A REPRESENTATION THEOREM FOR CHAIN RINGS

BY

YOUSEF ALKHAMEES, HANAN ALOLAYAN and SURJEET SINGH (Riyadh)

Abstract. A ring A is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a chain ring such that \(\overline{A} = A/J(A) \) is a separable field extension of \(\overline{R} = R/J(R) \). It follows from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra \(R_0 \) which is a chain ring such that \(A = R_0 + J(A) \) and \(R_0 \cap J(A) = J(R_0) = J(R)R_0 \). The structure of A in terms of a skew polynomial ring over \(R_0 \) is determined.

Introduction. Let S be a finite local ring. As shown by Wirt [8, Theorem 2.2] and independently by Clark and Drake [4], S has a commutative local subring \(S_0 \) such that \(S = S_0 + J(S) \) and \(S_0 \cap J(S) = pS_0 \), where \(p = \text{char}(S/J(S)) \). This subring is called a coefficient subring of S. A ring is called a chain ring if it is a local, both sided artinian and principal ideal ring. Wirt [8] gave a representation of a finite chain ring S in terms of a homomorphic image of a skew polynomial ring over its coefficient subring. On the other hand, Alkhamees and Singh [1] generalized the results on the existence of coefficient subrings of finite local rings to certain non-finite local rings.

Let R be a commutative chain ring, and A be a local ring that is a faithful R-algebra. Then \(J(R) = R \cap J(A) \). Let \(\overline{A} = A/J(A) \) be a separable, algebraic field extension of \(\overline{R} \), and let A be either a locally finite R-algebra or an artinian duo ring. As proved in [1], A has a commutative local R-subalgebra \(R_0 \) such that \(A = R_0 + J(A) \) and \(J(R_0) = R_0 \cap J(A) = J(R)R_0 \). This subalgebra \(R_0 \) is also called a coefficient subring of A; such a subring is a commutative chain ring, and is a faithful R-algebra. The group of R-automorphisms of \(R_0 \) is investigated in Section 2. Wirt [8] introduced the concept of a distinguished basis of a bimodule over a Galois ring. In Section 3 an analogous concept for bimodules over \(R_0 \) is investigated.

The main purpose of this paper is to prove a representation theorem for A, in case A is a chain ring, in terms of an appropriate homomorphic image of a skew polynomial ring over its coefficient subring. Sections 4 and 5 are devoted to proving the main theorem (Theorem 5.5). By Cohen [5], any

2000 Mathematics Subject Classification: Primary 16S35; Secondary 16P10, 16P20.
faithful, unramified, faithful and unramified.

A commutative local artinian ring admits a coefficient subring. For such a ring an analogue of Theorem 5.5 cannot be proved.

1. Preliminaries. All rings considered in the paper have \(1 \neq 0 \). Let \(S \) be any ring. Then \(J(S) \), \(Z(S) \) denote its Jacobson radical and center respectively. For any subset \(X \) of \(S \), \(C(X) \) denotes its centralizer in \(S \). For any module \(M \), \(d(M) \) denotes its composition length. For any automorphism \(\sigma \) of \(S \), \(S[x, \sigma] \) denotes the left skew polynomial ring over \(S \) determined by \(\sigma \). Its members are left polynomials \(\sum_i a_i x^i \), \(a_i \in S \), and \(xa = \sigma(a)x \) for every \(a \in S \).

Let \(R \) be a commutative local ring and \(\overline{R} = R/J(R) \). For any \(f(x) \in R[x] \), let \(\overline{f}(x) \) denote its natural image in \(\overline{R}[x] \). The ring \(R \) is called a Hensel ring if it has the following property: Given any monic polynomial \(f(x) \in R[x] \), if \(\overline{f}(x) = a(x)b(x) \) for some relatively prime monic polynomials \(a(x), b(x) \in R[x] \), then there exist monic polynomials \(g(x), h(x) \in R[x] \) such that \(f(x) = g(x)h(x), \overline{g}(x) = a(x) \) and \(\overline{h}(x) = b(x) \). By the Hensel lemma [9, p. 279], any commutative, complete local ring \(R \) is a Hensel ring. In particular any commutative local artinian ring is a Hensel ring.

Let \(A \) be an algebra over \(R \). If \(A_R \) is finitely generated, then \(A \) is called a finite \(R \)-algebra. The algebra \(A \) is called faithful if for any \(r \in R, rA = 0 \) implies that \(r = 0 \); in that case \(R \) is regarded a subring of \(A \). Moreover, \(A \) is called unramified if \(J(A) = J(R)A \); \(R \)-separable if it is a commutative, local, finite, faithful and unramified \(R \)-algebra such that \(\overline{A} = A/J(A) \) is a finite separable field extension of \(R/J(R) \); and locally separable if it is a local, faithful, unramified \(R \)-algebra such that any finite subset of \(A \) is contained in a separable \(R \)-subalgebra. If \(A \) is a locally separable \(R \)-algebra, then \(\overline{A} \) is a separable, algebraic field extension of \(\overline{R} \).

A commutative chain ring \(R \) is called a special primary ring [7, p. 200]. A finite special primary ring \(S \) such that \(J(S) = pS \), where \(p = \text{char}(S/J(S)) \), is a Galois ring (see [4]). A ring \(S \) in which every one-sided ideal is two-sided is called a duo ring.

2. Ring monomorphisms

LEMMA 2.1. Let \(R \) be a Hensel ring and \(A \) be a commutative, local, finite, faithful \(R \)-algebra such that \(J(R) = R \cap J(A) \).

(i) \(A \) is a Hensel ring.

(ii) Let \(f(x) \in R[x] \) be a monic polynomial such that \(\overline{f}(x) \in \overline{R}[x] \) is irreducible and separable. If for some \(c \in \overline{A}, \overline{f}(c) = 0 \), then there exists a unique \(a \in A \) such that \(f(a) = 0 \) and \(\overline{a} = c \).
Proof. For (i) see [3, Theorem 32]. For (ii), see [1, Lemma 2.1].

Let \(A \) be a separable algebra over a Hensel ring \(R \). An element \(a \in A \) is said to be lift algebraic over \(R \) if there exists a monic polynomial \(f(x) \in R[x] \) such that \(f(x) \) is irreducible modulo \(J(R) \) and \(f(a) = 0 \); we call \(f(x) \) an associated polynomial of \(a \). Throughout this section \(R \) is a special primary ring with \(J(R) = \pi R = R\pi \) and \(n \) is the index of nilpotency of \(\pi \).

Lemma 2.2. Let \(A \) be a commutative, local, faithful, unramified \(R \)-algebra such that \(\bar{A} \) is a separable algebraic field extension of \(\bar{R} \).

(I) \(A \) is a special primary ring with index of nilpotency of \(J(A) \) the same as that of \(J(R) \).

(II) Let \(a, b \in A \) be lift algebraic over \(R \).

(i) Let \(f(x) \in R[x] \) be a monic polynomial such that \(\bar{f}(x) \) is irreducible over \(\bar{R} \). Then \(T = R[x]/\langle f(x) \rangle \) is an unramified, local finite \(R \)-algebra. If, in addition, \(\bar{f}(x) \) is separable over \(\bar{R} \), then \(T \) is a separable \(R \)-algebra.

(ii) If \(f(x) \in R[x] \) is an associated polynomial of \(a \), then \(R[a] \cong R[x]/\langle f(x) \rangle \), \(R[a] \) is a separable \(R \)-algebra and \(d_{R}(R[a]) = n \deg f(x) \), where \(n = d_{R}(R) \).

(iii) If \(\bar{a} = \bar{b} \), then \(R[a] = R[b] \).

(iv) \(R[b] \subseteq R[a] \) if and only if \(\bar{R}[\bar{b}] \subseteq \bar{R}[\bar{a}] \).

(III) If \(A \) is an \(R \)-separable algebra, then there exists a lift algebraic element \(a \in A \) such that \(A = R[a] \).

Proof. We have \(J(R) = \pi R \) and \(J(A) = \pi A \). As \(n \) is the index of nilpotency of \(\pi \), we see that \(A \) is a special primary ring such that the index of nilpotency of \(J(A) \) is \(n \). This proves (I).

To prove (II)(i), observe that \(J(T) = \langle \pi, f(x) \rangle / \langle f(x) \rangle = \pi T \), and \(T/J(T) \cong \bar{R}[x]/\langle \bar{f}(x) \rangle \). To prove (ii), let \(g(x) \) be a non-zero member of \(R[x] \) such that \(g(a) = 0 \) and \(\deg g(x) < \deg f(x) \). We can write \(g(x) = \pi^{k}h(x) \) such that \(\deg g(x) = \deg h(x) \) and \(h(x) \in R[x] \setminus J(R[x]) \). Then \(h(a) \in J(A) \). This contradicts the fact that \(f(x) \) modulo \(J(R) \) is the minimal polynomial of \(\bar{a} \). Hence \(R[a] \cong R[x]/\langle f(x) \rangle \). The last part of (ii) follows from (i). Let \(\bar{a} = \bar{b} \), and let \(g(x) \in R[x] \) be an associated polynomial of \(b \). As \(R[a] \) is a Hensel ring, there exists \(c \in R[a] \) such that \(g(c) = 0 \) and \(\bar{c} = \bar{b} \). By 2.1, \(b = c \). Since \(R[a] \) and \(R[b] \) have the same composition length as \(R \)-modules, we get \(R[a] = R[b] \). Similar arguments prove (II)(iv).

In case \(A \) is a separable \(R \)-algebra, \(\bar{A} \) is a simple extension of \(\bar{R} \): for some lift algebraic element \(a \in A \), \(\bar{A} = \bar{R}[\bar{a}] \). Hence \(A = R[a] \). This proves (III).

Lemma 2.3. Let \(A \) be a commutative, local, faithful unramified \(R \)-algebra such that \(\bar{A} \) is a separable algebraic field extension of \(\bar{R} \).
(i) For any subfield \(F \) of \(\bar{A} \) is a finite extension of \(\bar{R} \), there exists a unique \(R \)-separable subalgebra \(S \) of \(A \) such that \(F = \bar{S}. \) Further, there exists a lift algebraic element \(a \in S \) such that \(S = R[a]. \)

(ii) For any subfield \(F \) of \(\bar{A} \) containing \(\bar{R} \), there exists a unique locally \(R \)-separable subalgebra \(S \) of \(A \) such that \(\bar{S} = F \).

Proof. (i) We have \(F = \bar{R}[c] \) for some \(c \in F \). Let \(f(x) \in R[x] \) be a monic polynomial which modulo \(J(R) \) is the minimal polynomial of \(c \) over \(\bar{R} \). As \(A \) is a Hensel ring we get an \(a \in A \) such that \(f(a) = 0 \) and \(\bar{a} = c. \) As in 2.2, \(R[a] \) is an \(R \)-separable subalgebra isomorphic to \(R[x]/(f(x)) \). Put \(S = R[a]. \) Clearly \(F = \bar{S}. \) Let \(T \) be another such \(R \)-separable subalgebra of \(A. \) By 2.2(III) there exists \(b \in T \) lift algebraic over \(R \) such that \(T = R[b]. \) As \(R[\bar{a}] = R[\bar{b}] \), by 2.2(II)(iii) we have \(R[a] = R[b], \) so \(S = T. \) This proves (i).

(ii) Let \(F \) be any subfield of \(\bar{A} \) containing \(\bar{R}. \) Then \(\bar{F} \) is a directed union of simple field extensions of \(\bar{R}. \) Apply (i) to complete the proof.

Lemma 2.4. Let \(A \) be a commutative, local, faithful unramified \(R \)-algebra such that \(\bar{A} \) is a separable algebraic field extension of \(\bar{R}. \) Let \(a, b \in A \) be lift algebraic over \(R. \)

(i) There exists a \(c \in A \) lift algebraic over \(R \) such that \(R[a]+R[b] \subseteq R[c]. \)

(ii) \(A \) is the union of all the subrings of the form \(R[a], \) where \(a \) runs over all the elements of \(A \) that are lift algebraic over \(R. \)

(iii) \(A \) is a locally separable \(R \)-algebra.

(iv) If \(A' \) is a locally separable \(A \)-algebra, then \(A' \) is a locally separable \(R \)-algebra.

Proof. As \(\bar{a}, \bar{b} \) are both separable over \(\bar{R}, \) there exists a lift algebraic element \(c \in A \) such that \(\bar{R}[^{\bar{a}}_{\bar{b}}] = \bar{R}[^{\bar{c}}]. \) Then 2.2(II)(iv) completes the proof of (i).

Let \(B \) be the union of all the subrings of \(A \) of the form \(R[a], \) where \(a \) is any element of \(A \) lift algebraic over \(R. \) (i) shows that \(B \) is a subring and \(\bar{B} = \bar{A}. \) So \(A = B + J(A) = B + \pi A, \) as \(J(R) = \pi R. \) As \(\pi \) is nilpotent, we get \(A = B. \) This proves (ii); and (iii) is immediate from (ii).

For (iv), the hypothesis on \(A' \) gives \(J(A') = J(A)A' = J(R)A', \) so \(A' \) is an unramified \(R \)-algebra. Also \(\bar{A} \) is a separable field extension of \(\bar{R}. \) Now (iii) completes the proof.

Theorem 2.5. Let \(A \) and \(A' \) be two commutative, local, faithful, unramified algebras over a special primary ring \(R \) such that \(\bar{A} \) and \(\bar{A}' \) are both separable field extensions of \(\bar{R}. \) If there exists an \(\bar{R} \)-monomorphism \(\sigma : \bar{A} \rightarrow \bar{A}', \) then \(\sigma \) has a unique lifting to an \(R \)-monomorphism \(\eta : A \rightarrow A'. \) Further, \(\eta \) is an automorphism if and only if \(\sigma \) is an automorphism.

Proof. Consider any \(a, b \in A \) lift algebraic over \(R. \) Let \(f(x), g(x) \in R[x] \) be associated polynomials of \(a, b \) respectively. Now \(\bar{f}(\bar{a}) = 0 \) gives
\(f(\sigma(\overline{a})) = 0\). So we can find a unique \(a' \in A'\) for which \(f(a') = 0\) and \(\overline{a'} = \sigma(\overline{a})\). But \(R[a] \cong R[x]/(f(x)) \cong R[a']\), so we get an \(R\)-isomorphism \(\lambda_a : R[a] \rightarrow R[a']\) such that \(\lambda_a(a) = a'\). Then \(\lambda_a(\overline{a}) = \sigma(\overline{a}).\) So \(\lambda_a\) lifts the restriction of \(\sigma\) to \(\overline{R}[\overline{a}].\) Similarly, for \(b\) we get \(b' \in A'\) such that \(g(b') = 0,\overline{b'} = \sigma(\overline{b})\) and we have an \(R\)-isomorphism \(\lambda_b : R[b] \rightarrow R[b']\) such that \(\lambda_b(b) = b'\). Suppose \(\overline{R}[\overline{a}] \subseteq \overline{R}[\overline{b}].\) Then \(R[a] \subseteq R[b].\) Now \(\lambda_b(a) = \sigma(\overline{a})\) and \(f(\lambda_b(a)) = 0 = f(a').\) This gives \(\lambda_b(a) = \lambda_a(a)\). Hence \(\lambda_b\) is an extension of \(\lambda_a.\) As \(A\) is the union of all \(R[a]\), where \(a\) is any element of \(A\) lift algebraic over \(R\), the union of the maps \(\lambda_a\) gives the desired monomorphism \(\eta : A \rightarrow A'\) which lifts \(\sigma\). Clearly \(\eta\) is uniquely determined by \(\sigma\). By using the arguments in the proof of 2.4(ii) it follows that \(\eta\) is an isomorphism if and only if \(\sigma\) is an isomorphism.

The following is immediate.

Corollary 2.6. Let \(A, A'\) be two commutative, local, faithful unramified algebras over a special primary ring \(R\) such that \(\overline{A}\) and \(\overline{A'}\) are both separable algebraic field extensions of \(\overline{R}\), let \(G\) be the set of all \(R\)-monomorphisms of \(A\) into \(A'\), and let \(\overline{G}\) be the set of all \(\overline{R}\)-monomorphisms of \(\overline{A}\) into \(\overline{A'}\). Then there is a one-to-one correspondence between \(G\) and \(\overline{G}\) given by \(\eta \leftrightarrow \overline{\eta}\), where \(\overline{\eta} \in \overline{G}\) is induced by \(\eta \in G\). If \(A = A'\), then this correspondence induces an isomorphism between \(\text{Aut}_R(A)\) and \(\text{Aut}_{\overline{R}}(\overline{A})\).

Theorem 2.7. Let \(A\) be a commutative, local, faithful unramified algebra over a special primary ring \(R\) such that \(\overline{A}\) is a separable, algebraic field extension of \(\overline{R}\).

(a) \(\text{Aut}_R(A) \cong \text{Aut}_{\overline{R}}(\overline{A}).\)

(b) Let \(\sigma : A \rightarrow A\) be an \(R\)-monomorphism.

(i) \(\sigma\) is an automorphism of \(A\) and for any \(b \in A\) lift algebraic over \(R\), \(b \in A^\sigma\) if and only if \(\overline{b} \in \overline{A}^\sigma\).

(ii) The fixed ring \(A^\sigma\) of \(\sigma\) is a local, unramified \(R\)-algebra. If the order of \(\sigma\) is a positive integer \(k\), then \([\overline{A} : \overline{A}^\sigma] = k\) and \(A = A^\sigma[c]\) for some \(c\) lift algebraic over \(A^\sigma\). The fixed ring of \(\overline{\sigma}\) equals \(\overline{A^\sigma}\).

Proof. (a) is given in 2.6.

(b) Consider any finite subset \(T\) of \(\overline{A}\). By adjoining all the conjugates of elements in \(T\) over \(\overline{R}\), in \(\overline{A}\), we get a finite set \(T'\) containing \(T\) such that \(\eta(\overline{R}[T']) = \overline{R}[T']\) for any \(R\)-monomorphism \(\eta : \overline{A} \rightarrow \overline{A}\). This in particular gives \(\overline{\sigma}(\overline{A}) = \overline{A}\). Thus \(\sigma(A) = A\), and hence \(\sigma\) is an automorphism. Let \(b \in A\) be lift algebraic over \(R\) such that \(\overline{b} \in \overline{A}^\sigma\). Let \(f(x) \in R[x]\) be an associated polynomial of \(b\). Then \(f(b) = 0\) gives \(f(\sigma(b)) = 0\). But \(\overline{b} = \overline{\sigma}(\overline{b})\). By 2.1, \(b = \sigma(b)\). This proves (i).

Every finite separable field extension of \(\overline{R}\) is simple. Let \(S\) be the set of all those \(a \in A\) such that \(a\) is lift algebraic over \(R\), and \(\eta(R[a]) = R[a]\) for every
for some \(A = \bigcup_{a \in S} R[a]\). Now \(\overline{R[a]} = \overline{R[b_a]}\) for some \(b_a \in R[a]\) lift algebraic over \(R\). It follows by using 2.4(i) that \(A' = \bigcup_{a \in S} R[b_a]\) is an unramified local \(R\)-algebra, and \(A' \subseteq A^\sigma\). Let \(c \in A^\sigma\). Then \(c \in R[a]\) for some \(a \in S\). Thus for some \(c_1 \in R[b_a]\) lift algebraic over \(\overline{R}\), \(\overline{c} = \overline{c_1}\) and \(c = c_1 + \pi r u_1\) for some \(r > 0\) and a unit \(u_1 \in R[a]\). If \(\pi r u_1 = 0\), we get \(c \in A'\). Suppose \(\pi r u_1 \neq 0\). As \(\pi r u_1 \in A^\sigma\), we get \(\pi r (\sigma(u_1) - u_1) = 0\), so \(\overline{u_1} \in \overline{R[b_a]}\). As for \(c\), we get \(u_1 = c_2 + \pi r u_2\) for some \(c_2 \in R[b_a]\), \(s > 0\) and \(u_2\) some unit in \(R[a]\). Then \(c = c_1 + \pi r c_2 + \pi r^{+s} u_2\) and \(r + s > r\). Continue the process with \(u_2\) and so on. As \(\pi\) is nilpotent, we eventually get \(c \in A'\). Clearly, \(A\) is unramified over \(A^\sigma\). Suppose that the order of \(\sigma\) is a positive integer \(k\); then so is the order of \(\overline{\sigma}\). Consequently, \([\overline{A} : \overline{A^\sigma}] = k\). By 2.2(III), \(A = A^\sigma[c]\) for some \(c \in A\) lift algebraic over \(A^\sigma\). Clearly \(\overline{A^\sigma} \subseteq A''\), the fixed ring of \(\overline{\sigma}\). Let \(y \in A''\). Then for some \(a \in S\), \(y \in \overline{R[b_a]}\). As \(R[b_a]\) is \(R\)-separable, \(y = \overline{c}\) for some \(c \in R[b_a] \subseteq A^\sigma\). This proves the result.

3. Distinguished basis. Throughout this section \(R\) is a special primary ring and \(A\) is a commutative, locally separable \(R\)-algebra. Let \(H\) be the set of all \(R\)-subalgebras of \(A\) of the form \(R[a]\) such that \(a \in A\) is any element lift algebraic over \(R\). By 2.4, \(H\) is an upper semi-lattice, and the union of members of \(H\) is \(A\). Observe that any \(R[a] \in H\) is projective as an \(R\)-module, so \(A_R\) is flat. As \(J(R[a]) = J(R)[a]\) for each \(R[a] \in H\), we have \(J(A) = J(R)A\), i.e. \(A\) is an unramified \(R\)-algebra. Let \(T = A \otimes_R A\). Then for any \(R[a] \in H\), \(T_a = A \otimes_R R[a] \subseteq T\) and \(T\) is the union of the set of all such subrings. The concept of a distinguished basis of a bimodule over a Galois ring is discussed by Wirt [8]. The results in this section are related to those by Wirt, but in contrast to [8], the underlying rings need not be finite. Also, there is a marked difference between the proofs in [8] and of similar results in this section. Any \((A, A)\)-bimodule \(M\) is supposed to be such that \(rx = xr\) for any \(x \in M\) and \(r \in R\).

Lemma 3.1. Let \(a \in A\) be lift algebraic over \(R\).

(i) \(T_a = A \otimes_R R[a]\) is a finite direct sum of local rings each of which is a separable \(A\)-algebra (so also a locally separable \(R\)-algebra). Further, \(T_a\) is an artinian principal ideal ring and \(J(T_a) = J(R)T_a\). If \(\overline{A}\) is a normal extension of \(\overline{R}\), then \(T_a\) is a direct sum of copies of \(A\).

(ii) For any maximal ideal \(P\) of \(T\) there is no ideal \(L\) of \(T\) such that \(P^2 < L < P\). For any ideal \(C\) of \(T\) for which \(T/C\) is artinian, \(T/C\) is a principal ideal ring.

(iii) \(J(T) = J(R)T\).

Proof. (i) Let \(f(x) \in R[x]\) be an associated polynomial of \(a\). As \(A\) is a Hensel ring, \(f(x) = \prod_{i=1}^{t} f_i(x)\) with each \(f_i(x)\) monic, and modulo \(J(A)\)
irreducible over \mathcal{A}. Then
\[
A \otimes_R R[a] \cong A \otimes_R \mathcal{R}[x]/\langle f(x) \rangle \cong A[x]/\langle f(x) \rangle \cong \prod_{i=1}^{t} A[x]/\langle f_i(x) \rangle.
\]
Now each $A[x]/\langle f_i(x) \rangle$ is a separable A-algebra. As A is an unramified R-algebra, by 2.4(iv), $A[x]/\langle f_i(x) \rangle$ is R-unramified. This gives $J(T_a) = J(R)T_a$. That T_a is a principal ideal ring follows from the fact that any locally separable R-algebra is a principal ideal ring. If \mathcal{A} is a normal extension of R, then each $f_i(x)$ is of degree one, so each $A[x]/\langle f_i(x) \rangle$ is isomorphic to A.

Suppose that, on the contrary, L is an ideal of T such that $P^2 < L < P$. For any $R[a] \in H$ let $P_a = P \cap T_a$ and $L_a = L \cap T_a$. As T_a is a principal ideal ring, there is no ideal of T_a properly between P_a and $(P_a)^2$. So $L_a = P_a$ or $L_a = P^2 \cap T_a$. The hypothesis implies that there exist $R[a], R[b] \in H$ such that $L_a \neq P^2 \cap T_a$ and $L_b \neq P_b$. Now there exists $R[c] \in H$ such that $R[a] \cup R[b] \subseteq R[c]$. Then $T_a \cup T_b \subseteq T_c$. If $L_c = P^2 \cap T_c$, then $L_a = P^2 \cap T_a$; if $L_c = P_c$, then $L_b = P_b$. This is a contradiction. Let C be any ideal of T such that T/C is artinian. Then for any prime ideal Q of T/C there is no ideal of T/C properly between Q and Q^2. Hence T/C is a principal ideal ring [7, Theorem 39.2].

(iii) follows from (i).

Theorem 3.2.* Let A be a locally separable algebra over a special primary ring R, and M be an (A, A)-bimodule such that $d(AM)$ is finite. Then $M = \sum_{i=1}^{n} A_i x_i$ with each A_i a separable A-algebra, and there exist R-monomorphisms $\sigma_i : A \to A_i$ such that $x_i a = \sigma_i(a)x_i$ for any $a \in A$. In case \mathcal{A} is a normal extension of R, each A_i can be taken to be A and each σ_i an R-automorphism of A.

Proof.* Let $T = A \otimes_R A$. Then M is a left T-module such that $(a \otimes b)x = axb$ for any $a, b \in A$ and $x \in M$. Then $d(TM)$ is also finite. So there exists an ideal C of T such that T/C is artinian and $CM = 0$. As T/C is an artinian principal ideal ring, $M = \sum_{i=1}^{n} T x_i$, where each $T x_i$ is a non-zero uniserial module [6, Theorem 25.4.2]. Consider any $x \in M$. For any $R[a] \in H$, $(A \otimes_R R[a])x = T_a x$ is a left A-submodule of Tx. There exists an $R[c] \in H$ such that $T_c x$ has maximal composition length as left A-module among all submodules $T_a x$. As T is the union of all the T_a’s it follows from 2.4(i) that $Tx = T_c x$. For any $u \in T_c$, $T(ux) = u(Tx) = uT_c x = T_c(ux)$. This shows that any T_c-submodule of Tx is also a T-submodule. In addition, suppose that Tx is uniserial. Then Tx is also a uniserial T_c-module. By 3.1, T_c is a direct sum of rings which are separable A-algebras. This gives a summand A' of T_c such that A' is a separable A-algebra, $Tx = A' x$ and every A'-submodule of $A' x$ is a T-submodule. Hence for $1 \leq i \leq n$ we get
A-subalgebras A_i of T such that each A_i is a separable A-algebra and $Tx_i = A_ix_i$. Let $J(R) = \pi R$. Then $J(A) = \pi A$ and $J(A') = \pi A'$. For any $x \in M$, $x\pi = \pi x$. This gives that $D_i = r.\text{ann}_A(x_i) = \pi^{k_i}A$ and $D'_i = l.\text{ann}_{A_i}(x_i) = A_i\pi^{k_i}$. Consider $a \in A$; as $x_ia \in Tx_i = A_ix_i$ there exists $a' \in A_i$ such that $x_ia = a'x_i$. This gives an R-monomorphism $\eta_i : A/D_i \rightarrow A_i/D'_i$ such that $\eta_i(a + D_i) = a' + D'_i$. By 2.5, η_i uniquely lifts to an R-monomorphism $\sigma_i : A \rightarrow A_i$. Clearly $x_ia = \sigma_i(a)x_i$ for every $a \in A$.

Let \bar{A} be a normal extension of \bar{R}. By 3.1(i) each A_i is a copy of A, so $A_i = Ae_i$ for some indecomposable idempotent e_i in T, and $\sigma_i(a) = \eta_i(a)e_i$ for some R-automorphism η_i of A. Hence $M = \bigoplus \sum_{i=1}^n Ay_i$ with $y_i = e_ix_i$ and $y_ia = \eta_i(a)y_i$. This proves the result.

In case \bar{A} is a normal extension of R, and M is an (A, A)-bimodule as in the above theorem, it follows from the above theorem that there exist finitely many distinct R-automorphisms $\sigma_1, \ldots, \sigma_s$ such that $M = N_1 \oplus \ldots \oplus N_s$ for some non-zero submodules N_i with the property that for any non-zero $x \in N_i$, $xa = \sigma_i(a)x$ for every $a \in A$.

Corollary 3.3. Let A and T be as in the above theorem and $A/J(A)$ be a normal field extension of \bar{R}. Let M be an (A, A)-bimodule such that $d(AM) < \infty$.

(i) There exist uniquely determined R-automorphisms $\sigma_1, \ldots, \sigma_s$ of A such that for $1 \leq i \leq s$, $N_i = \{x \in M : xa = \sigma_i(a)x \text{ for every } a \in A\}$ is a non-zero submodule of M and $M = N_1 \oplus \ldots \oplus N_s$.

(ii) If the module TM is uniserial, then AM is uniserial.

Proof. We have $M = N_1 \oplus \ldots \oplus N_s$ for some non-zero submodules N_i and distinct R-automorphisms σ_i of A such that $ya = \sigma_i(a)y$ for $y \in N_i$, $a \in A$. Suppose that for some R-automorphism η of A there exists a non-zero $x \in M$ such that $xa = \eta(a)x$ for every $a \in A$. Write $x = \sum x_i$, $x_i \in N_i$. Then $xa = \eta(a)x$ gives $\sum \eta(a)x_i = \sum \sigma_i(a)x_i$. For some j, $x_j \neq 0$. Then $(\eta(a) - \sigma_i(a))x_j = 0$ gives $\eta(a) - \sigma_j(a) \in J(A)$ for every $a \in A$. By 2.7(a), $\eta = \sigma_j$, and hence $x \in N_j$. This proves (i).

It has been seen in the proof of the above theorem that M is a direct sum of uniserial T-modules each of which is a uniserial left A-module. Hence, if M is a uniserial T-module it must be a uniserial left A-module.

Let S be a faithful R-algebra such that $\bar{S} = S/J(S)$ is a countably generated separable algebraic field extension of \bar{R}. If S is locally finite or is an artinian duo ring, then S has a coefficient subring T which is unique to within isomorphisms [1]. In particular any finite local ring S of characteristic p^n, where p is a prime number, can be regarded as an algebra over $Z/\langle p^n \rangle$, so it has a coefficient subring T; this T is a Galois ring of order p^{nr} where the order of $S/J(S)$ is p^r.

THEOREM 3.4. Let \((R, \pi)\) be any special primary ring and \(S\) be a left artinian, faithful \(R\)-algebra such that \(\bar{S} = S/J(S)\) is a countably generated, separable normal algebraic field extension of \(\bar{R}\). Let \(S\) have a coefficient subring \(R_0\). Then as an \((R_0, R_0)\)-bimodule, \(S = R_0 \oplus (\oplus \sum_{i=1}^{n} R_0 x_i)\) such that for \(1 \leq i \leq n\), \(x_i \in J(S)\) and there exists a \(\sigma_i \in \text{Aut}_{R}(R_0)\) such that \(x_i a = \sigma_i(a)x_i\) for every \(a \in A\). These automorphisms are uniquely determined by \(S\).

Proof. \((R_0, \pi)\) is a special primary ring and \(d(R_0S) = d(SS)\). We regard \(S\) as an \((R_0, R_0)\)-bimodule. Consider any unit \(x \in S\) such that for some \(\sigma \in \text{Aut}_{R}(R_0), \ xa = \sigma(a)x\) for every \(a \in R_0\). But in \(\bar{S}, \ \bar{x}a = \bar{a}x\), so \((\bar{a} - \bar{\sigma}(a))\bar{x} = \bar{0}\). Thus \(a - \sigma(a) \in J(R_0)\) for every \(a \in R_0\). By 2.7, \(\sigma = I\), hence \(x \in C(R_0)\), the centralizer of \(R_0\). By 3.3, there exist uniquely determined distinct \(R\)-automorphisms \(\eta_j, 1 \leq j \leq m\), such that \(S = \oplus \sum_{i=1}^{m} B_i\) where \(B_i = \{x \in S : xa = \eta_i(a)x\} \neq 0\). For \(x \in R_0\) and \(a \in R_0, xa = ax\), so 3.3(i) shows that one of the \(\eta_i\), say \(\eta_1\), equals \(I\). Then \(B_1 = C(R_0)\), and \(S = C(R_0) \oplus H\), where \(H = \sum_{i>1} B_i\). For any \(i \geq 2\), as seen above, no \(B_i\) can contain any unit of \(S\). Thus \(H \subseteq J(S)\). Now \(R_0\) is self-injective (see [6]). By [6, Theorem 25.4.2], \(C(R_0) = R_0 \oplus (\oplus \sum_{j=1}^{p} R_0 y_i)\). Suppose some \(y_i\), say \(y_1\), is a unit. Now \(y_1 = z_1 + v_1\) for some \(z_1 \in R_0\) and \(v_1 \in J(S) \cap C(R_0)\) with \(R_0 \oplus R_0 y_1 = R_0 + R_0 v_1\). By comparing the composition lengths over \(R_0\), it is immediate that \(R_0 \oplus R_0 y_1 = R_0 \oplus R_0 v_1\). Thus we can take every \(y_i\) in \(J(S)\). As each \(B_i\) is also a direct sum of uniserial \(R_0\)-modules, the result follows.

4. Chain rings. We start with the following elementary result.

LEMM A 4.1. (i) Let \(\sigma\) be an automorphism of a ring \(R\) and \(f(x) \in R[x, \sigma]\) be such that its leading coefficient is a unit, and \(\deg f(x) = n \geq 1\). Then for any \(g(x) \in R[x]\), we have \(g(x) = f(x)q(x) + r(x)\) for some \(q(x), r(x) \in R[x]\) with \(\deg r(x) < \deg f(x)\). Further, \(R[x, \sigma]/f(x)R[x, \sigma]\) as a right \(R\)-module is a direct sum of \(n\) copies of \(R\).

(ii) Let \(\sigma\) be an automorphism of a division ring \(D\). Then the left skew polynomial ring \(D[x, \sigma]\) is a right as well as a left principal ideal domain.

Henceforth \(R\) is a commutative local ring with maximal ideal \(J\), and \(\sigma\) an automorphism of \(R\). If \(J\) is nilpotent, it is obvious that \(J[x, \sigma]\) is a nilpotent ideal of \(R[x, \sigma]\).

LEMM A 4.2. If \(J\) is nil and \(\sigma\) is of finite order, then the ideal \(J[x, \sigma]\) of \(R[x, \sigma]\) is nil.

Proof. Consider any \(f(x) \in J[x, \sigma]\), and let \(Y\) be the set consisting of all coefficients of \(f(x)\) and their images under different powers of \(\sigma\). As \(\sigma\) is of
finite order, \(Y\) is a finite set, so the ideal \(A\) of \(R\) generated by \(Y\) is nilpotent. Clearly any coefficient of an \(f(x)^k\) in \(A^k\). Hence \(f(x)\) is nilpotent.

Lemma 4.3. Let \(f(x) = x^k + g(x)\) be such that \(g(x) \in J[x, \sigma]\) and \(\deg g(x) < k\), \(k\) a positive integer, and \(\langle f(x) \rangle = f(x)R[x, \sigma]\).

(i) \(\langle J, x \rangle / \langle f(x) \rangle\) is the unique maximal ideal of \(S = R[x, \sigma] / \langle f(x) \rangle\).

(ii) If \(J[x, \sigma]\) is a nil ideal, then \(S\) is a local ring with \(J(S) = \langle J, x \rangle / \langle f(x) \rangle\).

(iii) If \(R\) is a special primary ring with \(J = \pi R\) and \(g(x) = \pi u(x)\), where the constant term of \(u(x)\) is a unit, then \(S\) is a chain ring with \(J(S) = \langle \pi \rangle\), and the index of nilpotency of \(J(S)\) is \(kn\), where \(n\) is the index of nilpotency of \(\pi\). Also, \(\pi^{n-1} \not\in \langle f(x) \rangle\). Further, for any positive integer \(m \leq kn\), \(T = R[x, \sigma] / \langle f(x), x^m \rangle\), and the index of nilpotency of \(J(T)\) is \(m\).

Proof. Set \(B = \langle J, x \rangle\). As \(R[x, \sigma] / B \cong R / J\) is a field, clearly \(L = B / \langle f(x) \rangle\) is a maximal ideal of \(S\). Let \(h(x) \in R[x, \sigma]\) be such that \(h(x) \not\in B\). Then \(\langle h(x) \rangle + B = R[x, \sigma]\), hence \(\langle h(x) \rangle + B^k = R[x, \sigma]\). But \(B^k \subseteq \langle J, x^k \rangle = \langle J, f(x) \rangle\), so \(\langle h(x) \rangle + \langle J, f(x) \rangle = R[x, \sigma]\). Thus for \(T = R[x, \sigma] / C\), where \(C = \langle h(x) \rangle + \langle f(x) \rangle\), we have \(TJ = T\). It follows from 4.1 that \(T\) is finitely generated as a right \(R\)-module. Thus, by [3, Theorem 5], \(T = 0\). Hence \(\langle h(x) \rangle + \langle f(x) \rangle = R[x, \sigma]\). This proves that \(B / \langle f(x) \rangle\) is the only maximal ideal of \(S\).

Let \(J[x, \sigma]\) be nil. Then as \(B^k \subseteq \langle J, f(x) \rangle\), \(B / \langle f(x) \rangle\) is a nil ideal. Hence \(S\) is a local ring with \(J(S) = B / \langle f(x) \rangle\).

Let \(R\) be a special primary ring with \(J = \pi R\) and \(g(x) = \pi u(x)\) with the constant term of \(u(x)\) a unit. As \(J\) is nilpotent, so is \(J[x, \sigma]\). Consequently, \(S\) is a local ring. Since \(u(x)\) is a unit modulo \(f(x)\), it follows that \(\pi S = \pi S = \overline{\pi} S\) and \(J(S) = \overline{\pi} S\). So \(S\) is a chain ring. It follows from 4.1 that \(d(S_R) = kn\). As \(R / J\) and \(S / J(S)\) are isomorphic as right \(R\)-modules, \(d(S_S) = kn\). Hence the index of nilpotency of \(J(S)\) is \(kn\). This also yields \(\pi^{n-1} \not\in \langle f(x) \rangle\). The last part of (iii) follows from the fact that \(T\) is a homomorphic image of \(S\) and \(J(S) = \overline{\pi} S\).

Lemma 4.4. Let \(J\) be nilpotent and let \(f(x) = x^k + g(x)\) with \(k\) a positive integer, and \(g(x) \in J[x, \sigma]\) be such that \(\langle f(x) \rangle = f(x)R[x, \sigma]\). Then there exists an \(h(x) = x^k + q(x) \in R[x, \sigma]\) with \(q(x) \in J[x, \sigma]\), \(\deg q(x) < k\), \(\langle f(x) \rangle = \langle h(x) \rangle = h(x)R[x, \sigma]\). If the constant term of \(g(x)\) belongs to \(J \setminus J^2\) then \(h(x)\) can also be chosen so that the constant term of \(h(x)\) is in \(J \setminus J^2\).

Proof. Consider \(A = \langle J, f(x) \rangle = \langle J, x^k \rangle\) and \(S = R[x, \sigma] / \langle f(x) \rangle\). Then \(SJ = A / \langle f(x) \rangle\), so \(S / SJ \cong R[x, \sigma] / \langle J, x^k \rangle\) as right \(R\)-modules. So \(\{x^i + SJ : 0 \leq i \leq k - 1\}\) generates \(S / SJ\) as a right \(R\)-module. As \(J\) is nilpotent, it follows that \(S_R\) itself is generated by the set \(\{x^i + \langle f(x) \rangle : 0 \leq i \leq k - 1\}\). So there exists \(h(x) = x^k - \sum_{i=0}^{k-1} a_i x^i \in \langle f(x) \rangle\) with \(a_i \in R\). Then \(h(x) =\)
\[(x^k + g(x))v(x)\] for some \(v(x) \in R[x, \sigma]\). In \(\overline{R[x, \sigma]} = R[x, \sigma]/J[x, \sigma]\), \(h(x) = \overline{x^k v(x)}\). This gives \(v(x) = \overline{1}\) and \(h(x) = \overline{x^k}\). It follows that \(v(x) = 1 + w(x)\) with \(w(x) \in J[x, \sigma]\) and \(\sum_{i=0}^{k-1} a_i x^i \in J[x, \sigma]\). As \(v(x)\) is a unit in \(R[x, \sigma]\), it is immediate that \(\langle f(x) \rangle = h(x)R[x, \sigma] = \langle h(x) \rangle\). Finally, let the constant term of \(g(x)\) be \(b \in J \setminus J^2\). Then \(b\) is also the constant term of \(f(x)\). If \(c \in J\) is the constant term of \(w(x)\), then the constant term of \(h(x)\) is \(b(1+c) \in J \setminus J^2\). This proves the result.

Lemma 4.5. Let \(J\) be nilpotent, \(f(x) = x^k + g(x) \in R[x, \sigma]\) with \(k\) a positive integer, and \(g(x) \in J[x, \sigma]\) such that \(\langle f(x) \rangle = f(x)R[x, \sigma]\). Then \(R[x, \sigma]/\langle f(x) \rangle\) as a right \(R\)-module is isomorphic to a direct sum of \(k\) copies of \(R\).

Proof. Because of 4.4 we can take \(\deg g(x) < k\). Now apply 4.1 to complete the proof.

Henceforth \(R\) is a special primary ring with \(J = \pi R\), the index of nilpotency of \(J\) is \(n\), and \(\sigma\) is such that \(\sigma(\pi) = \pi\).

Lemma 4.6. Let \(f(x) \in R[x, \sigma]\) be such that its constant term or its leading coefficient is a unit in \(R\). If \(g(x) \in R[x, \sigma]\) is such that \(f(x)g(x) \in \pi^s R[x, \sigma]\) for some non-negative integer \(s\), then \(g(x) \in \pi^s R[x, \sigma]\).

Proposition 4.7. Let \(f(x) = x^k + \pi g(x) \in R[x, \sigma]\) be such that \(\langle f(x) \rangle = f(x)R[x, \sigma]\) and the constant term of \(g(x)\) is a unit in \(R\). Then \(S = R[x, \sigma]/\langle f(x) \rangle\) is a chain ring such that \(J(S) = \langle \pi \rangle\), and the index of nilpotency of \(J(S)\) is \(kn\), where \(n\) is the index of nilpotency of \(J\). For \(1 \leq m \leq kn\), \(A = R[x, \sigma]/\langle f(x), x^m \rangle\) is a chain ring with \(m\) as the index of nilpotency of \(J(A)\).

Proof. Because of 4.4 we can take \(\deg g(x) < k\). Then 4.3 completes the proof of the first part. The second part is an immediate consequence of the first part.

Proposition 4.8. Let \(f(x) = x^k + \pi g(x) + r_0 x^{m-1} \in R[x, \sigma]\) with \(m-1 > k > 0\) and with constant term of \(g(x)\) a unit in \(R\). Then \(T = R[x, \sigma]/\langle f(x), x^m \rangle\) is a chain ring with \(J(T) = \langle \pi \rangle\). The index of nilpotency of \(J(T)\) is at most \(kn\).

Proof. Set \(A = \langle f(x), x^m \rangle\). Then \(T = R[x, \sigma]/A\) and \(A \subseteq \langle \pi, x \rangle\). As \(\overline{x}\) is nilpotent in \(T\), \(T\) is a local ring with \(J(T) = \langle \overline{\pi}, \overline{x} \rangle\) a nilpotent ideal. As \(\overline{1 + r_0 x^{m-k-1}}\) and \(\overline{g(x)}\) are units in \(T\),

\[-(\overline{\pi}) = \langle \overline{x^k + r_0 x^{m-1}} \rangle = \langle (\overline{\pi}) \rangle = \langle \overline{\pi} \rangle.

Thus the index of nilpotency of \(\overline{x}\) is at most \(kn\) and \(J(T) = \langle \overline{x} \rangle\).

Lemma 4.9. Let \(h(x) = x^k + \pi g(x) \in Z(R[x, \sigma])\) be such that the constant term of \(g(x)\) is a unit and \(\deg g(x) < k\). Let \(m\) be any positive integer
such that \(k \leq m - 1 \leq kn - 1 \), and suppose the order of \(\sigma \) divides \(m - 1 \). Let \(f(x) = h(x) + r_0x^{m-1} \), where \(r_0 \) is a unit in \(R \). Then:

(i) If \(m - 1 > k \), then \(\langle f(x), x^m \rangle \neq \langle f(x), x^{m-1} \rangle \).

(ii) If \(k = m - 1 \) and \(1 + r_0 \) is a unit, then \(\langle f(x), x^m \rangle \neq \langle f(x), x^{m-1} \rangle \).

Proof. Suppose the contrary. Set \(A = \langle f(x), x^{m-1} \rangle = \langle h(x), x^{m-1} \rangle \) and \(B = \langle f(x), x^m \rangle \).

CASE I: \(k < m - 1 \). So \(x^{m-1} = (h(x) + r_0x^{m-1})s(x) + x^mv(x) \) for some \(s(x), v(x) \in R[x, \sigma] \). This gives \(x^{m-1}(1 - r_0s(x)) = h(x)s(x) + x^mv(x) \).

If \(1 - r_0s(x) \) is a unit modulo the ideal \(C = \langle h(x), x^m \rangle \), we deduce that \(x^{m-1} \in C \), and the index of nilpotency of the radical of \(R[x, \sigma]/C \) is less than \(m \). This contradicts 4.3(iii). Hence the constant term of \(1 - r_0s(x) \) is a non-unit. Thus, if \(s_0 \) is the constant term of \(s(x) \), then \(s_0 \) must be a unit. Also the coefficient of \(x^k \) in \(h(x)s(x) + x^mv(x) \) is 0. Thus \(s_0 - \pi b = 0 \) for some \(b \in R \) and \(s_0 \in J(R) \). This is a contradiction, which proves (i).

CASE II: \(k = m - 1 \) and \(1 + r_0 \) is a unit. In this case \(\pi g(x)s(x) \in \langle x^{m-1} \rangle \). By 4.6, \(\pi s(x) = x^{m-1}\pi q(x) \). So \(s(x) = x^{m-1}q(x) + \pi^{n-1}\lambda(x) \) for some \(\lambda(x) \in R[x, \sigma] \). Thus

\[
x^{m-1} = (x^{m-1} + \pi g(x) + r_0x^{m-1})(x^{m-1}q(x) + \pi^{n-1}\lambda(x)) + x^mv(x) \\
= x^{m-1}(1 + r_0)(x^{m-1}q(x) + \pi^{n-1}\lambda(x)) + x^{m-1}\pi g(x)q(x) + x^mv(x).
\]

Consequently, \(1 = (1 + r_0)(x^{m-1}q(x) + \pi^{n-1}\lambda(x)) + \pi g(x)q(x) + xv(x) \). This is not possible, as the constant term on the right hand side is not a unit. This proves (ii).

Remark. The hypothesis on \(h(x) \) in the above theorem implies that \(o(\sigma) \) divides \(k \) and \(\pi g(x) \in Z(R[x, \sigma]) \).

Theorem 4.10. Let \((R, \pi) \) be a special primary ring and \(\sigma \) be an automorphism of \(R \) of order \(k' \), a positive integer. Let \(h(x) = x^k + \pi g(x) \in Z(R[x, \sigma]) \) be such that the constant term of \(g(x) \) is a unit in \(R \) and \(\deg g(x) < k \). Let \(m \) be any positive integer such that \(k(n - 1) < m \leq kn \), \(k \leq m - 1 \) and \(k' \) divides \(m - 1 \). Let \(f(x) = h(x) + r_0x^{m-1} \in R[x, \sigma] \) with \(r_0 \in R \) satisfying the following conditions:

(i) Either \(r_0 = 0 \) or \(r_0 \) is a unit.

(ii) If \(k = m - 1 \), then \(1 + r_0 \) is a unit.

Then for \(A = \langle f(x), x^m \rangle \), \(S = R[x, \sigma]/A \) is a chain ring with \(J(S) \) having index of nilpotency \(m \).

Proof. For \(r_0 = 0 \), the result follows from 4.3(iii). For \(r_0 \neq 0 \), it follows from 4.8 and 4.9.
5. A representation theorem. Throughout this section \((R, \pi)\) is a special primary ring, \(A\) is a local, faithful \(R\)-algebra which is a chain ring, \(J(R) = R \cap J(A)\), and \(\bar{A} = A/J(A)\) is a countably generated normal, separable algebraic field extension of \(\bar{R}\). As \(A\) is a duo ring, by [1], it has a coefficient subring \(R_0\). Now \(J(R_0) = R_0\pi\). Since \(A\) is an \((R_0, R_0)\)-bimodule, by 3.4, it can be written as

\[
A = R_0 \oplus \left(\oplus_{i=1}^{n} R_0 x_i \right)
\]

in such a way that \(x_i \in J(A)\) for \(1 \leq i \leq n\). As \(J(A)\) is a principal right and left ideal, \(J(A) = Ax_i = x_i A\) for some \(x_i\); write \(\theta\) for this \(x_i\) and \(\sigma\) for the corresponding \(\sigma_i\). We call \((\theta, \sigma)\) a distinguishing pair of \(A\) with respect to \(R_0\). Then \(J(A) = \theta A = A\theta\) and \(\theta a = \sigma(a)\theta\) for \(a \in R_0\). As \(\pi \in \theta A\), there exists a smallest positive integer \(k\) such that \(\theta^k = \pi w\) for some unit \(w \in A\). Let \(m\) and \(n\) be the indices of nilpotency of \(\theta\) and \(\pi\) respectively. Then \(m = (n - 1)k + t\) for some \(1 \leq t \leq k\).

As in [4] or in [8], we also have \(A = R_0 \oplus R_0 \theta \oplus \ldots \oplus R_0 \theta^{k-1}\) with \(R_0 \theta^i \cong R_0\) for \(1 \leq i < t\), and \(R_0 \theta^t \cong R_0/R_0\pi\) for \(t \leq i < k\) as left \(R_0\)-modules. Suppose \(\theta^k = 0\); then \(\pi = 0\), \(R_0\) is a field, and \(A \cong R_0[x, \sigma]/(x^k)\). So we are interested only in the case \(\theta^k \neq 0\). Observe that if \(x \in R\), then \(x \theta^{m-1} = r \theta^{m-1}\) for some \(r \in R_0\).

Lemma 5.1. If \(\theta^k \neq 0\), then \(\sigma\) is of finite order and its order divides \(k\). Also, \(\theta^k \in Z(A)\).

Proof. We have \(\pi = w^{-1}\theta^k\). Then for any \(a \in R_0\), \(\pi a = a \pi \) yields \((aw^{-1} - w^{-1}\sigma^k(a))\theta^k = 0\) and \(waw^{-1} = \sigma^k(a) \in J(A)\). But \(A/J(A)\) is commutative. We get \(a - \sigma^k(a) \in J(A) \cap R_0 = J(R_0)\). By 2.7, \(\sigma^k = I\). Hence the order of \(\sigma\) is finite and it divides \(k\). The second part is obvious from the first.

Henceforth we suppose that \(\theta^k \neq 0\), \(k'\) is the order of \(\sigma\), and \(k_1 = k/k'\).

Lemma 5.2. \(C(R_0) = \{ \sum_{i=0}^{k_1 - 1} a_i \theta^{k'i} : a_i \in R_0 \}\).

Proof. Let \(x = \sum_{i=0}^{k_1 - 1} a_i \theta^{k'i} \in C(R_0), a_i \in R_0\). For any \(a \in R_0\), \(ax = xa\) yields \((a - \sigma^i(a))a_i \theta^{k'i} = 0\). If for some \(i\), \(a_i \theta^{k'i} \neq 0\), then \(a - \sigma^i(a) \in J(R_0)\), by 2.7, \(\sigma^i = I\) and hence \(k'\) divides \(i\). This proves the result.

Lemma 5.3. Let \(w \in A\) be a unit.

(i) If for some \(l, q \geq 0\), \(a(w^l \pi^q) = (w^l \pi^q)a\) for every \(a \in A\), with \(\pi^q \neq 0\), then \(k'\) divides \(q\).

(ii) If \(\theta(w^l \pi^q) = (w^l \pi^q)\theta\) and \(\pi^q \neq 0\), then \(w = s_0 + w_1 \theta^m\) for some unit \(s_0 \in R_0^\pi\), \(u \geq 1\) and some unit \(w_1 \in A\). In addition, if \(w \in R_0\), then \(w = s + s'\) for some \(s \in R_0^\pi\) and \(s' \in J^{m-q-1-kl} \cap R_0\).
(iii) Let $L = \sum_{i=0}^{k_1-1} R^0_i \theta^{ik'}$. If k' does not divide $m-1$, then $Z(A) = L$. If k' divides $m-1$, then $Z(A) = L + J(A)^{m-1}$.

Proof. (i) $a(\pi \theta^q) = (\pi \theta^q)a$ for every $a \in A$ with $\pi \theta^q \neq 0$ gives $(aw - w \sigma^q(a))\pi \theta^q = 0$, and as in 5.1, we find that k' divides q.

(ii) Suppose that $\theta(\pi \theta^q) = (\pi \theta^q)\theta$ and $\pi \theta^{q+1} \neq 0$. Now $w = r + v$ for some $r \in R_0$ and $v \in J$. The hypothesis gives $(\sigma(r) - r)\pi \theta^{q+1} = v\pi \theta^q + (\theta - 1)\pi \theta^q + 1 = \pi \theta^{q+1}J$, so $(\sigma(r) - r) \in J \cap R_0$. By 2.7(b), $r = s_0 + r_1\pi^\alpha$ for some unit $s_0 \in R_0^\alpha$, some unit $r_1 \in R_0$, and some unit $r_1 \in R_0$. Then $w = s_0 + r_1\pi^\alpha + v = s_0 + w_1\theta^u$ for some unit $w_1 \in A$, $u \geq 1$.

Suppose $w = r \in R_0$. Then $s_0 + r_1\pi^\alpha$ and $\theta(r_1\pi^{\alpha+1}\theta^q) = (r_1\pi^{\alpha+1}\theta^q).$ If $\pi^{\alpha+1}\theta^q = 0$, then $r_1\pi^\alpha \in J^{m-1} \cap R_0$, and we stop. Otherwise we continue with r_1 in place of r. Then $r_1 = a_1 + r_2\pi^\beta$ for some unit $a_1 \in R_0^\alpha$, r_2 a unit in R_0, and some $\beta \geq 1$. Then $r = s_1 + r_2\pi^{\alpha+\beta}$, $s_1 = s_0 + a_1\pi^\alpha \in R_0^\alpha$. Observe that $\alpha + \beta > \alpha$. Continue the process with r_2 and so on. As π is nilpotent, we shall finally get $r = s + r'\pi^p$ for some $s \in R_0^\alpha$ and $s' = r'\pi^p \in J^{m-1} \cap R_0$.

(iii) If $k' = 1$, then $A = Z(A)$, and the result holds trivially. Let $k' > 1$. Let $x \in Z(A)$. Then $x \in C(R_0)$, $x = \sum_{i=0}^{k_1-1} r_i\theta^k$, $r_i \in R_0$. As $x = x\pi$ and $(k_1 - 1)k' + 1 < k$, we get $\theta^k = (r_i\theta^k)\pi$. By (ii), $r_i = s_1 + a_i$ for some $s_1 \in R_0^\alpha$ and $a_i \in J^{m-1}$. Hence $x = s + a$ with $s = \sum_i s_i\theta^k$, $s_i \in L$ and $a = \sum_i a_i\theta^k \in J^{m-1}$. Now $a \in Z(A)$. Suppose $a \neq 0$. Then $a = r\theta^{m-1}$ for some unit $r \in R$. By (i), k' divides $m - 1$. Further, if k' divides $m - 1$, then $J^{m-1} \subseteq Z(A)$. This proves (iii).

Lemma 5.4. For $\theta^k = \pi w$, the following hold.

(i) If k' does not divide $m - 1$, then w can be chosen in the form $\sum_{i=0}^{k_1-1} s_i\theta^k$, with $s_i \in R_0^\alpha$, and this element is in $L \subseteq Z(A)$.

(ii) If k' divides $m - 1$, then $w = w_0 + r_0\theta^{m-k-1}$ with $w_0 \in L$, and $r_0 \in R_0$ is either zero or a unit.

(iii) If w chosen in either of the above forms is in $C(R_0)$. Further, $C(R_0)$ is a special primary ring with radical (θ^k).

(iv) $\theta^k = \pi h(\theta) + r\theta^{m-1}$, where $h(x) \in R_0[\pi^k]$, deg $h(x) < k$, the constant term of $h(x)$ is a unit, $r = 0$ if k' does not divide $m - 1$, and r is zero or a unit in R_0 otherwise. Further, if $k = m - 1$, then $1 - r$ is a unit.

Proof. We have $\pi = w^{-1}\theta^k \in Z(A)$. If $k = m - 1$, then $w^{-1}\theta^k = s_0\theta^k$ for some unit $s_0 \in R_0$, so we can take $w = s_0^{-1} - s_0^{-1}\theta^{m-k-1}$, which is of type given in (ii). Suppose $k < m - 1$. By 5.3(ii), $w^{-1} = s_0 + w_1\theta^\alpha$ for some unit $s_0 \in R_0^\alpha$, a unit $w_1 \in A$, and some $\alpha \geq 1$. If $\theta^\alpha\theta^k = 0$, we stop. Suppose, $\theta^\alpha\theta^k \neq 0$. Then $0 \neq w_1\theta^\alpha\theta^k \in Z(A)$. By 5.3(i), k' divides α. If $w_1\theta^\alpha\theta^k+1 = 0$, then $w_1\theta^\alpha \in J^{m-k-1}$. Suppose $w_1\theta^\alpha\theta^k+1 \neq 0$. By 5.3(ii), $w_1 = a_1 + w_2\theta^\beta$ for some unit $a_1 \in R_0^\alpha$, a unit $w_2 \in A$, and some $\beta \geq 1$.

Then \(w^{-1} = s_1 + w_2 \theta^{\alpha + \beta} \) with \(s_1 = s_0 + a_1 \theta^\alpha \in Z(A) \). Clearly \(\alpha + \beta > \alpha \). Continue this process with \(w_2 \) and so on. We get \(w^{-1} = s + v \theta^p \) for some unit \(v \in A \), and some \(p \geq 1 \) such that \(v \theta^p \theta^k + 1 = 0 \). If \(v \theta^p \theta^k \neq 0 \), then \(p = m - k - 1 \). Suppose \(v \theta^p \theta^k = 0 \). Then \(\pi = \sigma \theta^k \), and in this case we can take \(w = s^{-1} \in Z(A) \). Suppose \(v \theta^p \theta^k \neq 0 \). Then \(v \theta^p \theta^k = v \theta^{m-1} = r \theta^{m-1} \) for some unit \(r \in R_0 \), and \(k' \) divides \(m - 1 \). Then \(\pi = (s + r \theta^{m-k-1}) \theta^k \) and \(\theta^k = \pi (s^{-1} - s^{-2} r \theta^{m-k-1}) = \pi (s^{-1} + r' \theta^{m-k-1}) \) for some unit \(r' \in R_0 \), so we can take \(w = s^{-1} + r' \theta^{m-k-1} \). By 5.3(iii), \(s^{-1} = w_0 + r_1 \theta^{m-1} \) for some \(r_1 \in R_0 \) and \(w_0 \in L \). Thus \(w_0 = h(\theta) \) for some \(h(x) \in R_0[x^{k'}] \) with \(\deg h(x) < k \). Then \(\theta^k = \pi (w_0 + r' \theta^{m-k-1}) \), and we can take \(w = w_0 + r' \theta^{m-k-1} \), which is of type given in (ii). All this proves that \(w \) can be chosen of the type given in (i) or (ii), and in any case this \(w \) is in \(C(R_0) \). Clearly, \(C(R_0) = R_0 + \langle \theta^k \rangle \), \(C(R_0) \) is commutative, and \(J(C(R_0)) = \pi R_0 + \langle \theta^k \rangle = \langle \theta^k \rangle \), as \(\pi = w^{-1} \theta^k \in \langle \theta^k \rangle \). Hence \(C(R_0) \) is a chain ring.

In case \(k' \) divides \(m-1 \), we have \(\theta^k = \pi h(\theta) + \pi r' \theta^{m-k-1} = \pi h(\theta) + r \theta^{m-1} \) for some \(r \in R_0 \). Once again consider the case when \(k = m - 1 \). As seen above, \(\theta^k = \pi r_0 \) for some unit \(r_0 \in R \). Then \(\theta \pi = 0 \), and this gives \(\theta^k = \pi + (r_0 - 1) \pi = \pi + r \theta^{m-1} = \pi h(\theta) + r \theta^{m-1} \) for some \(r \in R_0 \), \(h(x) = 1 \). Then \((1 - r) \theta^k = \pi h(\theta) \) shows that \(1 - r \) is a unit, as \(h(\theta) \) is a unit. This proves (iv).

The following theorem generalizes [8, Theorem 4.15].

THEOREM 5.5. Let \((R, \pi) \) be a special primary ring with \(\pi \neq 0 \), and \(A \) be a local, faithful \(R \)-algebra such that \(J(R) = R \cap J(A) \) and \(\overline{A} = A/J(A) \) is a countably generated separable algebraic field extension of \(\overline{R} \). Then the following are equivalent.

(a) \(A \) is a chain ring with \(J(A) \) having index of nilpotency \(m \).

(b) There exists a commutative local ring \(R_0 \) which is a faithful unramified \(R \)-algebra, an \(R \)-automorphism \(\sigma \) of \(R_0 \) of order a positive integer \(k' \), a positive integer \(k \leq m - 1 \) divisible by \(k' \), a polynomial \(g(x) = x^k - \pi h(x) \) with \(h(x) \in R_0[x^{k'}] \), the constant term of \(h(x) \) a unit and \(\deg h(x) < k \), for which the following hold.

(i) If \(k' \) does not divide \(m - 1 \), then \(\overline{A} \cong R_0[x, \sigma]/\langle g(x), x^m \rangle \).

(ii) If \(k' \) divides \(m - 1 \) and \(k < m - 1 \), then there exists \(r \in R_0 \) which is either zero or a unit such that

\[
\overline{A} \cong R_0[x, \sigma]/\langle g(x) - rx^{m-1}, x^m \rangle.
\]

(iii) If \(k = m - 1 \), then there exists \(r \in R_0 \) such that either \(r = 0 \) or both \(r \) and \(1 + r \) are units in \(R_0 \), and

\[
\overline{A} \cong R_0[x, \sigma]/\langle g(x) - rx^{m-1}, x^m \rangle.
\]
Proof. Let \(A \) be a chain ring and \(m \) be the index of nilpotency of \(J(A) \). Let \(R_0 \) be a coefficient subring of \(A \), and \((\theta, \sigma)\) be a distinguishing pair of \(A \) with respect to \(R_0 \). Now, \(R_0 \) is an unramified \(R \)-algebra. There exists a positive integer \(k \) and a unit \(w \in A \) such that \(\theta^k = \pi w \). By 5.3, the order \(k' \) of \(\sigma \) divides \(k \). We can write \(\theta^k = \pi h(\theta) + r\theta^{m-1} \) where \(h(x) \) and \(r \) are as specified in 5.4(iv). Let \(f(x) = x^k - \pi h(x) - rx^{m-1} \). It follows from 4.7 and 4.10 that \(S = R_0[x, \sigma]/B \), where \(B = \langle f(x), x^m \rangle \), is a chain ring with \(J(S) \) having index of nilpotency \(m \). We have an \(R \)-epimorphism \(\lambda : S \to A \) such that for any \(q(x) \in R_0[x, \sigma] \), \(\lambda(q(x) + B) = q(\theta) \). As the index of nilpotency of \(J(A) \) is also \(m \), \(\lambda \) is an \(R \)-isomorphism. Hence (a) implies (b). It follows from 4.7 and 4.10 that (b) implies (a).

Example (see [2]). Let \(F \) be any field of characteristic 2 and \(x, y \) be two indeterminates. Consider a one-dimensional vector space \(V \) over \(K = F(x, y) \). Fix a basis element \(\alpha \) of \(V \). Let \(L \) be the \(F \)-vector space of all finite formal sums \(\sum a_{ij}x^iy^j \) where \(i, j \) are non-negative integers. Consider \(S = L \oplus V \). Define

\[
(x^n y^m) \circ (x^r y^s) = x^{n+r} y^{m+s} + mr\alpha x^{n+r-1} y^{m+s-1}.
\]

In particular, \(y \circ x = xy + \alpha \). For any \(\alpha u, \alpha v \in V \) and \(f \in L \), define \((\alpha u) \circ (\alpha v) = 0 \) and \(f \circ (\alpha u) = (\alpha u) \circ f = \alpha (uf) \). Extend this operation to \(S \). This makes \(S \) a ring, with \(T = 0 \times V \) an ideal such that \(T^2 = 0 \) and \(y^m \circ x^{2n} = x^{2n} y^m \). For any \(f \in L \), \(f^2 \in Z(S) \). It follows that \(S \) satisfies the right as well as left \(\mathcal{O} \)re condition. Consequently, \(S \) admits a total right quotient ring \(A \) with \(J(A) = T \) and \(A/J(A) \cong K \). Suppose \(S \) admits a coefficient subring \(T \). Then \(T \) is a field isomorphic to \(K \). There exist \(u = x + ax \) and \(v = y + as \) in \(T \). As \(u \circ v = v \circ u \), it follows that \(x \circ y = y \circ x \). This is a contradiction. Hence this ring does not admit a coefficient subring.

REFERENCES

Department of Mathematics
King Saud University
P.O. Box 2455, Riyadh 11451
Kingdom of Saudi Arabia
E-mail: ykhamees@ksu.edu.sa
hananamo@hotmail.com
ssingh@ksu.edu.sa

Received 27 May 2002;
revised 23 December 2002