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ASYMPTOTIC BEHAVIOR OF THE INVARIANT MEASURE

FOR A DIFFUSION RELATED TO AN NA GROUP

BY

EWA DAMEK and ANDRZEJ HULANICKI (Wrocław)

Abstract. On a Lie group NA that is a split extension of a nilpotent Lie group N
by a one-parameter group of automorphisms A, the heat semigroup µt generated by a
second order subelliptic left-invariant operator

∑m
j=0 Yj +Y is considered. Under natural

conditions there is a µ̌t-invariant measure m on N , i.e. µ̌t ∗m = m. Precise asymptotics
of m at infinity is given for a large class of operators with Y0, . . . , Ym generating the Lie
algebra of S.

Introduction. The aim of this paper is twofold. First, to describe the
precise asymptotic behavior of the invariant measure for a diffusion process
on a homogeneous Lie group N ; the description is new even in the case
of N = R

d, d > 1. Second, to present a survey of our earlier results with
simplified proofs that are needed to prove our main result.
A sequence of random variables defined recursively by

Rn =MnRn−1 +Qn,

where (Qn,Mn) ∈ R
d × R

+
∗ = S is a sequence of identically distributed

independent random variables with the law

P[(Q1,M1) ∈ U ] = µ(U),
has attracted considerable attention during the last forty years. Of course,
multiplication by scalars Mn can be replaced by other automorphisms of
the group R

d or more generally by automorphisms of a Lie group N with
Qn ∈ N . Moreover

Wn = (Qn,Mn) · · · (Q1,M1) = (Rn,M1 · · ·Mn)

2000 Mathematics Subject Classification: 22E25, 22E30, 31B25, 43A80, 60J60.
Key words and phrases: heat semigroup, subelliptic operator, nilpotent Lie group,

invariant measure.
Research partially supported by the European Commission via RTN network “Har-

monic Analysis and Related Problems” HPRN-CT-2001-00273 and via Marie Curie Fel-
lowships for the Transfer of Knowledge “Harmonic Analysis, Nonlinear Analysis and Prob-
ability” MTKD-CT-2004-013389, KBN grant 1 P03 A 018 26 and Foundation for Polish
Sciences, Subsidy 3/99.

[285]



286 E. DAMEK AND A. HULANICKI

can be viewed as a left random walk on S, where the group multiplication
in S is given by

(x, a)(x′, a′) = (xΦa(x
′), aa′),

and Φa, a ∈ A, is a one-parameter group of shrinking automorphisms of a
nilpotent Lie group N , S = NA, dimA = 1, by which we mean that

(0.1) lim
a→0

Φax = e ∀x ∈ N.

Each random step (Mj , Qj) is sampled according to the law µ, a measure
on S = NA.

We are interested in the properties of the invariant measure for the
Markov chain Rn, i.e. the unique Radon measurem such that for continuous
functions f with compact support we have\\

f(s · x) dµ(s) dm(x) =
\
f(x) dm(x), i.e. µ ∗m = m,

or equivalently, \
Exf(Rn) dm(x) =

\
f(x) dm(x),

E being the expected value.

Let ̺ denote a norm on N , i.e. ̺ : N → R
+ and ̺(xy) ≤ ̺(x) + ̺(y).

Assume that

(0.2)

(i)
\
S

log a dµ(xa) < 0,

(ii)
\
S

log ̺(x) dµ(xa) <∞,

(iii)
\
S

aα dµ(a) = 1.

Conditions (i) and (ii) imply the existence and uniqueness of a probability
measure m on N that is invariant, µ ∗m = m. Then the measure m is the
distribution law of the random variable

Z = lim
n→∞

Q1 · Φa1(Q2) · · ·Φa1...an(Qn+1).

This is an old result, proved and reproved by many authors [R], the idea
of the proof going back to Furstenberg’s famous paper [F]. More recently,
Diaconis and Friedman [DF] showed a general scheme of iteration of random
functions acting on a state space (in our case N) for which under conditions
like (0.2)(i) and (0.2)(ii), there exists an invariant probability measure.
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However, if (i) does not hold, then, as proved by Babillot, Bougerol and
Élie [BBE], the conditions

(0.3)

\
log a dµ(xa) = 0,

∃δ>0
\
(|log a|+ |log+ |x| |2+δ) dµ(xa) <∞,

∀x∈N µ{s : s · x = x} < 1,
the projection of µ on A is not supported

by a proper subgroup of A

imply the existence of a Radon measure m0 on N that is invariant. The
measure m0 is unique.

If S = R ·R+∗ , i.e. S is the“ax+ b”-group, then for an arbitrary measure
µ that satisfies conditions (i)–(iii) the following tail estimates have been
established for the invariant measure mα as a result of a long series of
papers from Kesten to Goldie and Maller [Gu], [Go], [GM], [Gre], [K], [V]:
for α as in (0.2) we have

(0.4) lim
t→∞

tαmα[t,∞) = C+, lim
t→−∞

|t|αmα(−∞, t] = C−,

and, if E logM = 0, then

(0.5) m0[r1t, r2t) = L(|t|) log
r2
r1
,

where L(|t|) is a slowly varying function for t → ∞ (see [BBE]). It has
also been established that C+ + C− > 0. In the multi-dimensional case no
precise estimates of m0 at infinity are known. For general measures µ on S
that satisfy only (0.2) or (0.3), in the case N 6= R we know of no results
on the asymptotic behavior of the invariant measure at infinity, even if µ is
absolutely continuous, smooth and compactly supported.

Before we are going to describe the setting for our results, let us recall
some general facts that link the invariant measurem and the Green operator
on S (cf. [BBE]). Let

Uf(s) = Es

∞∑

n=0

φ(Wn) =
∞∑

n=0

f(s′s) dµ∗n(s′) =
\
S

f(s′s) dG(s′)

be the Green operator on S. Then

(0.6) ∀f∈Cc(S) lim
a→∞

Uf(xa) =
\
f(xa) dm(x)

da

a
.

Let

f(xa) = φ(x)ψ(a),
\
ψ(a)

da

a
= 1,
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where φ, ψ are continuous functions with compact support. Then

Uf(xa) =
\
φ(ybxa) dG(yb) =

\
φ(yΦb(x))ψ(ba) dG(yb).

Thus, if a → ∞, then ψ(ba) 6= 0 implies b → 0 and so Φb(x) → e. So (0.6)
says that m is a weak limit, as b→ 0, of the Radon measures Gb that come
from the desintegration of G, dG(yb) = dGb(y) dG(b). More precisely,

lim
b→0
〈φ,Gb〉 = 〈φ,m〉.

For the measures µ on S that are the subject of this paper, let us call
them Gaussian, the fact that the invariant measure is a limit of a Green
function is essential. However, we use a slightly different Green function
and we do not use the facts mentioned above.

Description of the main result. Let S = NA be a split extension of
a nilpotent Lie group N by a one-dimensional group A of dilating automor-
phisms Φa of N (see Section 2):

(x, a)(x1, a1) = (xΦa(x1), aa1).

In a number of papers (cf. e.g. [D], [DH], [DHZ], [DHU]) we considered a
second order left-invariant operator

L =
m∑

j=0

Y 2j + Y

on S that satisfies the Hörmander condition. Under the canonical homomor-
phism of S onto A = R

+
∗ the image of L is equal to

(a∂a)
2 − αa∂a,

up to a constant. If α ≥ 0, then on N there is a positive Radon measure mα
with smooth density such that

µ̆t ∗mα = mα,
where µt is the semigroup of probability measures on S whose infinitesimal
generator is L ([E], [R]) and for a measure µ on S we write

〈µ̆, f〉 = 〈µ, f̆〉, where f̆(s) = f(s−1).

The invariant measure mα is also called the Poisson kernel.

Invariant measures for certain Markov processes on homogeneous Lie
groups N have been extensively studied when N is the additive group of
real numbers, or more recently when N = R

d. The generalization from R
d

to more general homogeneous Lie groups is straightforward as far as the
formulations of the results go. The proofs, however, require different, more
complicated techniques due to non-commutativity of N . The generalization,
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originally motivated by the study of positive harmonic functions on homo-
geneous spaces of negative curvature and their Martin boundaries [DHU],
seems to find another justification in the fact that the processes we study
are closely related to ones that have appeared in financial mathematics in
which the Heisenberg group plays an important role [SS].

The behavior of mα and its derivatives at infinity is the subject of [D],
[DHZ], [DHU] and [U]. Indeed upper and lower bounds for aQ+αmα(Φa(x))
as a→∞, where Q is the homogeneous dimension of N (cf. Section 1), are
given in [D] and [DHU]. In the present paper, we study radial limits at ∞
and we show the following

Main Result. For every x in the unit sphere Σ of N the limit

lim
a→∞

aQ+αmα(Φa(x)) = c(x)

exists and it is positive. The function Σ ∋ x 7→ c(x) is continuous (1).

The proof relies heavily on the methods and theorems developed in
[DHZ], [DHU] and [U], but many arguments have been much simplified
here. The estimates for the evolution are contained in Sections 2 and 3. The
Green function, that is, the density of the measure G with respect to the
left invariant Haar measure on S, its continuity up to the boundary and
the relation to mα are studied in Sections 4 and 5. There an elementary
argument (in the proof of (5.4)) communicated to us by Aline Bonami has
simplified very much some of our original reasoning and has allowed for the
proof of the theorem in its full generality.

The authors are grateful to Bartosz Trojan for valuable conversations on
the subject.

1. Preliminaries. Let

(1.1) S = N ⊕A
be a solvable Lie algebra that is the sum of its maximal nilpotent ideal N
and a one-dimensional algebra A = R. We assume that there exists H ∈ A
such that

(1.2) the real parts of the eigenvalues of adH : N → N are positive.
This implies that multiplying H by a large constant if necessary, we may
assume that the real parts of the eigenvalues of H are greater than 2.

Let N,A, S be the connected and simply connected Lie groups whose
Lie algebras are N , A and S respectively. Then S = NA is a semidirect
product of N and A = R

+.

(1) Precise assumptions on the operator are formulated in the next section (see (1.5)).



290 E. DAMEK AND A. HULANICKI

On C∞c (S) we consider a second order left-invariant operator

L =
m∑

j=0

Y 2j + Y

such that Y0, . . . , Ym generate S as a Lie algebra, i.e. L satisfies the strong
Hörmander condition.

Let πA(xa) = a be the canonical homomorphism of S onto A. Then
πA(L), up to a constant, is equal to

πA(L) = H2 − αH
for an α ∈ R. If α ≥ 0, then there is a positive Radon measure mα, unique
up to a constant, on N such that

(1.3) µ̆t ∗mα = mα,
where µt is the semigroup of probability measures on S whose infinitesimal
generator contains L ([E], [R]). For α > 0, mα is a bounded measure. The
bounded L-harmonic functions on S are in one-to-one correspondence with
L∞(N) via the Poisson integral

F (s) =
\
N

f(s · x) dmα(x),

where x 7→ s · x denotes the action of S on N = S/A (see [DH]). If α ≤ 0,
then there are no bounded L-harmonic functions and mα is only a Radon
measure. Furthermore, mα is a smooth function and moreover, for an ap-
propriately defined norm (see below),

(1.4) C−1(1 + |x|)−Q−α ≤ mα(x) ≤ C(1 + |x|)−Q−α,
where

Q = ℜTr adH .
For the proof of (1.4) see [D] when α > 0 and [DHU] when α = 0.

Our main theorem goes a step further: instead of an upper and lower
bound at infinity we prove the existence of the limit.

It follows from elementary linear algebra that Y0, . . . , Ym can be chosen
in the way that Y1, . . . , Ym ∈ N , Y0 /∈ N .
(1.5) We assume that Y1, . . . , Ym generate N .
The general case, i.e. when Y0, . . . , Ym, Y generate the Lie algebra S is going
to be the subject of the forthcoming paper [BDH].

The decomposition (1.1) is not unique, i.e. there is no canonical choice
of A. We put A = exp{cY0 : c ∈ R} and we may assume without loss of
generality that the real parts of the eigenvalues of adY0 are strictly positive.
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Moreover, multiplying L by a constant,

c2L =
m∑

j=0

(cYj)
2 + c2Y,

we see that the real parts of adY0 may be arbitrarily large. Clearly L and
c2L have the same harmonic functions, the semigroup for c2L is µc2t, so the
boundary Radon measures are the same. Decomposing s ∈ S as
(1.6) s = xa = x exp(log a)cY0, x ∈ N, a ∈ A,
we write

(1.7) c2L = L−α = (a∂a)2 − α(a∂a) +
m∑

j=1

Φa(Xj)
2 + Φa(X),

where Φa = Adexp(log a)cY0 = ead(log a)cY0 and X1, . . . , Xm generate N . We
shall keep the subscript α to stress the role of the A-component of Y in
(1.7). In fact, if µt is the semigroup generated by L−α, α ≥ 0, then (0.2) or
(0.3), respectively, is satisfied by µ̆t.

Let (·, ·)0 be an arbitrary inner product on N and let
√
(X,X)0 = ‖X‖0.

(1.2) implies that there are p1, p2 > 2 and C > 0 such that

(1.8)
1

C
min(ap1 , ap2)‖X‖0 ≤ ‖Φa(X)‖0 ≤ Cmax(ap1 , ap2)‖X‖0, a > 0.

We define a “homogeneous norm” | · | on N . We let

〈X,Y 〉 =
1\
0

(Φa(X), Φa(Y ))0
da

a
, ‖X‖ =

√
〈X,X〉.

We put

|expX| = |X| = (inf{a > 0 : ‖Φa(X)‖ ≥ 1})−1.
We observe that, in view of (1.6), for every X 6= 0,

a 7→ ‖Φa(X)‖2 =
a\
0

‖Φb(X)‖20
db

b
is increasing,

lim
a→0
‖Φa(X)‖ = 0, lim

a→∞
‖Φa(X)‖ =∞.

Therefore for every Y 6= 0 there is precisely one a such that
Y = Φa(X), ‖X‖ = 1.

We put

|expY | = |Y | = a.
Clearly,

|a expXa−1| = a|expX|.
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We introduce polar coordinates in N . For every x ∈ N and r ∈ R
+ we

write Φr(x) = r · ω = |x| · σ(x), where ‖ω‖ = |ω| = 1. Let
Σ = {ω ∈ N : |ω| = 1} = {ω ∈ N : ‖ω‖ = 1}.

Since ‖ ·‖ is a Euclidean sphere in N and exp : N → N is a diffeomorphism,
Σ is a smooth compact submanifold in N . Following pages 13–15 in [FS]
we see that there exists a finite measure dω on Σ such that for the Haar
measure dx on N we have

dx = dω rQ−1 dr.

Our main theorem can be written as

(1.9) Main Theorem. For every σ ∈ Σ the limit
lim
r→∞

rQ+αmα(r · σ) = c(σ)

is finite and positive. Moreover , the function Σ ∋ σ 7→ c(σ) is continuous.

Positivity of c(σ) follows from (1.4). The statement can also be viewed as
a polar decomposition of the measure mα at infinity. Denoting the density
of mα with respect to dx by the same letter, for f ∈ Cc(N) we have
lim
t→0

t−α
\
N

f(trω)mα(rω)r
Q−1 dr dω

= lim
t→0

\
N

f(rω)t−αmα(t
−1rω)(t−1r)Q−1t−1 dr dω

= lim
t→0

\
N

f(rω)mα(t
−1rω)(t−1r)Q+αr−1−α dr dω

=
\
N

f(rω)c(ω)r−1−α dr dω,

since, by (1.4), mα(t
−1rω)(t−1r)Q+α ≤ C. Now taking f = 1[1,∞), for α > 0

we obtain

lim
t→∞

tαmα[t,∞) =
1

α

\
c(ω) dω,

and for α = 0 with f = 1[r1,r2] we get

lim
t→∞

m0[tr1, tr2] = log
r2
r1

\
c(ω) dω.

This agrees with the estimates (0.4) and (0.5).

2. Evolution. In this section we prove basic estimates for derivatives
of the evolution that will be needed later. For a multiindex I = (I1, . . . , In)
and a basis X1, . . . , Xn of the Lie algebra N we write

XI = XI11 · · ·XInn and |I| =
∑

Ij .
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For k = 0, 1, . . . , we define

Ck = {f : XIf ∈ C(N) for |I| < k + 1},
Ck∞ = {f ∈ Ck : lim

x→∞
XIf(x) exists for |I| < k + 1}.

Ck∞ is a Banach space with the norm

‖f‖Ck
∞

=
∑

|I|≤k

‖XIf‖C(N).

For a continuous function σ : [0,∞)→ (0,∞) = A let

Lσ(t) = σ(t)
−2
(∑

Φσ(t)(Xj)
2 + Φσ(t)(X)

)
.

There exists a unique family Uσ(s, t), 0 ≤ s < t, of bounded operators
on C∞(N) = C

0
∞(N) that satisfy

Uσ(s, t)f = f ∗ pσ(t, s),
pσ(t, s) ∈ C∞,

\
pσ(t, s;x) dx = 1, pσ(t, s) ≥ 0,

pσ(t, r) ∗ pσ(r, s) = pσ(t, s), s < r < t,

lim
h→0
‖f ∗ pσ(s+ h, s)− f‖C∞(N) = 0 for f ∈ C∞(N),

∂t(f ∗ pσ(t, s)) = (Lσ(t)f) ∗ pσ(t, s) for f ∈ C2∞(N),
∂s(f ∗ pσ(t, s)) = −Lσ(s)(f ∗ pσ(t, s)) for f ∈ C2∞(N).

The proof of the existence of Uσ(s, t) follows the standard lines of, e.g., [T],
once the following simple lemma is proved.

(2.1) Lemma. Let τ be a Riemannian distance on N , φ ∈ C∞c (N), φ ≥ 0,
CT = (1+sup0≤s≤T |σ(s)|)R, where R = 2 supλ ℜλ, λ’s being the eigenvalues
of adcY0 . For a fixed s let {µst} be the semigroup with the infinitesimal gener-
ator Lσ(s). There is a constant C such that for every T > 0, s1, . . . , sn ≤ T
and t1, . . . , tn > 0, for all M > 0,

〈µs1t1 ∗ · · · ∗ µ
sn
tn , e

M(φ∗τ)〉 ≤ eMφ∗τ(0)eC(M+M2)CT (t1+···+tn).
As a consequence we conclude that for every k ≥ 1 there is Ck such that
‖Uσ(s, t)‖Ck

∞
(N)→Ck

∞
(N) ≤ CkeCkCT (t−s) for k ≥ 1, 0 ≤ s, t ≤ T.

We need some further properties of pσ(t, s). Let

A(s, t) =

t\
s

(σ(u)p1 + σ(u)p2) du.

There is C such that for every s < t and β > 0 ((4.7) in [DHU])

(2.2) 〈eβτ , pσ(t, s)〉 ≤ CeC(β+β2)A(s,t).
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There exist C, γ > 0 and D ≥ 1/2 such that (see the proof of Theorem 4.1
in [DHU])

(2.3) ‖pσ(t, s)‖L∞(N) ≤ C
( t\
s

σ(u)γ du
)−D

.

For every multiindex I, there are C,M > 0 such that for every σ,

|XIpσ(t, s)‖L∞(N) ≤ Cmax{1, (t− s)−M}(2.4)

× (1 + sup
s≤u≤t

σ(u) + sup
s≤u≤t

σ(u)−1)M .

For t − s ≥ 1, (2.4) was proved in [DHZ] (Theorem 3.5); for arbitrary t, s
we use a standard homogeneity argument.

(2.5) Lemma. For every ε > 0 and each multiindex I, if we set XI =
XI11 · · ·XInn , then there is a constant C such that for s < t1 < t2 < t,

(2.6) ‖XIpσ(t, s)‖L∞(N) ≤ CeεA(s,t1)
∑

|J|=|I|

‖XJpσ(t2, t1)‖L∞(N).

Proof. First we observe that for functions f, g in the Schwartz class on
N we have

XI(f ∗ g) = f ∗XIg, XI(f ∗ g) =
\
N

(Ady−1 X
If)(xy)g(y−1) dy.

Moreover,

|AdyXIf(xy)| ≤ C(1 + τ(y))C(I)
∑

|J|=|I|

|XJf(xy)|.

Consequently, since

pσ(t, s) = pσ(t, t2) ∗ pσ(t2, t1) ∗ pσ(t1, s), ‖pσ(t, t2)‖L1(N) = 1,
by (2.2) we have

‖XIpσ(t, s)‖L∞(N) ≤ ‖XIpσ(t2, s)‖L∞(N)
≤ C‖(1 + τ)C(I)pσ(t1, s)‖L1

∑

|J|=|I|

‖XJpσ(t2, t1)‖L∞(N)

≤ CeεA(s,t1)
∑

|J|=|I|

‖XJpσ(t2, t1)‖L∞(N).

(2.7) Lemma. Let K be a compact subset of N with e 6∈ K, I a mul-
tiindex and ε > 0. There are C1, C2 such that for s < t1 < t2 < t and
x ∈ K,
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|XIpσ(t, s;x)| ≤ C1eεA(s,t1)‖pσ(t2, t1)‖1/2L∞(N)(2.8)

× e−C2/A(s,t)
∑

|J|≤2|I|

‖XJpσ(t2, t1)‖1/2L∞(N).

Proof. Let t3 =
1
2 (t2 + t1). For every β > 0 we have

eβτ(x)|XIpσ(t, s;x)| ≤
(\
e2βτ(xy

−1)pσ(t, t3;xy
−1)2 dy

)1/2

×
(\
e2βτ(y)|XIpσ(t3, s; y)|2 dy

)1/2
.

Since

‖XIpσ(t3, s)‖L2(e2βτ ) ≤ C‖pσ(t3, s)‖L1(e2βτ )
∑

|J|≤2|I|

‖XJpσ(t3, s)‖L∞(N),

we have

eβτ(x)|XIpσ(t, s;x)| ≤ C‖pσ(t, t3)‖1/2L∞(N)eC(β+β
2)A(s,t)

×
( ∑

|J|≤2|I|

‖XJpσ(t3, s)‖L∞(N)
)1/2

.

But by (2.6),

‖XJpσ(t3, s)‖L∞(N) ≤ CeεA(s,t1)
∑

|J′|=|J|

‖XJ′pσ(t3, t1)‖L∞(N).

Hence

|XIpσ(t, s;x)| ≤ C‖pσ(t, t2)‖1/2L∞(N)eεA(s,t1)e−βτ(x)+C(β+β
2)A(s,t)

×
( ∑

|J|≤2|I|

‖XJpσ(t2, t1)‖L∞(N)
)1/2

.

Now putting β = τ(x)/2CA(s, t) we obtain the conclusion.

In view of (2.3), (2.4), we have

(2.9) Corollary. Let K be a compact set that does not contain e, I a
multiindex , ε > 0, γ as in (2.3) and M as in (2.4). There are C1, C2 > 0
such that for s < t1 < t2 < t,

‖XIpσ(t, s)‖L∞ ≤ C1eεA(s,t1)
( t\
t2

σ(u)γ du
)−D
max{1, (t2 − t1)−M}

× (1 + sup
t1≤u≤t2

σ(u) + sup
t1≤u≤t2

σ(u)−1)M ,
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and for x ∈ K,
|XIpσ(t, s;x)| ≤ C1eεA(s,t1)e−C2/A(s,t)max{1, (t2 − t1)−M}

× (1 + sup
t1≤u≤t2

σ(u) + sup
t1≤u≤t2

σ(u)−1)M .

3. Evolution run by a Bessel process. Let R+ ∋ t 7→ σ(t) denote the
Bessel process with a parameter α ≥ 0 (see [RY]), i.e. a continuous Markov
process with state space [0,∞) generated by

∆α = ∂
2
a +

α+ 1

a
∂a, α ≥ 0,

with ps(a, b) being the density of the transition probability with respect to
the measure a1+αda, i.e.

Psf(x) =
\
ps(x, y)f(y)y

α+1 dy.

We have

(3.1) pt(a, u) ≤ Ct−1−α/2e−c(a−u)
2/4t.

We call {Pt}t>0 the Bessel semigroup. For f ∈ L2(uα+1du) we have
lim
t→0
‖Ptf − f‖L2(uα+1du) = 0

and for f ∈ C∞c ,

(3.2) lim
t→0

∥∥∥∥
Ptf − f

t
−∆αf

∥∥∥∥
L2(uα+1du)

= 0.

Of course, if α is an integer ≥ 0, then ∆α is the radial part of the Laplacean
on R

α+2.

Let

µ(a, η) =

a+η\
a−η

uα+1 du, χη = µ(a, η)
−11[a−η,a+η].

The following facts are well known and easy to prove (cf. e.g. [RY], [DHU]):

(3.3) sup
b>0
Ebχη(σ(t/4)) ≤ ct−1−α/2

and, for every γ > 0,

(3.4) sup
b>0
Eb

( t\
0

σ(s)γ ds
)−D
≤ Ct−(1+γ/2)D,

where Eb denotes the expectation with respect to the Wiener–Bessel measure
on the space of trajectories.
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There are c1, c2 such that for every a ≥ 0, and every t > 0,
Pa( inf
s∈[0,t]

σ(s) < a/2) ≤ c1e−c2a
2/t,(3.5)

Pa( sup
s∈[0,t]

σ(s) > a+ λ) ≤ c1e−c2λ
2/t.(3.6)

There is a constant δ such that for every a ≥ 0, and every t > 0,
(3.7) Pa( sup

s∈[0,t]

σ(s) < λ) ≤ e−δt/λ2 .

The following basic estimate was proved in [U], but since then the proof
has been essentially simplified and so we include it here.

(3.8) Theorem. Let K be a compact subset of N and e 6∈ K. For every
multiindex I,

sup
η<a<1, x∈K

∞\
0

E0|XIpσ(t, 0)(x)|χη(σ(t)) dt <∞.

Proof. Let
Ω0 = {σ : sup

0≤s≤t/2

σ ≥ 1}

and for k = 1, 2, . . . let

Ωk = {σ : 2−k ≤ sup
0≤s≤t/2

σ ≤ 2−k+1}.

We define stopping times

T k1 = inf{t > 0 : σ(t) = 2−k−1}
and

T k2 = min{inf{t > T k1 : σ(t) = 3 · 2−k−2}, inf{t > T k1 : σ(t) = 2
−k−2}}.

Let

I1 =

∞\
1

E0|XIpσ(t, 0)(x)|χη(σ(t)) dt,

I2 =

1\
0

E0|XIpσ(t, 0)(x)|χη(σ(t)) dt.

By Corollary (2.9),

I1 ≤ C
∞∑

k=0

2Mk
∞\
1

E01Ωk(T
k
2 − T k1 )−MeεA(0,T

k
1 )

×
( t\
Tk2

σ(s)γ ds
)−D

χη(σ(t)) dt
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≤ C
∞∑

k=0

2Mk
∞\
1

E01Ωk(T
k
2 − T k1 )−MeεT

k
1

×
( 3t/4\
t/2

σ(s)γ ds
)−D

χη(σ(t)) dt.

Applying the Markov property twice, by (3.3) and (3.4), we have

E01Ωk(T
k
2 − T k1 )−M1eεT

k
1

( 3t/4\
t/2

σ(s)γ ds
)−D

χη(σ(t))

= E01Ωk(T
k
2 − T k1 )−MeεT

k
1

( 3t/4\
t/2

σ(s)γ ds
)−D
Eσ(3t/4)χη(σ(t/4))

≤ Ct−1−α/2E01Ωk(T k2 − T k1 )−MeεT
k
1 Eσ(t/2)

( t/4\
0

σ(s)γ ds
)−D

≤ Ct−1−α/2−(1+γ/2)DE01Ωk(T k2 − T k1 )−MeεT
k
1 .

Thus it suffices to estimate

E01Ωk(T
k
2 − T k1 )−MeεT

k
1 ≤ (E0(T k2 − T k1 )−2M )1/2(E01Ωke2εT

k
1 )1/2.

For k ≥ 1, by (3.6) we have

E01Ωke
2εTk1 ≤ e2εtP0(Ωk) ≤ eεte−δ2

2k−2t ≤ e−δ122kt,
while

E01Ω0e
2εT 01 ≤

[t/2]+1∑

m=1

e2εmP0({σ : sup
0≤s≤m

≤ 1/2) ≤
[t/2]+1∑

m=1

e2(ε−δ)m <∞

when ε < δ. Finally, we estimate E0(T
k
2 − T k1 )−2M . Given l > 0, let

Wl,1 =
{
σ : 2−l ≤ T k2 − T k1 ≤ 2−l+1, σ(T k2 ) = 32σ(T k1 )

}
,

Wl,2 =
{
σ : 2−l ≤ T k2 − T k1 ≤ 2−l+1, σ(T k2 ) = 12σ(T k1 )

}
.

By the strong Markov property, (3.5) and (3.6), we have

P0(Wl,1) ≤ Pσ(Tk1 )
({

sup
0≤s≤2−l+1

b(s) > 3
2b(0)
})
≤ c1e−c22

−2k+l

and

P0(Wl,2) ≤ Pσ(Tk1 )
({

inf
0≤s≤2−l+1

b(s) < 1
2b(0)
})
≤ c1e−c22

−2k+l

.
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Therefore,

E0(T
k
2 − T k1 )−2M ≤

∞∑

l=0

C22lMe−c22
−2k+l ≤ C24kM .

Finally,

I1 ≤ C
∞\
1

t−1−α/2−(1+γ/2)D
(∑

k

23Mke−δ12
2kt + 1

)
≤ C.

Let N > α+ 2. By Corollary (2.9),

I2 ≤ C
∞∑

k=0

2Mk
1\
0

E01Ωk(T
k
2 − T k1 )−Me−c/A(0,t)χη(σ(t)) dt

≤ CN
∞∑

k=0

2Mk
1\
0

(E01Ωk(T
k
2 − T k1 )−2Mχη(σ(t)))1/2

× (E0A(0, t)Nχη(σ(t)))1/2 dt.
Proceeding as before we have

E01Ωk(T
k
2 − T k1 )−2Mχη(σ(t)) ≤ Ct−1−α/224kMe−δ12

2kt.

Hence by the lemma below,

I2 ≤ C
∞∑

k=0

23Mk
1\
0

tN−α/2−2e−δ12
2kt dt

≤ C
∞∑

k=0

23Mk−2(N−α/2−1)k
22k\
0

tN−α/2−2e−δ1t dt <∞.

(3.9) Lemma. Let N > α+ 2. There is C such that for every t ≤ 1 and
η, a < 1,

E0A(0, t)
Nχ(σ(t)) ≤ CtN−α/2−1.

Proof. By the Hölder inequality, we have

A(0, t)N ≤ tN−1
t\
0

(σ(s)p1 + σ(s)p2)N ds

= tN−1
N∑

k=0

(
n

k

) t\
0

σ(s)kp1+(N−k)p2 ds.

Therefore, it suffices to estimate

t\
0

E0σ(s)
qχ(σ(t)) ds for q ≥ N.
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By the Markov property we have

t\
0

E0σ(s)
qχ(σ(t)) ds =

t\
0

E0σ(s)
qEσ(s)χ(b(t− s)) ds

=

t\
0

∞\
0

uqps(0, u)
1

µ(a, η)

a+η\
a−η

pt−s(u, y)y
α+1 dy uα+1 du ds.

We split the integral into two parts and by (3.1) we have

t\
0

4\
0

uqps(0, u)
1

µ(a, η)

a+η\
a−η

pt−s(u, y)y
α+1 dy uα+1 du ds

≤ C

µ(a, η)

t\
0

a+η\
a−η

∞\
0

ps(0, u)pt−s(u, y)u
α+1 du yα+1 dy ds

≤ C

µ(a, η)

t\
0

a+η\
a−η

pt(0, y)y
α+1 dy ds

≤ C

tα/2µ(a, η)

a+η\
a−η

yα+1 dy ≤ C

tα/2

and
t\
0

∞\
4

uqps(0, u)
1

µ(a, η)

a+η\
a−η

pt−s(u, y)y
α+1 dy uα+1 du ds

≤
t\
0

∞\
4

uq
1

s1+α/2
e−u

2/4s 1

µ(a, η)

×
a+η\
a−η

1

(t− s)1+α/2 e
−(u−y)2/4(t−s)yα+1 dy uα+1 du ds

≤
t\
0

∞\
0

uq
1

s1+α/2
e−u

2/4s 1

(t− s)1+α/2 e
−u2/16(t−s)uα+1 du ds

≤
t\
0

(∞\
0

uqe−u
2/2suα+1 du

)1/2(∞\
0

uqe−u
2/8suα+1 du

)1/2

× 1

s1+α/2
1

(t− s)1+α/2 ds

≤
t\
0

s(q+α+1)/4−1−α/2(t− s)(q+α+1)/4−1−α/2 ds <∞.
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Let

L(a) = a−2
(∑

Φa(Xj)
2 + Φa(X)

)
,

Lα = a
−2Lα = ∆α + L(a).

We observe that by (1.8), L(0) = 0 is well defined. For the evolution pσ(t, s)
described in Section 2, and a ≥ 0, x ∈ N , let

(3.10) Ttf(x, a) = Ea
\
N

f(xy−1, σ(t))pσ(t, 0; y) dy.

We are going to prove

(3.11) Theorem. {Tt}t>0 is a semigroup of contractions on L2(dx ⊗
a1+αda) whose infinitesimal generator contains Lα.

Proof. First we observe that, if pt(a, b) is as in (3.1), we have

‖Ttf‖2L2(dx⊗a1+αda) ≤
\

R+

Ea
\
N

|f(xy−1, σ(t))pσ(t, 0; y) dy|2 dx a1+α da(3.12)

≤
\

R+

Ea‖f(·, σ(t)) ∗N pσ(t, 0)‖2L2(dx)a1+α da

≤
\

R+

Ea‖f(·, σ(t))‖2L2(dx)a1+α da

=
\

R+

\
R+

|f(x, b)|2pt(a, b)b1+αa1+α da db dx

≤
\

R+

|f(x, b)|2b1+α db dx.

Also, by the Markov property (see e.g. [DHU, Theorem 3.2]),

TsTt = Ts+t.

Now we prove that for f ∈ C∞c (N),

lim
t→0

1

t
[Ttf(x, a)− f(x, a)]− Lαf(x, a) = 0

in L2(a1+αdxda), which for simplicity will be denoted L2. For convolution
of f with pσ we adopt the notation\

N

f(xy−1, σ(t))pσ(t, 0; dy) = f(·, σ(t)) ∗ pσ(t, 0)(x).

We have
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1

t
[Ttf(x, a)− f(x, a)]− Lαf(x, a)

=
1

t
[Eaf(·, σ(t)) ∗ pσ(t, 0)(x)− Eaf(x, σ(t))]− L(a)f(x, a)

+
1

t
[Eaf(x, σ(t))− f(x, a)]−∆αf(x, a).

Clearly, the second term in the above expression tends to 0 in L2(a1+αdxda),
so we have to deal only with the first one. We write

Ea
1

t

t\
0

(L(σ(s))f(·, σ(t))) ∗ pσ(s, 0)(x)− L(a)f(x, a)

= Ea
1

t

t\
0

[L(σ(s))(f(·, σ(t))− f(·, a))] ∗ pσ(s, 0)(x)

+ Ea
1

t

t\
0

[(L(σ(s))− L(a))f(·, a)] ∗ pσ(s, 0)(x)

+ Ea
1

t

t\
0

[L(a)f(·, a) ∗ pσ(s, 0)(x)− L(a)f(x, a)] = I1 + I2 + I3.

Now

|I1|2L2 ≤
1

t

t\
0

Ea|L(σ(s))(f(·, σ(t))− f(x, a))|2 a1+α dx da

and so we have to estimate terms of the form

Eaσ(s)
γ |XIf(x, σ(t))−XIf(x, a)|2

≤ Eaσ(s)γ(|XIf(x, σ(t))|+ |XIf(x, a)|)‖f‖C3
∞

|σ(t)− σ(0)|

≤ C‖f‖C3
∞

(Eaσ(s)
2γ)1/2[(Ea|XIf(x, σ(t))|2|σ(t)− σ(0)|2)1/2

+ |XIf(x, a)|)(Ea|σ(t)− σ(0)|2)1/2].
A direct calculation involving compactness of the support of f , (3.1) and
(3.6) shows that for t ≤ 1,

|XIf(x, a)|(Ea|σ(t)− σ(0)|2)1/2 ≤ C
√
t,

Ea|XIf(x, σ(t))|2|σ(t)− σ(0)|2 ≤ C1
√
te−C2a,

sup
s≤t
Eaσ(s)

2γ ≤ C(1 + a)2γ .

Hence limt→0 |I1|2L2 = 0. Next we have

|I2|2L2 ≤
1

t

t\
0

Ea|(L(σ(s))− L(a))f(x, a)|2 a1+α dx da
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and we have to estimate terms

|XIf(x, a)|2Ea(σ(t)γ + σ(0)γ)|σ(t)− σ(0)|2.
Again using compactness of the support of f , we see that they do not exceed√
t, which is enough to conclude limt→0 |I2|2L2 = 0. Finally,

I3 =
1

t

t\
0

Ea

s\
0

L(σ(r))L(a)f(·, a) ∗ pσ(r, 0)(x),

and so

|I3|2L2 =
1

t

t\
0

Eas

s\
0

|L(σ(r))L(a)f(·, a) ∗ pσ(r, 0)(x)|2 a1+α dx da

≤ 1
t

t\
0

s

s\
0

Ea|L(σ(r))L(a)f(x, a)|2 a1+α dx da.

Inside the expected value we have terms of the form σ(r)γaη|XIf(x, a)| and\
(Eaσ(r)

γ)aη|XIf(x, a)| a1+α dx da ≤ C.
Hence limt→0 |I3|L2 = 0.

4. The Green function. Let

L∗α = ∂
2
a +
1 + α

a
∂a + a

−2
(∑

j

Φa(Xj)
2 − Φa(X)

)

be the formal adjoint of Lα on L
2(dx ⊗ a1+αda) and let f ∈ Cc(S). Then

for T ∗t defined as in (3.10) but for L
∗
α, for every x ∈ N and a ≥ 0 we have

(4.1)

∞\
0

|T ∗t f(x, a)| dt <∞.

Indeed, |T ∗t f(x, a)| ≤ ‖f‖L∞ and for t > 1, by (2.3), (3.1) and (3.4), we
have

|T ∗t f(x, a)| ≤ Ea‖pσ(t, 0)‖L2(N)‖f(·, σ(t))‖L2(N)(4.2)

≤ (Ea‖pσ(t, 0)‖2L2(N))1/2
(\
Ea|f(x, σ(t))|2 dx

)1/2

≤ CEa
( t\
0

σ(s)γ ds
)−D(\

|f(x, b)|2pt(a, b)b1+α db dx
)1/2

≤ Ct−1/2−α/4−(1+γ/2)D‖f‖L2(dx⊗a1+αda)
and D ≥ 1/2. (4.1) defines a positive functional

f 7→
∞\
0

T ∗t f(x, a) dt
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on Cc(S). Therefore, there is a non-negative Radon measure G
∗(x, a; dy db)

such that

(4.3)

∞\
0

T ∗t f(x, a) dt =
\
S

G∗(x, a; dy db)f(y, b).

We are going to prove the following theorem:

(4.4) Theorem.

LαG
∗(e, 0; ·) = 0,(4.5)

G∗(e, 0; y, b) = b−Q−αG∗(e, 0;Φb−1(y), 1),(4.6)

where the measure G∗ and its density with respect to b1+α db dy are denoted
by the same letter. For every multiindex I and every compact K ⊂ N with
e 6∈ K,
(4.7) sup

0<b≤1, y∈K
XIyG

∗(e, 0; y, b) <∞.

Proof. Let f ∈ C∞c (S). By (4.3) and Theorem 3.11, f is in the domain
of the infinitesimal generator of the semigroup {T ∗t }t>0 and so\

S

G∗(e, 0; dy db)L∗αf(y, b) =

∞\
0

T ∗t L
∗
αf(e, 0) dt =

∞\
0

L∗αT
∗
t f(e, 0) dt

=

∞\
0

d

dt
T ∗t f(e, 0) dt.

Moreover, by (4.2), the integral is absolutely convergent. Hence

∞\
0

d

dt
T ∗t f(e, 0) dt = lim

ε→0
(T ∗ε−1f(e, 0)− T ∗ε f(e, 0)).

But by (2.3),

|T ∗ε−1f(e, 0)| ≤ Ea
( ε−1\
0

σ(s)γ ds
)−D
≤ Cε(1+γ/2)D

and so limε→0 T
∗
ε−1f(e, 0) = 0. Moreover, limε→0 T

∗
ε f(e, 0) = 0. Hence\

S

G∗(e, 0; dy db)L∗αf(y, b) = 0,

which implies that G∗(e, 0; ·) ∈ C∞(S) and denoting its density with respect
to the measure b1+α db dy by the same letter we have\

S

LαG
∗(e, 0; y, b)f(y, b)b1+α db dy = 0.
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Let Dr(x, a) = (Φr(x), ra). Using directly formula (3.10) that defines T
∗
t

and homogeneity of the evolution, we see that

T ∗t (f ◦Dr) ◦Dr−1 = T ∗r2tf.
Hence

∞\
0

T ∗t (f ◦Dr)(e, 0) dt =
∞\
0

T ∗r2tf(e, 0) dt = r
−2
∞\
0

T ∗t f(e, 0) dt

and so\
S

f ◦Dr(y, b)G∗(e, 0; y, b)b1+α db dy = r−2
\
S

f(y, b)G∗(e, 0; y, b)b1+α db dy.

Changing variables we obtain

r−Q−αG∗(e, 0;Φr−1(y), r
−1b) = G∗(e, 0; y, b)

and (4.6) follows. Moreover, by N -left-invariance of Lα, G
∗(x, 0; y, b) =

G∗(e, 0;x−1y, b).

Let φ ∈ C∞c (N) and let X̃ be a right-invariant vector field on N . Then,
since X̃ commutes with convolution on the right,

X̃G∗(φχη)(x, 0) = X̃
(\
G∗(e, 0;x−1y, b)φ(y)χη(b)b

1+α dy db
)

=
\d
dt
G∗(e, 0;x−1 exp−tX̃y, b)

∣∣∣
t=0

φ(y)χη(b)b
1+α dy db.

Hence, for x = e, we have\
S

X̃IG∗(e, 0; y, b)φ(y)χη(b)b
α+1 db dy

= (−1)|I|
∞\
0

X̃IT ∗t ((φχη))(e, 0) dt

= (−1)|I|
∞\
0

E0X̃
Iφ ∗N pσ(t, 0; e)χη(σ(t)) dt

= (−1)|I|
∞\
0

E0〈φ, X̃I p̆σ(t, 0)〉χη(σ(t)) dt,

where on the left-hand side X̃I is applied to y. Thus, if φ→ δx we have

∞\
0

X̃IG∗(e, 0;x, b)χη(b)b
α+1 db =

∞\
0

E0X
Ipσ(t, 0)(x−1)χη(σ(t)) dt.

and (4.7) follows by Theorem (3.8).
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5. Continuity of the Green function and asymptotics of the

Poisson kernel

(5.1) Theorem. If x 6= e then
(5.2) lim

a→0
G∗(e, 0;x, a) exists,

it is positive, and G∗(e, 0; ·) extended to N \ {e} × [0,∞) by
G∗(e, 0;x, 0) = lim

a→0
G∗(e, 0;x, a)

is continuous on N \ {e} × [0,∞).
Proof. Write G∗(e, 0;x, a) = G(x, a). We observe that by (4.5),

LαG(x, a) = a2LαG(x, a) = 0.
For a fixed x 6= e, let

h(a) = a∂aG(x, a), v(a) =
(
−
∑

j

Φa(Xj)
2 − Φa(X)

)
G(x, a).

Then

(5.3) a∂ah(a) + αh(a) = v(a)

and, by (1.8) and (4.7), there is β > 0 such that |v(a)| < aβ for a ≤ 1.
Moreover, by the Harnack inequality for Lα, h is bounded. By (5.3),

∂a(a
αh) = aα−1v(a).

We shall prove that

(5.4) |h(a)| ≤ aβ

α+ β
.

But (5.4) implies

|G(x, a)−G(x, b)| =
∣∣∣
a\
b

u−1h(u) du
∣∣∣ ≤

a\
b

uβ−1

α+ β
du =

aβ − bβ
β(α+ β)

and from this (5.2) follows.
To prove (5.4) we take b < a and we write

|aαh(a)− bαh(b)| =
∣∣∣
a\
b

∂u(u
αh(u)) du

∣∣∣ ≤
a\
b

|uα−1v(u)| du(5.5)

≤
a\
b

uα+β−1 du =
aα+β − bα+β

α+ β
.

Since h is bounded, if α > 0 we may take the limit as b→ 0 and so (5.4)
follows. For α = 0, from (5.5) we derive the existence of

lim
a→0

h(a) = h(0).
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It remains to show that h(0) = 0. For that we write

G(x, 1)−G(x, a) =
1\
a

u−1h(u) du =

1\
a

u−1
(
h(0) +

u\
0

∂sh(s) ds
)
du

= − h(0) ln(a) +
1\
a

u−1
u\
0

∂sh(s) ds du.

But by (5.5),

∣∣∣
1\
a

u−1
u\
0

∂sh(s) ds du
∣∣∣ ≤

1\
a

uβ−1

α+ β
du =

1− aβ
β(α+ β)

.

Hence h(0) ln a is bounded as a → 0 and so h(0) = 0. (5.4) follows also for
α = 0.

To prove continuity of G∗(e, 0; ·) we take a sequence (xn, an) → (x, 0)
with x 6= e. If an 6= 0 then by (4.7),

|G(xn, an)−G(x, an)| ≤ cτ(xn, x),
c being independent of n. If an = 0 then by (5.2) we can find bn such that

|G(xn, 0)−G(xn, bn)| < 1/n.
We also have

|G(xn, bn)−G(x, bn)| < Cτ(xn, x).

Hence

|G(xn, an)−G(x, bn)| < 1/n+ Cτ(xn, x).
In any case

lim
n→∞

G(xn, an) = lim
n→∞

G(x, bn) = G(x, 0).

Proof of the Main Theorem. We have

m̆α(x) = G
∗(e, 0;x, 1).

Indeed, by (4.5) and (4.6),

aαLα(a−Q−αG∗(e, 0;Φa−1(x), 1)) = L−α(a−QG∗(e, 0;Φa−1(x), 1)) = 0,
which implies (1.3) and so uniquely determines the measure mα. Now again
by (4.6) and the previous theorem,

lim
a→0

m̆α(Φa−1(x))a
−Q−α = lim

a→0
G∗(e, 0;x, a) = G∗(e, 0;x, 0).

Positivity of the above limit follows from (1.4).
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[E] L. Élie, Comportement asymptotique du noyau potentiel sur les groupes de Lie,
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