h that the indu
ed map pf : Y0 → R, pf (y) = f(py),is 
ontinuous for every member p of the enveloping semigroup E.Proof. 1 ⇒ 2: By Theorem 9.12 the family Ğf := {ğf : X → R}g∈G isfragmented. Then so is the family Ef , being the pointwise 
losure of Ğf(Lemma 6.9).
2 ⇔ 3: See De�nition 6.8.2.
2 ⇒ 4: Sin
e Ef is a fragmented family, for every 
losed non-empty sub-set Y ⊂ X the family of restri
tions EfY := {pf ↾Y : Y → R} is (lo
ally)fragmented. Now by Proposition 6.6 (see also De�nition 6.8.1) there exists adense Gδ subset Y0 ⊂ Y su
h that every y0 ∈ Y0 is a point of equi
ontinuityof the family EfY . Clearly this implies that pf : Y0 → R is 
ontinuous forevery p ∈ E.
4 ⇒ 1: We have to show by Theorem 9.12 that the G-map f♯ : X →

RUC(G) is norm fragmented. The a
tion of G on RUC(G) preserves thenorm. Therefore, in this 
ase µG = µ holds, where µ is the uniform stru
turegenerated by the norm. By Lemma 9.4.1 it su�
es to 
he
k that f♯↾Y : Y →
(RUC(G), µ) is lo
ally fragmented for every 
losed non-empty G-subset Yin X.By our assumption we 
an pi
k a dense Gδ subset Y0 of Y su
h that theindu
ed map pf : Y0 → R, pf (y) = f(py), is 
ontinuous for every p ∈ E(X).It follows that

wf ↾E×Y0
: E × Y0 → R, wf (p, y) = f(py),is separately 
ontinuous. Sin
e Y0 is �e
h-
omplete, by Namioka's theoremthere exists a dense subset Y1 of Y0 su
h that wf ↾E×Y0

is jointly 
ontinuousat every (p, y1) ∈ E × Y1. Our aim is to prove that f♯↾Y : Y → RUC(G) is
ontinuous at every y1 ∈ Y1. In fa
t we have to show that every y1 ∈ Y1 isa point of equi
ontinuity of the family of maps {gf↾Y : Y → R}g∈G. By the
ompa
tness of E and the in
lusion Ğ ⊂ E it is su�
ient to 
he
k that themap
wf ↾E×Y : E × Y → Ris 
ontinuous at ea
h (p, y1) ∈ E × Y1. In order to 
he
k the latter 
ondition�x ε > 0. By the joint 
ontinuity of wf ↾E×Y1

: E × Y1 → R, one 
an 
hoosean open neighborhood U of p in E and an open neighborhood O of y1 in the
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e Y su
h that
|f(py1) − f(qy)| < ε/3for every q ∈ U and y ∈ O∩Y1. We 
laim that |f(py1)−f(qz)| < ε for every

(q, z) ∈ U ×O. Fix su
h a pair (q, z) and 
hoose g := gq,z ∈ G su
h that the
orresponding g-translation ğ : X → X belongs to U and satis�es
|f(gz) − f(qz)| < ε/3.Sin
e Y1 is dense in Y and ğ : X → X is 
ontinuous, one 
an pi
k a ∈ Y1∩Osu
h that
|f(ga) − f(gz)| < ε/3.Putting these estimates together we obtain the desired inequality |f(py1) −

f(qz)| < ε. Thus, we have shown that f♯↾Y : Y → RUC(G) is 
ontinuous atevery y1 ∈ Y1. Sin
e Y1 is dense in Y , we 
an 
on
lude by Lemma 6.3.2 that
f♯↾Y is lo
ally fragmented.As a 
orollary we obtain the following enveloping semigroup 
hara
ter-ization of metri
 RN systems. It 
ertainly 
an also be derived from Theo-rem 9.14 and the result of Akin�Auslander�Berg mentioned earlier (see The-orem 5.11).Corollary 14.3. Let X be a 
ompa
t metri
 G-system. The followingare equivalent :1. (G,X) is RN.2. For every 
losed (G-invariant) subspa
e Y ⊂ X there exists a dense

Gδ subset Y0 of Y su
h that for every p ∈ E the indu
ed map
p : Y0 →X, p(y) := py, is 
ontinuous.Proof. (2)⇒(1) follows by Theorem 14.2. Now we prove (1)⇒(2). Sin
e

X is a metri
 
ompa
t spa
e we 
an 
hoose a 
ountable dense subset {fn :
n ∈ N} in C(X). By Theorem 7.6.4, C(X) = Asp(X). By Theorem 14.2 fora given 
losed (G-invariant) subset Y ⊂ X and every n ∈ N there exists adense Gδ subset Yn of Y su
h that for p ∈ E the indu
ed map pfn

: Yn → Ris 
ontinuous. Then it is easy to see that Y0 :=
⋂
n∈N

Yn is the desired subsetof Y .Definition 14.4. We say that a 
ompa
t right topologi
al semigroup Sis an F-semigroup if the family of maps {λp : S → S}p∈S , where λp(s) = ps,is a fragmented family. By De�nitions 6.8.1 and 6.1.1 it is equivalent to saythat Sf := {pf : S → R}p∈S (where pf (x) = f(px)) is a fragmented familyfor every f ∈ C(S). Yet another way to formulate the de�nition is to requirethat for every non-empty 
losed subset A ⊂ S, every f ∈ C(S) and ε > 0there exists an open subset O ⊂ S su
h that A ∩ O is non-empty and thesubset f(p(A ∩O)) is ε-small in R for every p ∈ S.
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ompa
t semitopologi
al semigroup is an F -semigroup. The ver-i�
ation is easy applying Namioka's theorem to the map S × A → R,
(s, a) 7→ f(sa), where A is a 
losed non-empty subset of S.Theorem 14.5. Let X be a 
ompa
t G-system. Consider the following
onditions:(a) X is HNS (equivalently , RNapp).(b) Ğ := {ğ : X → X}g∈G is a fragmented family.(
) E(X) = {p : X → X}p∈E(X) is a fragmented family.(d) (G,E(X)) is HNS (equivalently , RNapp).(e) E(X) is an F-semigroup.Then we have:1. Always, (a)⇔(b)⇔(
)⇒(d)⇔(e).2. If X is point-transitive then (a)⇔(b)⇔(
)⇔(d)⇔(e).Proof. 1. (a)⇔(b): The proof follows from Theorem 9.9.(b)⇔(
): Use Lemma 6.9.(a)⇒(d): By the de�nition (G,E) is a G-subsystem of XX . Sin
e RNappis 
losed under subdire
t produ
ts we dedu
e that E is also in RNapp.(d)⇔(e): E(X) is an F -semigroup i� {λp : E → E}p∈E is a fragmentedfamily i� the subfamily {λg : E → E}g∈G is a fragmented family (use on
eagain Lemma 6.9). The latter 
ondition is equivalent to assertion (d) asfollows by the equivalen
e (a)⇔(b) (applied to the system (G,E)).2. (d)⇒(a): If x0 is a transitive point ofX then the map E → X, p 7→ px0,is a 
ontinuous onto G-map. Sin
e RNapp is 
losed under quotients we �ndthat X also belongs to RNapp.Corollary 14.6. GAsp is an F-semigroup for every topologi
al group G.Proof. The 
ompa
t G-system X := GAsp is RNapp by Theorem 7.6.6.Therefore, Theorem 14.5 implies that the enveloping semigroup E(GAsp) isan F -semigroup. Sin
e (GAsp, uA(e)) is point-universal (Proposition 7.7),by Proposition 2.6 there exists a G-isomorphism φ : (E(GAsp), i(e)) →
(GAsp, uA(e)) of pointed G-systems. In fa
t this map is an isomorphism of(right topologi
al) semigroups be
ause uA(G) is dense in GAsp and i(G) isdense in E(GAsp).Corollary 14.7. Let (G,X) be a 
ompa
t HNS system. Then p :
X → X is fragmented (equivalently , Baire 
lass 1, when X is metri
) forevery p ∈ E(X).Proof. Use Theorem 14.5 (and Proposition 6.7.2).For the de�nition of Rosenthal 
ompa
ts see Se
tion 3.
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ompa
t metrizable G-spa
e. For every
f ∈ Asp(X) the 
ompa
t spa
e Ef ⊂ RX is a Rosenthal 
ompa
t.2. Let X be a metrizable 
ompa
t RN G-spa
e. Then the envelopingsemigroup E is a (separable) Rosenthal 
ompa
t with 
ardinality ≤ 2ℵ0(in parti
ular , no subspa
e of E 
an be homeomorphi
 to βN).Proof. 1. Sin
e f ∈ Asp(X), by Theorem 14.2, Ef = {pf : X → R}p∈Eis a fragmented family. In parti
ular, ea
h map pf : X → R is fragmented.Sin
e X is 
ompa
t and metrizable we 
an apply Proposition 6.7. Hen
e,ea
h fun
tion pf ∈ Ef is of Baire 
lass 1 (on the Polish spa
e X). Therefore,

Ef is a Rosenthal 
ompa
t.2. C(X) = Asp(X) by Theorem 7.6.4. It follows by the �rst assertionthat Ef is a Rosenthal 
ompa
t for every f ∈ C(X). An appli
ation of thedynami
al version of the BFT theorem, Theorem 3.2, 
on
ludes the proof.Remark 14.9. Theorem 14.8.2 
an be used to obtain an alternativeproof of Proposition 13.2. In fa
t, as 
an be seen from Proposition 2.1, theenveloping semigroup of the system (T,X) in Proposition 13.2 has 
ardinal-ity 22ℵ0 .Our next example is of a metri
 minimal 
as
ade (T,X) whi
h is notRN yet its enveloping semigroup E = E(T,X): (a) is a separable Rosenthal
ompa
t of 
ardinality 2ℵ0 , and (b) has the property that ea
h p ∈ E is ofBaire 
lass 1. Thus this example shows that the 
onverse of Theorem 14.8.2does not hold and neither does that of Corollary 14.7.Example 14.10. Let T = R/Z be the one-dimensional torus, and let
α ∈ R be a �xed irrational number and Tα : T → T the rotation by α,
Tαβ = β + α (mod1). We de�ne a topologi
al spa
e X and a 
ontinuousmap π : X → T as follows. For β ∈ T \ {nα : n ∈ Z} the preimage π−1(β)will be a singleton xβ . On the other hand, for ea
h n ∈ Z, π−1(nα) will
onsist of exa
tly two points x−nα and x+

nα. For 
onvenien
e we will use thenotation β± (β ∈ T) for points of X, where (nα)− = x−nα, (nα)+ = x+
nαand β− = β+ = xβ for β ∈ T \ {nα : n ∈ Z}. A basis for the topologyat a point of the form xβ, β ∈ T \ {nα : n ∈ Z}, is the 
olle
tion of sets

π−1(β−ε, β+ε), ε > 0. For (nα)− a basis will be the 
olle
tion of sets of theform {(nα)−}∪π−1(nα− ε, nα), where ε > 0. Finally, for (nα)+ a basis willbe the 
olle
tion of sets of the form {(nα)+}∪π−1(nα, nα+ε). It is not hardto 
he
k that this de�nes a 
ompa
t metrizable zero-dimensional topologyon X (in fa
t X is homeomorphi
 to the Cantor set) with respe
t to whi
h
π is 
ontinuous. Next de�ne T : X → X by the formula Tβ± = (β + α)±.Again it is not hard to see that π : (T,X) → (Rα,T) is a homomorphismof dynami
al systems and that (T,X) is minimal and not equi
ontinuous



280 E. GLASNER AND M. MEGRELISHVILI(in fa
t it is almost-automorphi
; see e.g. Vee
h [57℄). In parti
ular (T,X) isnot RN.We now de�ne for ea
h γ ∈ T two distin
t maps p±γ : X → X by theformulas
p+
γ (β±) = (β + γ)+, p−γ (β±) = (β + γ)−.We leave the veri�
ation of the following 
laims as an exer
ise.1. For every γ ∈ T and every sequen
e ni ր ∞ with limi→∞ niα = γ and

niα < γ for all i, we have limi→∞ Tni = p−γ in E(T,X). An analogousstatement holds for p+
γ .2. E(T,X) = {Tn : n ∈ Z} ∪ {p±γ : γ ∈ T}.3. The subspa
e {Tn : n ∈ Z} inherits from E the dis
rete topology.4. The subspa
e E(T,X)\{Tn : n ∈ Z} = {p±γ : γ ∈ T} is homeomorphi
to the �two arrows� spa
e of Aleksandrov and Urysohn (see [21, p. 212℄,and also Ellis' example [19, Example 5.29℄). It thus follows that E isa separable Rosenthal 
ompa
t of 
ardinality 2ℵ0 .5. For ea
h γ ∈ T the 
omplement of the set C(p±γ ) of 
ontinuity pointsof p±γ is the 
ountable set {β± : β + γ = nα for some n ∈ Z}. Inparti
ular ea
h element of E is of Baire 
lass 1.15. A dynami
al version of Todor£evi¢'s theorem. A surprisingresult of Todor£evi¢ asserts that a Rosenthal 
ompa
t X whi
h is not metriz-able obeys the following alternative: either X 
ontains an un
ountable dis-
rete subspa
e or it is an at most two-to-one 
ontinuous preimage of a 
om-pa
t metri
 spa
e ([55, Theorem 3℄). We present here the following dynami
alversion.Proposition 15.1 (A dynami
al Todor£evi¢ di
hotomy). Let G be auniformly Lindelöf group and (G,X) a 
ompa
t system with the property that

X is a Rosenthal 
ompa
t. Then either X 
ontains an un
ountable dis
retesubspa
e or there exists a metri
 dynami
al system (G, Y ) and a G-fa
tor
π : (G,X) → (G, Y ) su
h that |π−1(y)| ≤ 2 for every y ∈ Y .Proof. If we rule out the �rst alternative in Todor£evi¢'s theorem thenit follows by that theorem that there exists a 
ompa
t metri
 spa
e Zand a 
ontinuous map φ : X → Z with |φ−1(z)| ≤ 2 for every z ∈ Z. By[41, Theorem 2.11℄ there exist a 
ompa
t metri
 G-spa
e Y , a 
ontinuousonto G-map f1 : X → Y and a 
ontinuous map f2 : Y → Z su
h that
φ = f2 ◦ f1. Clearly, |f−1

1 (y)| ≤ 2 for every y ∈ Y .We do not know whether Theorem 14.8.2 
an be strengthened to thestatement that the enveloping semigroup of any 
ompa
t metri
 RN systemis in fa
t metri
. However, Proposition 15.1 yields the following.
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 RN G-system, where G is an ar-bitrary topologi
al group. Then either the enveloping semigroup E = E(X)
ontains an un
ountable dis
rete subspa
e, or it admits a metri
 G-fa
tor
π : (G,E) → (G, Y ) su
h that |π−1(y)| ≤ 2 for every y ∈ Y .Proof. This follows dire
tly from Theorem 14.8.2 and Proposition 15.1be
ause the natural restri
tion Ğ (see Se
tion 3) is se
ond 
ountable (andhen
e, uniformly Lindelöf).Problem 15.3. By Theorem 14.8.2 the enveloping semigroup of theG-W example is a separable Rosenthal 
ompa
t (of 
ardinality 2ℵ0). Wedo not have a 
on
rete des
ription of this enveloping semigroup and do noteven know whether it is metrizable or if it 
ontains an un
ountable dis
retesubspa
e.
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