COLLOQUIUM MATHEMATICUM

A REpresentation theorem for chain rings

BY
YOUSEF ALKHAMEES, HANAN ALOLAYAN and SURJEET SINGH (Riyadh)

Abstract

A ring A is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a chain ring such that $\bar{A}=A / J(A)$ is a separable field extension of $\bar{R}=R / J(R)$. It follows from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra R_{0} which is a chain ring such that $A=R_{0}+J(A)$ and $R_{0} \cap J(A)=J\left(R_{0}\right)=J(R) R_{0}$. The structure of A in terms of a skew polynomial ring over R_{0} is determined.

Introduction. Let S be a finite local ring. As shown by Wirt [8, Theorem 2.2] and independently by Clark and Drake [4], S has a commutative local subring S_{0} such that $S=S_{0}+J(S)$ and $S_{0} \cap J(S)=p S_{0}$, where $p=\operatorname{char}(S / J(S))$. This subring is called a coefficient subring of S. A ring is called a chain ring if it is a local, both sided artinian and principal ideal ring. Wirt [8] gave a representation of a finite chain ring S in terms of a homomorphic image of a skew polynomial ring over its coefficient subring. On the other hand, Alkhamees and Singh [1] generalized the results on the existence of coefficient subrings of finite local rings to certain non-finite local rings.

Let R be a commutative chain ring, and A be a local ring that is a faithful R-algebra. Then $J(R)=R \cap J(A)$. Let $\bar{A}=A / J(A)$ be a separable, algebraic field extension of \bar{R}, and let A be either a locally finite R algebra or an artinian duo ring. As proved in [1], A has a commutative local R-subalgebra R_{0} such that $A=R_{0}+J(A)$ and $J\left(R_{0}\right)=R_{0} \cap J(A)=$ $J(R) R_{0}$. This subalgebra R_{0} is also called a coefficient subring of A; such a subring is a commutative chain ring, and is a faithful R-algebra. The group of R-automorphisms of R_{0} is investigated in Section 2. Wirt [8] introduced the concept of a distinguished basis of a bimodule over a Galois ring. In Section 3 an analogous concept for bimodules over R_{0} is investigated.

The main purpose of this paper is to prove a representation theorem for A, in case A is a chain ring, in terms of an appropriate homomorphic image of a skew polynomial ring over its coefficient subring. Sections 4 and 5 are devoted to proving the main theorem (Theorem 5.5). By Cohen [5], any

2000 Mathematics Subject Classification: Primary 16S35; Secondary 16P10, 16P20.
commutative local artinian ring admits a coefficient subring. We outline an example given in [2] to show that a non-commutative local ring need not admit a coefficient subring. For such a ring an analogue of Theorem 5.5 cannot be proved.

1. Preliminaries. All rings considered in the paper have $1 \neq 0$. Let S be any ring. Then $J(S), Z(S)$ denote its Jacobson radical and center respectively. For any subset X of $S, \mathcal{C}(X)$ denotes its centralizer in S. For any module $M, d(M)$ denotes its composition length. For any automorphism σ of $S, S[x, \sigma]$ denotes the left skew polynomial ring over S determined by σ. Its members are left polynomials $\sum_{i} a_{i} x^{i}, a_{i} \in S$, and $x a=\sigma(a) x$ for every $a \in S$.

Let R be a commutative local ring and $\bar{R}=R / J(R)$. For any $f(x) \in R[x]$, let $\bar{f}(x)$ denote its natural image in $\bar{R}[x]$. The ring R is called a Hensel ring if it has the following property: Given any monic polynomial $f(x) \in R[x]$, if $\bar{f}(x)=a(x) b(x)$ for some relatively prime monic polynomials $a(x), b(x)$ $\in \bar{R}[x]$, then there exist monic polynomials $g(x), h(x) \in R[x]$ such that $f(x)=g(x) h(x), \bar{g}(x)=a(x)$ and $\bar{h}(x)=b(x)$. By the Hensel lemma [9, p. 279], any commutative, complete local ring R is a Hensel ring. In particular any commutative local artinian ring is a Hensel ring.

Let A be an algebra over R. If A_{R} is finitely generated, then A is called a finite R-algebra. The algebra A is called faithful if for any $r \in R, r A=0$ implies that $r=0$; in that case R is regarded a subring of A. Moreover, A is called unramified if $J(A)=J(R) A ; R$-separable if it is a commutative, local, finite, faithful and unramified R-algebra such that $\bar{A}=A / J(A)$ is a finite separable field extension of $R / J(R)$; and locally separable if it is a local, faithful, unramified R-algebra such that any finite subset of A is contained in a separable R-subalgebra. If A is a locally separable R-algebra, then \bar{A} is a separable, algebraic field extension of \bar{R}.

A commutative chain ring R is called a special primary ring [7, p. 200]. A finite special pimary ring S such that $J(S)=p S$, where $p=\operatorname{char}(S / J(S)$), is a Galois ring (see [4]). A ring S in which every one-sided ideal is two-sided is called a duo ring.

2. Ring monomorphisms

Lemma 2.1. Let R be a Hensel ring and A be a commutative, local, finite, faithful R-algebra such that $J(R)=R \cap J(A)$.
(i) A is a Hensel ring.
(ii) Let $f(x) \in R[x]$ be a monic polynomial such that $\bar{f}(x) \in \bar{R}[x]$ is irreducible and separable. If for some $c \in \bar{A}, \bar{f}(c)=0$, then there exists a unique $a \in A$ such that $f(a)=0$ and $\bar{a}=c$.

Proof. For (i) see [3, Theorem 32]. For (ii), see [1, Lemma 2.1].
Let A be a separable algebra over a Hensel ring R. An element $a \in A$ is said to be lift algebraic over R if there exists a monic polynomial $f(x) \in R[x]$ such that $f(x)$ is irreducible modulo $J(R)$ and $f(a)=0$; we call $f(x)$ an associated polynomial of a. Throughout this section R is a special primary ring with $J(R)=\pi R=R \pi$ and n is the index of nilpotency of π.

Lemma 2.2. Let A be a commutative, local, faithful, unramified R-algebra such that \bar{A} is a separable algebraic field extension of \bar{R}.
(I) A is a special primary ring with index of nilpotency of $J(A)$ the same as that of $J(R)$.
(II) Let $a, b \in A$ be lift algebraic over R.
(i) Let $f(x) \in R[x]$ be a monic polynomial such that $\bar{f}(x)$ is irreducible over \bar{R}. Then $T=R[x] /\langle f(x)\rangle$ is an unramified, local finite R-algebra. If, in addition, $\bar{f}(x)$ is separable over \bar{R}, then T is a separable R-algebra.
(ii) If $f(x) \in R[x]$ is an associated polynomial of a, then $R[a] \cong$ $R[x] /\langle f(x)\rangle, R[a]$ is a separable R-algebra and $d_{R}(R[a])=$ $n \operatorname{deg} f(x)$, where $n=d_{R}(R)$.
(iii) If $\bar{a}=\bar{b}$, then $R[a]=R[b]$.
(iv) $R[b] \subseteq R[a]$ if and only if $\bar{R}[\bar{b}] \subseteq \bar{R}[\bar{a}]$.
(III) If A is an R-separable algebra, then there exists a lift algebraic element $a \in A$ such that $A=R[a]$.

Proof. We have $J(R)=\pi R$ and $J(A)=\pi A$. As n is the index of nilpotency of π, we see that A is a special primary ring such that the index of nilpotency of $J(A)$ is n. This proves (I).

To prove (II)(i), observe that $J(T)=\langle\pi, f(x)\rangle /\langle f(x)\rangle=\pi T$, and $T / J(T)$ $\cong \bar{R}[x] /\langle\bar{f}(x)\rangle$. To prove (ii), let $g(x)$ be a non-zero member of $R[x]$ such that $g(a)=0$ and $\operatorname{deg} g(x)<\operatorname{deg} f(x)$. We can write $g(x)=\pi^{k} h(x)$ such that $\operatorname{deg} g(x)=\operatorname{deg} h(x)$ and $h(x) \in R[x] \backslash J(R[x])$. Then $h(a) \in J(A)$. This contradicts the fact that $f(x)$ modulo $J(R)$ is the minimal polynomial of \bar{a}. Hence $R[a] \cong R[x] /\langle f(x)\rangle$. The last part of (ii) follows from (i). Let $\bar{a}=\bar{b}$, and let $g(x) \in R[x]$ be an associated polynomial of b. As $R[a]$ is a Hensel ring, there exists $c \in R[a]$ such that $g(c)=0$ and $\bar{c}=\bar{b}$. By $2.1, b=c$. Since $R[a]$ and $R[b]$ have the same composition length as R-modules, we get $R[a]=R[b]$. Similar arguments prove (II)(iv).

In case A is a separable R-algebra, \bar{A} is a simple extension of \bar{R} : for some lift algebraic element $a \in A, \bar{A}=\bar{R}[\bar{a}]$. Hence $A=R[a]$. This proves (III).

Lemma 2.3. Let A be a commutative, local, faithful unramified R-algebra such that \bar{A} is a separable algebraic field extension of \bar{R}.
(i) For any subfield F of \bar{A} is a finite extension of \bar{R}, there exists a unique R-separable subalgebra S of A such that $F=\bar{S}$. Further, there exists a lift algebraic element $a \in S$ such that $S=R[a]$.
(ii) For any subfield F of \bar{A} containing \bar{R}, there exists a unique locally R-separable subalgebra S of A such that $\bar{S}=F$.

Proof. (i) We have $F=\bar{R}[c]$ for some $c \in F$. Let $f(x) \in R[x]$ be a monic polynomial which modulo $J(R)$ is the minimal polynomial of c over \bar{R}. As A is a Hensel ring we get an $a \in A$ such that $f(a)=0$ and $\bar{a}=c$. As in $2.2, R[a]$ is an R-separable subalgebra isomorphic to $R[x] /\langle f(x)\rangle$. Put $S=R[a]$. Clearly $F=\bar{S}$. Let T be another such R-separable subalgebra of A. By 2.2 (III) there exists $b \in T$ lift algebraic over R such that $T=R[b]$. As $\bar{R}[\bar{a}]=\bar{R}[\bar{b}]$, by 2.2 (II)(iii) we have $R[a]=R[b]$, so $S=T$. This proves (i).
(ii) Let F be any subfield of \bar{A} containing \bar{R}. Then \bar{F} is a directed union of simple field extensions of \bar{R}. Apply (i) to complete the proof.

LEmmA 2.4. Let A be a commutative, local, faithful unramified R-algebra such that \bar{A} is a separable algebraic field extension of \bar{R}. Let $a, b \in A$ be lift algebraic over R.
(i) There exists a $c \in A$ lift algebraic over R such that $R[a]+R[b] \subseteq R[c]$.
(ii) A is the union of all the subrings of the form $R[a]$, where a runs over all the elements of A that are lift algebraic over R.
(iii) A is a locally separable R-algebra.
(iv) If A^{\prime} is a locally separable A-algebra, then A^{\prime} is a locally separable R-algebra.

Proof. As \bar{a}, \bar{b} are both separable over \bar{R}, there exists a lift algebraic element $c \in A$ such that $\bar{R}[\bar{a}, \bar{b}]=\bar{R}[\bar{c}]$. Then 2.2 (II)(iv) completes the proof of (i).

Let B be the union of all the subrings of A of the form $R[a]$, where a is any element of A lift algebraic over R. (i) shows that B is a subring and $\bar{B}=\bar{A}$. So $A=B+J(A)=B+\pi A$, as $J(R)=\pi R$. As π is nilpotent, we get $A=B$. This proves (ii); and (iii) is immediate from (ii).

For (iv), the hypothesis on A^{\prime} gives $J\left(A^{\prime}\right)=J(A) A^{\prime}=J(R) A^{\prime}$, so A^{\prime} is an unramified R-algebra. Also $\overline{A^{\prime}}$ is a separable field extension of \bar{R}. Now (iii) completes the proof.

Theorem 2.5. Let A and A^{\prime} be two commutative, local, faithful, unramified algebras over a special primary ring R such that \bar{A} and $\overline{A^{\prime}}$ are both separable field extensions of \bar{R}. If there exists an \bar{R}-monomorphism $\sigma: \bar{A} \rightarrow \overline{A^{\prime}}$, then σ has a unique lifting to an R-monomorphism $\eta: A \rightarrow A^{\prime}$. Further, η is an automorphism if and only if σ is an automorphism.

Proof. Consider any $a, b \in A$ lift algebraic over R. Let $f(x), g(x) \in R[x]$ be associated polynomials of a, b respectively. Now $\bar{f}(\bar{a})=0$ gives
$\bar{f}(\sigma(\bar{a}))=0$. So we can find a unique $a^{\prime} \in A^{\prime}$ for which $f\left(a^{\prime}\right)=0$ and $\overline{a^{\prime}}=\sigma(\bar{a})$. But $R[a] \cong R[x] /\langle f(x)\rangle \cong R\left[a^{\prime}\right]$, so we get an R-isomorphism $\lambda_{a}: R[a] \rightarrow R\left[a^{\prime}\right]$ such that $\lambda_{a}(a)=a^{\prime}$. Then $\overline{\lambda_{a}(a)}=\sigma(\bar{a})$. So λ_{a} lifts the restriction of σ to $\bar{R}[\bar{a}]$. Similarly, for b we get $b^{\prime} \in A^{\prime}$ such that $g\left(b^{\prime}\right)=0$, $\overline{b^{\prime}}=\sigma(\bar{b})$ and we have an R-isomorphism $\lambda_{b}: R[b] \rightarrow R\left[b^{\prime}\right]$ such that $\lambda_{b}(b)=b^{\prime}$. Suppose $\bar{R}[\bar{a}] \subseteq \bar{R}[\bar{b}]$. Then $R[a] \subseteq R[b]$. Now $\overline{\lambda_{b}(a)}=\sigma(\bar{a})$ and $f\left(\lambda_{b}(a)\right)=0=f\left(a^{\prime}\right)$. This gives $\lambda_{b}(a)=\lambda_{a}(a)$. Hence λ_{b} is an extension of λ_{a}. As A is the union of all $R[a]$, where a is any element of A lift algebraic over R, the union of the maps λ_{a} gives the desired monomorphism $\eta: A \rightarrow A^{\prime}$ which lifts σ. Clearly η is uniquely determined by σ. By using the arguments in the proof of $2.4(\mathrm{ii})$ it follows that η is an isomorphism if and only if σ is an isomorphism.

The following is immediate.
Corollary 2.6. Let A, A^{\prime} be two commutative, local, faithful unramified algebras over a special primary ring R such that \bar{A} and $\overline{A^{\prime}}$ are both separable algebraic field extensions of \bar{R}, let G be the set of all R-monomorphisms of A into A^{\prime}, and let \bar{G} be the set of all \bar{R}-monomorphisms of \bar{A} into $\overline{A^{\prime}}$. Then there is a one-to-one correspondence between G and \bar{G} given by $\eta \leftrightarrow \bar{\eta}$, where $\bar{\eta} \in \bar{G}$ is induced by $\eta \in G$. If $A=A^{\prime}$, then this correspondence induces an isomorphism between $\operatorname{Aut}_{R}(A)$ and $\operatorname{Aut}_{\bar{R}}(\bar{A})$.

Theorem 2.7. Let A be a commutative, local, faithful unramified algebra over a special primary ring R such that \bar{A} is a separable, algebraic field extension of \bar{R}.
(a) $\operatorname{Aut}_{R}(A) \cong \operatorname{Aut}_{\bar{R}}(\bar{A})$.
(b) Let $\sigma: A \rightarrow A$ be an R-monomorphism.
(i) σ is an automorphism of A and for any $b \in A$ lift algebraic over $R, b \in A^{\sigma}$ if and only if $\bar{b} \in \bar{A}^{\bar{\sigma}}$.
(ii) The fixed ring A^{σ} of σ is a local, unramified R-algebra. If the order of σ is a positive integer k, then $\left[\bar{A}: \overline{A^{\sigma}}\right]=k$ and $A=A^{\sigma}[c]$ for some c lift algebraic over A^{σ}. The fixed ring of $\bar{\sigma}$ equals $\overline{A^{\sigma}}$.
Proof. (a) is given in 2.6.
(b) Consider any finite subset T of \bar{A}. By adjoining all the conjugates of elements in T over \bar{R}, in \bar{A}, we get a finite set T^{\prime} containing T such that $\eta\left(\bar{R}\left[T^{\prime}\right]\right)=\bar{R}\left[T^{\prime}\right]$ for any R-monomorphism $\eta: \bar{A} \rightarrow \bar{A}$. This in particular gives $\bar{\sigma}(\bar{A})=\bar{A}$. Thus $\sigma(A)=A$, and hence σ is an automorphism. Let $b \in A$ be lift algebraic over R such that $\bar{b} \in \bar{A}^{\bar{\sigma}}$. Let $f(x) \in R[x]$ be an associated polynomial of b. Then $f(b)=0$ gives $f(\sigma(b))=0$. But $\bar{b}=\bar{\sigma}(\bar{b})$. By $2.1, b=\sigma(b)$. This proves (i).

Every finite separable field extension of \bar{R} is simple. Let S be the set of all those $a \in A$ such that a is lift algebraic over R, and $\eta(R[a])=R[a]$ for every
$\eta \in \operatorname{Aut}_{R}(A)$. Then $A=\bigcup_{a \in S} R[a]$. Now $\bar{R}[\bar{a}]^{\bar{\sigma}}=\bar{R}\left[\bar{b}_{a}\right]$ for some $b_{a} \in R[a]$ lift algebraic over R. It follows by using $2.4(\mathrm{i})$ that $A^{\prime}=\bigcup_{a \in S} R\left[b_{a}\right]$ is an unramified local R-algebra, and $A^{\prime} \subseteq A^{\sigma}$. Let $c \in A^{\sigma}$. Then $c \in R[a]$ for some $a \in S$. Thus for some $c_{1} \in R\left[b_{a}\right]$ lift algebraic over $\bar{R}, \bar{c}=\bar{c}_{1}$ and $c=c_{1}+\pi^{r} u_{1}$ for some $r>0$ and a unit $u_{1} \in R[a]$. If $\pi^{r} u_{1}=0$, we get $c \in A^{\prime}$. Suppose $\pi^{r} u_{1} \neq 0$. As $\pi^{r} u_{1} \in A^{\sigma}$, we get $\pi^{r}\left(\sigma\left(u_{1}\right)-u_{1}\right)=0$, so $\bar{u}_{1} \in \bar{R}\left[\bar{b}_{a}\right]$. As for c, we get $u_{1}=c_{2}+\pi^{s} u_{2}$ for some $c_{2} \in R\left[b_{a}\right], s>0$ and u_{2} some unit in $R[a]$. Then $c=c_{1}+\pi^{r} c_{2}+\pi^{r+s} u_{2}$ and $r+s>r$. Continue the process with u_{2} and so on. As π is nilpotent, we eventually get $c \in A^{\prime}$. Clearly, A is unramified over A^{σ}. Suppose that the order of σ is a positive integer k; then so is the order of $\bar{\sigma}$. Consequently, $\left[\bar{A}: \overline{A^{\sigma}}\right]=k$. By 2.2(III), $A=A^{\sigma}[c]$ for some $c \in A$ lift algebraic over A^{σ}. Clearly $\overline{A^{\sigma}} \subseteq A^{\prime \prime}$, the fixed ring of $\bar{\sigma}$. Let $y \in A^{\prime \prime}$. Then for some $a \in S, y \in \bar{R}\left[\bar{b}_{a}\right]$. As $R\left[b_{a}\right]$ is R-separable, $y=\bar{c}$ for some $c \in R\left[b_{a}\right] \subseteq A^{\sigma}$. This proves the result.
3. Distinguished basis. Throughout this section R is a special primary ring and A is a commutative, locally separable R-algebra. Let H be the set of all R-subalgebras of A of the form $R[a]$ such that $a \in A$ is any element lift algebraic over R. By 2.4, H is an upper semi-lattice, and the union of members of H is A. Observe that any $R[a] \in H$ is projective as an R-module, so A_{R} is flat. As $J(R[a])=J(R)[a]$ for each $R[a] \in H$, we have $J(A)=J(R) A$, i.e. A is an unramified R-algebra. Let $T=A \otimes_{R} A$. Then for any $R[a] \in H, T_{a}=A \otimes_{R} R[a] \subseteq T$ and T is the union of the set of all such subrings. The concept of a distinguished basis of a bimodule over a Galois ring is discussed by Wirt [8]. The results in this section are related to those by Wirt, but in contrast to [8], the underlying rings need not be finite. Also, there is a marked difference between the proofs in [8] and of similar results in this section. Any (A, A)-bimodule M is supposed to be such that $r x=x r$ for any $x \in M$ and $r \in R$.

Lemma 3.1. Let $a \in A$ be lift algebraic over R.

(i) $T_{a}=A \otimes_{R} R[a]$ is a finite direct sum of local rings each of which is a separable A-algebra (so also a locally separable R-algebra). Further, T_{a} is an artinian principal ideal ring and $J\left(T_{a}\right)=J(R) T_{a}$. If \bar{A} is a normal extension of \bar{R}, then T_{a} is a direct sum of copies of A.
(ii) For any maximal ideal P of T there is no ideal L of T such that $P^{2}<L<P$. For any ideal C of T for which T / C is artinian, T / C is a principal ideal ring.
(iii) $J(T)=J(R) T$.

Proof. (i) Let $f(x) \in R[x]$ be an associated polynomial of a. As A is a Hensel ring, $f(x)=\prod_{i=1}^{t} f_{i}(x)$ with each $f_{i}(x)$ monic, and modulo $J(A)$
irreducible over \bar{A}. Then

$$
A \otimes_{R} R[a] \cong A \otimes_{R} R[x] /\langle f(x)\rangle \cong A[x] /\langle f(x)\rangle \cong \prod_{i=1}^{t} A[x] /\left\langle f_{i}(x)\right\rangle
$$

Now each $A[x] /\left\langle f_{i}(x)\right\rangle$ is a separable A-algebra. As A is an unramified R-algebra, by 2.4 (iv), $A[x] /\left\langle f_{i}(x)\right\rangle$ is R-unramified. This gives $J\left(T_{a}\right)=$ $J(R) T_{a}$. That T_{a} is a principal ideal ring follows from the fact that any locally separable R-algebra is a principal ideal ring. If \bar{A} is a normal extension of \bar{R}, then each $f_{i}(x)$ is of degree one, so each $A[x] /\left\langle f_{i}(x)\right\rangle$ is isomorphic to A.

Suppose that, on the contrary, L is an ideal of T such that $P^{2}<L<P$. For any $R[a] \in H$ let $P_{a}=P \cap T_{a}$ and $L_{a}=L \cap T_{a}$. As T_{a} is a principal ideal ring, there is no ideal of T_{a} properly between P_{a} and $\left(P_{a}\right)^{2}$. So $L_{a}=P_{a}$ or $L_{a}=P^{2} \cap T_{a}$. The hypothesis implies that there exist $R[a], R[b] \in H$ such that $L_{a} \neq P^{2} \cap T_{a}$ and $L_{b} \neq P_{b}$. Now there exists $R[c] \in H$ such that $R[a] \cup R[b] \subseteq R[c]$. Then $T_{a} \cup T_{b} \subseteq T_{c}$. If $L_{c}=P^{2} \cap T_{c}$, then $L_{a}=P^{2} \cap T_{a}$; if $L_{c}=P_{c}$, then $L_{b}=P_{b}$. This is a contradiction. Let C be any ideal of T such that T / C is artinian. Then for any prime ideal Q of T / C there is no ideal of T / C properly between Q and Q^{2}. Hence T / C is a principal ideal ring [7, Theorem 39.2].
(iii) follows from (i).

Theorem 3.2. Let A be a locally separable algebra over a special primary ring R, and M be an (A, A)-bimodule such that $d\left({ }_{A} M\right)$ is finite. Then $M=\oplus \sum_{i=1}^{n} A_{i} x_{i}$ with each A_{i} a separable A-algebra, and there exist R-monomorphisms $\sigma_{i}: A \rightarrow A_{i}$ such that $x_{i} a=\sigma_{i}(a) x_{i}$ for any $a \in A$. In case \bar{A} is a normal extension of \bar{R}, each A_{i} can be taken to be A and each σ_{i} an R-automorphism of A.

Proof. Let $T=A \otimes_{R} A$. Then M is a left T-module such that $(a \otimes b) x=$ $a x b$ for any $a, b \in A$ and $x \in M$. Then $d\left({ }_{T} M\right)$ is also finite. So there exists an ideal C of T such that T / C is artinian and $C M=0$. As T / C is an artinian principal ideal ring, $M=\oplus \sum_{i=1}^{n} T x_{i}$, where each $T x_{i}$ is a non-zero uniserial module [6, Theorem 25.4.2]. Consider any $x \in M$. For any $R[a] \in H,\left(A \otimes_{R} R[a]\right) x=T_{a} x$ is a left A-submodule of $T x$. There exists an $R[c] \in H$ such that $T_{c} x$ has maximal composition length as left A-module among all submodules $T_{a} x$. As T is the union of all the T_{a} 's it follows from 2.4(i) that $T x=T_{c} x$. For any $u \in T_{c}, T(u x)=u(T x)=u T_{c} x=$ $T_{c}(u x)$. This shows that any T_{c}-submodule of $T x$ is also a T-submodule. In addition, suppose that $T x$ is uniserial. Then $T x$ is also a uniserial T_{c}-module. By 3.1, T_{c} is a direct sum of rings which are separable A-algebras. This gives a summand A^{\prime} of T_{c} such that A^{\prime} is a separable A-algebra, $T x=A^{\prime} x$ and every A^{\prime}-submodule of $A^{\prime} x$ is a T-submodule. Hence for $1 \leq i \leq n$ we get
A-subalgebras A_{i} of T such that each A_{i} is a separable A-algebra and $T x_{i}=$ $A_{i} x_{i}$. Let $J(R)=\pi R$. Then $J(A)=\pi A$ and $J\left(A^{\prime}\right)=\pi A^{\prime}$. For any $x \in M$, $x \pi=\pi x$. This gives that $D_{i}=\operatorname{r.ann}_{A}\left(x_{i}\right)=\pi^{k_{i}} A$ and $D_{i}^{\prime}=1 \cdot \operatorname{ann}_{A_{i}}\left(x_{i}\right)$ $=A_{i} \pi^{k_{i}}$. Consider $a \in A$; as $x_{i} a \in T x_{i}=A_{i} x_{i}$ there exists $a^{\prime} \in A_{i}$ such that $x_{i} a=a^{\prime} x_{i}$. This gives an R-monomorphism $\eta_{i}: A / D_{i} \rightarrow A_{i} / D_{i}^{\prime}$ such that $\eta_{i}\left(a+D_{i}\right)=a^{\prime}+D_{i}^{\prime}$. By $2.5, \eta_{i}$ uniquely lifts to an R-monomorphism $\sigma_{i}: A \rightarrow A_{i}$. Clearly $x_{i} a=\sigma_{i}(a) x_{i}$ for every $a \in A$.

Let \bar{A} be a normal extension of \bar{R}. By 3.1(i) each A_{i} is a copy of A, so $A_{i}=A e_{i}$ for some indecomposable idempotent e_{i} in T, and $\sigma_{i}(a)=\eta_{i}(a) e_{i}$ for some R-automorphism η_{i} of A. Hence $M=\oplus \sum_{i=1}^{n} A y_{i}$ with $y_{i}=e_{i} x_{i}$ and $y_{i} a=\eta_{i}(a) y_{i}$. This proves the result.

In case \bar{A} is a normal extension of R, and M is an (A, A)-bimodule as in the above theorem, it follows from the above theorem that there exist finitely many distinct R-automorphisms $\sigma_{1}, \ldots, \sigma_{s}$ such that $M=N_{1} \oplus \ldots \oplus N_{s}$ for some non-zero submodules N_{i} with the property that for any non-zero $x \in N_{i}, x a=\sigma_{i}(a) x$ for every $a \in A$.

Corollary 3.3. Let A and T be as in the above theorem and $A / J(A)$ be a normal field extension of \bar{R}. Let M be an (A, A)-bimodule such that $d\left({ }_{A} M\right)<\infty$.
(i) There exist uniquely determined R-automorphisms $\sigma_{1}, \ldots, \sigma_{s}$ of A such that for $1 \leq i \leq s, N_{i}=\left\{x \in M: x a=\sigma_{i}(a) x\right.$ for every $\left.a \in A\right\}$ is a non-zero submodule of M and $M=N_{1} \oplus \ldots \oplus N_{s}$.
(ii) If the module ${ }_{T} M$ is uniserial, then ${ }_{A} M$ is uniserial.

Proof. We have $M=N_{1} \oplus \ldots \oplus N_{s}$ for some non-zero submodules N_{i} and distinct R-automorphisms σ_{i} of A such that $y a=\sigma_{i}(a) y$ for $y \in N_{i}$, $a \in A$. Suppose that for some R-automorphism η of A there exists a non-zero $x \in M$ such that $x a=\eta(a) x$ for every $a \in A$. Write $x=\sum x_{i}, x_{i} \in N_{i}$. Then $x a=\eta(a) x$ gives $\sum \eta(a) x_{i}=\sum \sigma_{i}(a) x_{i}$. For some $j, x_{j} \neq 0$. Then $\left(\eta(a)-\sigma_{i}(a)\right) x_{j}=0$ gives $\eta(a)-\sigma_{j}(a) \in J(A)$ for every $a \in A$. By 2.7(a), $\eta=\sigma_{j}$, and hence $x \in N_{j}$. This proves (i).

It has been seen in the proof of the above theorem that M is a direct sum of uniserial T-modules each of which is a uniserial left A-module. Hence, if M is a uniserial T-module it must be a uniserial left A-module.

Let S be a faithful R-algebra such that $\bar{S}=S / J(S)$ is a countably generated separable algebraic field extension of \bar{R}. If S is locally finite or is an artinian duo ring, then S has a coefficient subring T which is unique to within isomorphisms [1]. In particular any finite local ring S of characteristic p^{n}, where p is a prime number, can be regarded as an algebra over $\mathbb{Z} /\left\langle p^{n}\right\rangle$, so it has a coefficient subring T; this T is a Galois ring of order $p^{n r}$ where the order of $S / J(S)$ is p^{r}.

Theorem 3.4. Let (R, π) be any special primary ring and S be a left artinian, faithful R-algebra such that $\bar{S}=S / J(S)$ is a countably generated, separable normal algebraic field extension of \bar{R}. Let S have a coefficient subring R_{0}. Then as an $\left(R_{0}, R_{0}\right)$-bimodule, $S=R_{0} \oplus\left(\oplus \sum_{i=1}^{n} R_{0} x_{i}\right)$ such that for $1 \leq i \leq n, x_{i} \in J(S)$ and there exists a $\sigma_{i} \in \operatorname{Aut}_{R}\left(R_{0}\right)$ such that $x_{i} a=\sigma_{i}(a) x_{i}$ for every $a \in A$. These automorphisms are uniquely determined by S.

Proof. $\left(R_{0}, \pi\right)$ is a special primary ring and $d\left(R_{0} S\right)=d\left({ }_{S} S\right)$. We regard S as an $\left(R_{0}, R_{0}\right)$-bimodule. Consider any unit $x \in S$ such that for some $\sigma \in \operatorname{Aut}_{R}\left(R_{0}\right), x a=\sigma(a) x$ for every $a \in R_{0}$. But in $\bar{S}, \overline{x a}=\overline{a x}$, so $(\bar{a}-\overline{\sigma(a)}) \bar{x}=\overline{0}$. Thus $a-\sigma(a) \in J\left(R_{0}\right)$ for every $a \in R_{0}$. By $2.7, \sigma=I$, hence $x \in \mathcal{C}\left(R_{0}\right)$, the centralizer of R_{0}. By 3.3 , there exist uniquely determined distinct R-automorphisms $\eta_{j}, 1 \leq j \leq m$, such that $S=\oplus \sum_{i=1}^{m} B_{i}$ where $B_{i}=\left\{x \in S: x a=\eta_{i}(a) x\right.$ for all $\left.a \in R_{0}\right\} \neq 0$. For $x \in R_{0}$ and $a \in R_{0}, x a=$ $a x$, so $3.3(\mathrm{i})$ shows that one of the η_{i}, say η_{1}, equals I. Then $B_{1}=\mathcal{C}\left(R_{0}\right)$, and $S=\mathcal{C}\left(R_{0}\right) \oplus H$, where $H=\sum_{i>1} B_{i}$. For any $i \geq 2$, as seen above, no B_{i} can contain any unit of S. Thus $H \subseteq J(S)$. Now R_{0} is self-injective (see [6]). By [6, Theorem 25.4.2], $\mathcal{C}\left(R_{0}\right)=R_{0} \oplus\left(\oplus \sum_{j=1}^{p} R_{0} y_{i}\right)$. Suppose some y_{i}, say y_{1}, is a unit. Now $y_{1}=z_{1}+v_{1}$ for some $z_{1} \in R_{0}$ and $v_{1} \in J(S) \cap \mathcal{C}\left(R_{0}\right)$ with $R_{0} \oplus R_{0} y_{1}=R_{0}+R_{0} v_{1}$. By comparing the composition lengths over R_{0}, it is immediate that $R_{0} \oplus R_{0} y_{1}=R_{0} \oplus R_{0} v_{1}$. Thus we can take every y_{i} in $J(S)$. As each B_{i} is also a direct sum of uniserial R_{0}-modules, the result follows.
4. Chain rings. We start with the following elementary result.

Lemma 4.1. (i) Let σ be an automorphism of a ring R and $f(x) \in$ $R[x, \sigma]$ be such that its leading coefficient is a unit, and $\operatorname{deg} f(x)=n \geq 1$. Then for any $g(x) \in R[x]$, we have $g(x)=f(x) q(x)+r(x)$ for some $q(x), r(x) \in R[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} f(x)$. Further, $R[x, \sigma] / f(x) R[x, \sigma]$ as a right R-module is a direct sum of n copies of R.
(ii) Let σ be an automorphism of a division ring D. Then the left skew polynomial ring $D[x, \sigma]$ is a right as well as a left principal ideal domain.

Henceforth R is a commutative local ring with maximal ideal J, and σ an automorphism of R. If J is nilpotent, it is obvious that $J[x, \sigma]$ is a nilpotent ideal of $R[x, \sigma]$.

Lemma 4.2. If J is nil and σ is of finite order, then the ideal $J[x, \sigma]$ of $R[x, \sigma]$ is nil.

Proof. Consider any $f(x) \in J[x, \sigma]$, and let Y be the set consisting of all coefficients of $f(x)$ and their images under different powers of σ. As σ is of
finite order, Y is a finite set, so the ideal A of R generated by Y is nilpotent. Clearly any coefficient of an $f(x)^{k}$ is in A^{k}. Hence $f(x)$ is nilpotent.

Lemma 4.3. Let $f(x)=x^{k}+g(x)$ be such that $g(x) \in J[x, \sigma]$ and $\operatorname{deg} g(x)<k, k$ a positive integer, and $\langle f(x)\rangle=f(x) R[x, \sigma]$.
(i) $\langle J, x\rangle /\langle f(x)\rangle$ is the unique maximal ideal of $S=R[x, \sigma] /\langle f(x)\rangle$.
(ii) If $J[x, \sigma]$ is a nil ideal, then S is a local ring with $J(S)$ equal to $\langle J, x\rangle /\langle f(x)\rangle$.
(iii) If R is a special primary ring with $J=\pi R$ and $g(x)=\pi u(x)$, where the constant term of $u(x)$ is a unit, then S is a chain ring with $J(S)=\langle\bar{x}\rangle$, and the index of nilpotency of $J(S)$ is kn, where n is the index of nilpotency of π. Also, $\pi^{n-1} \notin\langle f(x)\rangle$. Further, for any positive integer $m \leq k n, T=R[x, \sigma] /\left\langle f(x), x^{m}\right\rangle$, and the index of nilpotency of $J(T)$ is m.

Proof. Set $B=\langle J, x\rangle$. As $R[x, \sigma] / B \cong R / J$ is a field, clearly $L=$ $B /\langle f(x)\rangle$ is a maximal ideal of S. Let $h(x) \in R[x, \sigma]$ be such that $h(x) \notin B$. Then $\langle h(x)\rangle+B=R[x, \sigma]$, hence $\langle h(x)\rangle+B^{k}=R[x, \sigma]$. But $B^{k} \subseteq\left\langle J, x^{k}\right\rangle=$ $\langle J, f(x)\rangle$, so $\langle h(x)\rangle+\langle J, f(x)\rangle=R[x, \sigma]$. Thus for $T=R[x, \sigma] / C$, where $C=\langle h(x)\rangle+\langle f(x)\rangle$, we have $T J=T$. It follows from 4.1 that T is finitely generated as a right R-module. Thus, by [3, Theorem 5], $T=0$. Hence $\langle h(x)\rangle+\langle f(x)\rangle=R[x, \sigma]$. This proves that $B /\langle f(x)\rangle$ is the only maximal ideal of S.

Let $J[x, \sigma]$ be nil. Then as $B^{k} \subseteq\langle J, f(x)\rangle, B /\langle f(x)\rangle$ is a nil ideal. Hence S is a local ring with $J(S)=B /\langle f(x)\rangle$.

Let R be a special primary ring with $J=\pi R$ and $g(x)=\pi u(x)$ with the constant term of $u(x)$ a unit. As J is nilpotent, so is $J[x, \sigma]$. Consequently, S is a local ring. Since $u(x)$ is a unit modulo $f(x)$, it follows that $\bar{\pi} S=\bar{x}^{k} S$ and $J(S)=\bar{x} S$. So S is a chain ring. It follows from 4.1 that $d\left(S_{R}\right)=k n$. As R / J and $S / J(S)$ are isomorphic as right R-modules, $d\left(S_{S}\right)=k n$. Hence the index of nilpotency of $J(S)$ is $k n$. This also yields $\pi^{n-1} \notin\langle f(x)\rangle$. The last part of (iii) follows from the fact that T is a homomorphic image of S and $J(S)=\bar{x} S$.

Lemma 4.4. Let J be nilpotent and let $f(x)=x^{k}+g(x)$ with k a positive integer, and $g(x) \in J[x, \sigma]$ be such that $\langle f(x)\rangle=f(x) R[x, \sigma]$. Then there exists an $h(x)=x^{k}+q(x) \in R[x, \sigma]$ with $q(x) \in J[x, \sigma], \operatorname{deg} q(x)<k$, $\langle f(x)\rangle=\langle h(x)\rangle=h(x) R[x, \sigma]$. If the constant term of $g(x)$ belongs to $J \backslash J^{2}$ then $h(x)$ can also be chosen so that the constant term of $h(x)$ is in $J \backslash J^{2}$.

Proof. Consider $A=\langle J, f(x)\rangle=\left\langle J, x^{k}\right\rangle$ and $S=R[x, \sigma] /\langle f(x)\rangle$. Then $S J=A /\langle f(x)\rangle$, so $S / S J \cong R[x, \sigma] /\left\langle J, x^{k}\right\rangle$ as right R-modules. So $\left\{x^{i}+S J\right.$: $0 \leq i \leq k-1\}$ generates $S / S J$ as a right R-module. As J is nilpotent, it follows that S_{R} itself is generated by the set $\left\{x^{i}+\langle f(x)\rangle: 0 \leq i \leq k-1\right\}$. So there exists $h(x)=x^{k}-\sum_{i=0}^{k-1} a_{i} x^{i} \in\langle f(x)\rangle$ with $a_{i} \in R$. Then $h(x)=$
$\left(x^{k}+g(x)\right) v(x)$ for some $v(x) \in R[x, \sigma]$. In $\overline{R[x, \sigma]}=R[x, \sigma] / J[x, \sigma], \overline{h(x)}=$ $\bar{x}^{k} \overline{v(x)}$. This gives $\overline{v(x)}=\overline{1}$ and $\overline{h(x)}=\bar{x}^{k}$. It follows that $v(x)=1+w(x)$ with $w(x) \in J[x, \sigma]$ and $\sum_{i=0}^{k-1} a_{i} x^{i} \in J[x, \sigma]$. As $v(x)$ is a unit in $R[x, \sigma]$, it is immediate that $\langle f(x)\rangle=h(x) R[x, \sigma]=\langle h(x)\rangle$. Finally, let the constant term of $g(x)$ be $b \in J \backslash J^{2}$. Then b is also the constant term of $f(x)$. If $c \in J$ is the constant term of $w(x)$, then the constant term of $h(x)$ is $b(1+c) \in J \backslash J^{2}$. This proves the result.

Lemma 4.5. Let J be nilpotent, $f(x)=x^{k}+g(x) \in R[x, \sigma]$ with k a positive integer, and $g(x) \in J[x, \sigma]$ such that $\langle f(x)\rangle=f(x) R[x, \sigma]$. Then $R[x, \sigma] /\langle f(x)\rangle$ as a right R-module is isomorphic to a direct sum of k copies of R.

Proof. Because of 4.4 we can take $\operatorname{deg} g(x)<k$. Now apply 4.1 to complete the proof.

Henceforth R is a special primary ring with $J=\pi R$, the index of nilpotency of J is n, and σ is such that $\sigma(\pi)=\pi$.

Lemma 4.6. Let $f(x) \in R[x, \sigma]$ be such that its constant term or its leading coefficient is a unit in R. If $g(x) \in R[x, \sigma]$ is such that $f(x) g(x) \in$ $\pi^{s} R[x, \sigma]$ for some non-negative integer s, then $g(x) \in \pi^{s} R[x, \sigma]$.

Proposition 4.7. Let $f(x)=x^{k}+\pi g(x) \in R[x, \sigma]$ be such that $\langle f(x)\rangle=$ $f(x) R[x, \sigma]$ and the constant term of $g(x)$ is a unit in R. Then $S=$ $R[x, \sigma] /\langle f(x)\rangle$ is a chain ring such that $J(S)=\langle\bar{x}\rangle$, and the index of nilpotency of $J(S)$ is $k n$, where n is the index of nilpotency of J. For $1 \leq m \leq k n, A=R[x, \sigma] /\left\langle f(x), x^{m}\right\rangle$ is a chain ring with m as the index of nilpotency of $J(A)$.

Proof. Because of 4.4 we can take $\operatorname{deg} g(x)<k$. Then 4.3 completes the proof of the first part. The second part is an immediate consequence of the first part.

PRoposition 4.8. Let $f(x)=x^{k}+\pi g(x)+r_{0} x^{m-1} \in R[x, \sigma]$ with $m-1>k>0$ and with constant term of $g(x)$ a unit in R. Then $T=$ $R[x, \sigma] /\left\langle f(x), x^{m}\right\rangle$ is a chain ring with $J(T)=\langle\bar{x}\rangle$. The index of nilpotency of $J(T)$ is at most $k n$.

Proof. Set $A=\left\langle f(x), x^{m}\right\rangle$. Then $T=R[x, \sigma] / A$ and $A \subseteq\langle\pi, x\rangle$. As \bar{x} is nilpotent in T, T is a local ring with $J(T)=\langle\bar{\pi}, \bar{x}\rangle$ a nilpotent ideal. As $\overline{1+r_{0} x^{m-k-1}}$ and $\overline{g(x)}$ are units in T,

$$
\left\langle\bar{x}^{k}\right\rangle=\left\langle\overline{x^{k}+r_{0} x^{m-1}}\right\rangle=\langle-\bar{\pi} \overline{g(x)}\rangle=\langle\bar{\pi}\rangle .
$$

Thus the index of nilpotency of \bar{x} is at most $k n$ and $J(T)=\langle\bar{x}\rangle$.
Lemma 4.9. Let $h(x)=x^{k}+\pi g(x) \in Z(R[x, \sigma])$ be such that the constant term of $g(x)$ is a unit and $\operatorname{deg} g(x)<k$. Let m be any positive integer
such that $k \leq m-1 \leq k n-1$, and suppose the order of σ divides $m-1$. Let $f(x)=h(x)+r_{0} x^{m-1}$, where r_{0} is a unit in R. Then:
(i) If $m-1>k$, then $\left\langle f(x), x^{m}\right\rangle \neq\left\langle f(x), x^{m-1}\right\rangle$.
(ii) If $k=m-1$ and $1+r_{0}$ is a unit, then $\left\langle f(x), x^{m}\right\rangle \neq\left\langle f(x), x^{m-1}\right\rangle$.

Proof. Suppose the contrary. Set $A=\left\langle f(x), x^{m-1}\right\rangle=\left\langle h(x), x^{m-1}\right\rangle$ and $B=\left\langle f(x), x^{m}\right\rangle$.

CASE I: $k<m-1$. So $x^{m-1}=\left(h(x)+r_{0} x^{m-1}\right) s(x)+x^{m} v(x)$ for some $s(x), v(x) \in R[x, \sigma]$. This gives $x^{m-1}\left(1-r_{0} s(x)\right)=h(x) s(x)+x^{m} v(x)$. If $1-r_{0} s(x)$ is a unit modulo the ideal $C=\left\langle h(x), x^{m}\right\rangle$, we deduce that $x^{m-1} \in C$, and the index of nilpotency of the radical of $R[x, \sigma] / C$ is less than m. This contradicts 4.3(iii). Hence the constant term of $1-r_{0} s(x)$ is a non-unit. Thus, if s_{0} is the constant term of $s(x)$, then s_{0} must be a unit. Also the coefficient of x^{k} in $h(x) s(x)+x^{m} v(x)$ is 0 . Thus $s_{0}-\pi b=0$ for some $b \in R$ and $s_{0} \in J(R)$. This is a contradiction, which proves (i).

CASE II: $k=m-1$ and $1+r_{0}$ is a unit. In this case $\pi g(x) s(x) \in\left\langle x^{m-1}\right\rangle$. By 4.6, $\pi s(x)=x^{m-1} \pi q(x)$. So $s(x)=x^{m-1} q(x)+\pi^{n-1} \lambda(x)$ for some $\lambda(x) \in R[x, \sigma]$. Thus

$$
\begin{aligned}
x^{m-1} & =\left(x^{m-1}+\pi g(x)+r_{0} x^{m-1}\right)\left(x^{m-1} q(x)+\pi^{n-1} \lambda(x)\right)+x^{m} v(x) \\
& =x^{m-1}\left(1+r_{0}\right)\left(x^{m-1} q(x)+\pi^{n-1} \lambda(x)\right)+x^{m-1} \pi g(x) q(x)+x^{m} v(x)
\end{aligned}
$$

Consequently, $1=\left(1+r_{0}\right)\left(x^{m-1} q(x)+\pi^{n-1} \lambda(x)\right)+\pi g(x) q(x)+x v(x)$. This is not possible, as the constant term on the right hand side is not a unit. This proves (ii).

Remark. The hypothesis on $h(x)$ in the above theorem implies that $o(\sigma)$ divides k and $\pi g(x) \in Z(R[x, \sigma])$.

Theorem 4.10. Let (R, π) be a special primary ring and σ be an automorphism of R of order k^{\prime}, a positive integer. Let $h(x)=x^{k}+\pi g(x)$ $\in Z(R[x, \sigma])$ be such that the constant term of $g(x)$ is a unit in R and $\operatorname{deg} g(x)<k$. Let m be any positive integer such that $k(n-1)<m \leq k n$, $k \leq m-1$ and k^{\prime} divides $m-1$. Let $f(x)=h(x)+r_{0} x^{m-1} \in R[x, \sigma]$ with $r_{0} \in R$ satisfying the following conditions:
(i) Either $r_{0}=0$ or r_{0} is a unit.
(ii) If $k=m-1$, then $1+r_{0}$ is a unit.

Then for $A=\left\langle f(x), x^{m}\right\rangle, S=R[x, \sigma] / A$ is a chain ring with $J(S)$ having index of nilpotency m.

Proof. For $r_{0}=0$, the result follows from 4.3(iii). For $r_{0} \neq 0$, it follows from 4.8 and 4.9.
5. A representation theorem. Throughout this section (R, π) is a special primary ring, A is a local, faithful R-algebra which is a chain ring, $J(R)=R \cap J(A)$, and $\bar{A}=A / J(A)$ is a countably generated normal, separable algebraic field extension of \bar{R}. As A is a duo ring, by [1], it has a coefficient subring R_{0}. Now $J\left(R_{0}\right)=R_{0} \pi$. Since A is an $\left(R_{0}, R_{0}\right)$-bimodule, by 3.4 , it can be written as

$$
A=R_{0} \oplus\left(\oplus \sum_{i=1}^{n} R_{0} x_{i}\right)
$$

in such a way that $x_{i} \in J(A)$ for $1 \leq i \leq n$. As $J(A)$ is a principal right and left ideal, $J(A)=A x_{i}=x_{i} A$ for some x_{i}; write θ for this x_{i} and σ for the corresponding σ_{i}. We call (θ, σ) a distinguishing pair of A with respect to R_{0}. Then $J(A)=\theta A=A \theta$ and $\theta a=\sigma(a) \theta$ for $a \in R_{0}$. As $\pi \in \theta A$, there exists a smallest positive integer k such that $\theta^{k}=\pi w$ for some unit $w \in A$. Let m and n be the indices of nilpotency of θ and π respectively. Then $m=(n-1) k+t$ for some $1 \leq t \leq k$.

As in [4] or in [8], we also have $A=R_{0} \oplus R_{0} \theta \oplus \ldots \oplus R_{0} \theta^{k-1}$ with $R_{0} \theta^{i} \cong R_{0}$ for $1 \leq i<t$, and $R_{0} \theta^{i} \cong R_{0} / R_{0} \pi$ for $t \leq i<k$ as left $R_{0^{-}}$ modules. Suppose $\theta^{k}=0$; then $\pi=0, R_{0}$ is a field, and $A \cong R_{0}[x, \sigma] /\left\langle x^{k}\right\rangle$. So we are interested only in the case $\theta^{k} \neq 0$. Observe that if $x \in R$, then $x \theta^{m-1}=r \theta^{m-1}$ for some $r \in R_{0}$.

Lemma 5.1. If $\theta^{k} \neq 0$, then σ is of finite order and its order divides k. Also, $\theta^{k} \in Z(A)$.

Proof. We have $\pi=w^{-1} \theta^{k}$. Then for any $a \in R_{0}, \pi a=a \pi$ yields $\left(a w^{-1}-w^{-1} \sigma^{k}(a)\right) \theta^{k}=0$ and $w a w^{-1}-\sigma^{k}(a) \in J(A)$. But $A / J(A)$ is commutative. We get $a-\sigma^{k}(a) \in J(A) \cap R_{0}=J\left(R_{0}\right)$. By 2.7, $\sigma^{k}=I$. Hence the order of σ is finite and it divides k. The second part is obvious from the first.

Henceforth we suppose that $\theta^{k} \neq 0, k^{\prime}$ is the order of σ, and $k_{1}=k / k^{\prime}$.
Lemma 5.2. $\mathcal{C}\left(R_{0}\right)=\left\{\sum_{i=0}^{k_{1}-1} a_{i} \theta^{k^{\prime} i}: a_{i} \in R_{0}\right\}$.
Proof. Let $x=\sum_{i=0}^{k-1} a_{i} \theta^{i} \in \mathcal{C}\left(R_{0}\right), a_{i} \in R_{0}$. For any $a \in R_{0}, a x=x a$ yields $\left(a-\sigma^{i}(a)\right) a_{i} \theta^{i}=0$. If for some $i, a_{i} \theta^{i} \neq 0$, then $a-\sigma^{i}(a) \in J\left(R_{0}\right)$, by $2.7, \sigma^{i}=I$ and hence k^{\prime} divides i. This proves the result.

Lemma 5.3. Let $w \in A$ be a unit.
(i) If for some $l, q \geq 0, a\left(w \pi^{l} \theta^{q}\right)=\left(w \pi^{l} \theta^{q}\right) a$ for every $a \in A$, with $\pi^{l} \theta^{q} \neq 0$, then k^{\prime} divides q.
(ii) If $\theta\left(w \pi^{l} \theta^{q}\right)=\left(w \pi^{l} \theta^{q}\right) \theta$ and $\pi^{l} \theta^{q+1} \neq 0$, then $w=s_{0}+w_{1} \theta^{u}$ for some unit $s_{0} \in R_{0}^{\sigma}, u \geq 1$ and some unit $w_{1} \in A$. In addition, if $w \in R_{0}$, then $w=s+s^{\prime}$ for some $s \in R_{0}^{\sigma}$ and $s^{\prime} \in J^{m-q-1-k l} \cap R_{0}$.
(iii) Let $L=\sum_{i=0}^{k_{1}-1} R_{0}^{\sigma} \theta^{i k^{\prime}}$. If k^{\prime} does not divide $m-1$, then $Z(A)=L$. If k^{\prime} divides $m-1$, then $Z(A)=L+J(A)^{m-1}$.

Proof. (i) $a\left(w \pi^{l} \theta^{q}\right)=\left(w \pi^{l} \theta^{q}\right) a$ for every $a \in A$ with $\pi^{l} \theta^{q} \neq 0$ gives $\left(a w-w \sigma^{q}(a)\right) \pi^{l} \theta^{q}=0$, and as in 5.1, we find that k^{\prime} divides q.
(ii) Suppose that $\theta\left(w \pi^{l} \theta^{q}\right)=\left(w \pi^{l} \theta^{q}\right) \theta$ and $\pi^{l} \theta^{q+1} \neq 0$. Now $w=r+v$ for some $r \in R_{0}$ and $v \in J$. The hypothesis gives $(\sigma(r)-r) \pi^{l} \theta^{q+1}=$ $v \pi^{l} \theta^{q+1}-\theta v \pi^{l} \theta^{q+1} \in \pi^{l} \theta^{q+1} J$, so $(\sigma(r)-r) \in J \cap R_{0}$. By $2.7(\mathrm{~b}), r=$ $s_{0}+r_{1} \pi^{\alpha}$ for some unit $s_{0} \in R_{0}^{\sigma}, \alpha \geq 1$, and some unit $r_{1} \in R_{0}$. Then $w=s_{0}+r_{1} \pi^{\alpha}+v=s_{0}+w_{1} \theta^{u}$ for some unit $w_{1} \in A, u \geq 1$.

Suppose $w=r \in R_{0}$. Then $r=s_{0}+r_{1} \pi^{\alpha}$ and $\theta\left(r_{1} \pi^{\alpha+l} \theta^{q}\right)=\left(r_{1} \pi^{\alpha+l} \theta^{q}\right) \theta$. If $\pi^{\alpha+l} \theta^{q+1}=0$, then $r_{1} \pi^{\alpha} \in J^{m-q-1-k l} \cap R_{0}$, and we stop. Otherwise we continue with r_{1} in place of r. Then $r_{1}=a_{1}+r_{2} \pi^{\beta}$ for some unit $a_{1} \in R_{0}^{\sigma}, r_{2}$ a unit in R_{0}, and some $\beta \geq 1$. Then $r=s_{1}+r_{2} \pi^{\alpha+\beta}, s_{1}=s_{0}+a_{1} \pi^{\alpha} \in R_{0}^{\sigma}$. Observe that $\alpha+\beta>\alpha$. Continue the process with r_{2} and so on. As π is nilpotent, we shall finally get $r=s+r^{\prime} \pi^{p}$ for some $s \in R_{0}^{\sigma}$ and $s^{\prime}=r^{\prime} \pi^{p} \in$ $J^{m-q-1-k l} \cap R_{0}$.
(iii) If $k^{\prime}=1$, then $A=Z(A)$, and the result holds trivially. Let $k^{\prime}>1$. Let $x \in Z(A)$. Then $x \in \mathcal{C}\left(R_{0}\right), x=\sum_{i=0}^{k_{1}-1} r_{i} \theta^{k^{\prime} i}, r_{i} \in R_{0}$. As $\theta x=x \theta$ and $\left(k_{1}-1\right) k^{\prime}+1<k$, we get $\theta\left(r_{i} \theta^{i}\right)=\left(r_{i} \theta^{i}\right) \theta$. By (ii), $r_{i}=s_{i}+a_{i}$ for some $s_{i} \in R_{0}^{\sigma}$ and $a_{i} \in J^{m-k^{\prime} i-1}$. Hence $x=s+a$ with $s=\sum_{i} s_{i} \theta^{k^{\prime} i} \in L$ and $a=\sum_{i} a_{i} \theta^{k^{\prime} i} \in J^{m-1}$. Now $a \in Z(A)$. Suppose $a \neq 0$. Then $a=r \theta^{m-1}$ for some unit $r \in R$. By (i), k^{\prime} divides $m-1$. Further, if k^{\prime} divides $m-1$, then $J^{m-1} \subseteq Z(A)$. This proves (iii).

Lemma 5.4. For $\theta^{k}=\pi w$, the following hold.
(i) If k^{\prime} does not divide $m-1$, then w can be chosen in the form $\sum_{i=0}^{k_{1}-1} s_{i} \theta^{k^{\prime} i}$ with $s_{i} \in R_{0}^{\sigma}$, and this element is in $L \subseteq Z(A)$.
(ii) If k^{\prime} divides $m-1$, then $w=w_{0}+r_{0} \theta^{m-k-1}$ with $w_{0} \in L$, and $r_{0} \in R_{0}$ is either zero or a unit.
(iii) w chosen in either of the above forms is in $\mathcal{C}\left(R_{0}\right)$. Further, $\mathcal{C}\left(R_{0}\right)$ is a special primary ring with radical $\left\langle\theta^{k^{\prime}}\right\rangle$.
(iv) $\theta^{k}=\pi h(\theta)+r \theta^{m-1}$, where $h(x) \in R_{0}^{\sigma}\left[x^{k^{\prime}}\right]$, $\operatorname{deg} h(x)<k$, the constant term of $h(x)$ is a unit, $r=0$ if k^{\prime} does not divide $m-1$, and r is zero or a unit in R_{0} otherwise. Further, if $k=m-1$, then $1-r$ is a unit.

Proof. We have $\pi=w^{-1} \theta^{k} \in Z(A)$. If $k=m-1$, then $w^{-1} \theta^{k}=s_{0} \theta^{k}$ for some unit $s_{0} \in R_{0}$, so we can take $w=s_{0}^{-1}=s_{0}^{-1} \theta^{m-k-1}$, which is of type given in (ii). Suppose $k<m-1$. By $5.3(\mathrm{ii}), w^{-1}=s_{0}+w_{1} \theta^{\alpha}$ for some unit $s_{0} \in R_{0}^{\sigma}$, a unit $w_{1} \in A$, and some $\alpha \geq 1$. If $\theta^{\alpha} \theta^{k}=0$, we stop. Suppose, $\theta^{\alpha} \theta^{k} \neq 0$. Then $0 \neq w_{1} \theta^{\alpha} \theta^{k} \in Z(A)$. By 5.3(i), k^{\prime} divides α. If $w_{1} \theta^{\alpha} \theta^{k+1}=0$, then $w_{1} \theta^{\alpha} \in J^{m-k-1}$. Suppose $w_{1} \theta^{\alpha} \theta^{k+1} \neq 0$. By 5.3(ii), $w_{1}=a_{1}+w_{2} \theta^{\beta}$ for some unit $a_{1} \in R_{0}^{\sigma}$, a unit $w_{2} \in A$, and some $\beta \geq 1$.

Then $w^{-1}=s_{1}+w_{2} \theta^{\alpha+\beta}$ with $s_{1}=s_{0}+a_{1} \theta^{\alpha} \in Z(A)$. Clearly $\alpha+\beta>\alpha$. Continue this process with w_{2} and so on. We get $w^{-1}=s+v \theta^{p}$ for some unit $s \in Z(A)$, a unit $v \in A$, and some $p \geq 1$ such that $v \theta^{p} \theta^{k+1}=0$. If $v \theta^{p} \theta^{k} \neq 0$, then $p=m-k-1$. Suppose $v \theta^{p} \theta^{k}=0$. Then $\pi=s \theta^{k}$, and in this case we can take $w=s^{-1} \in Z(A)$. Suppose $v \theta^{p} \theta^{k} \neq 0$. Then $v \theta^{p} \theta^{k}=v \theta^{m-1}=r \theta^{m-1}$ for some unit $r \in R_{0}$, and k^{\prime} divides $m-1$. Then $\pi=\left(s+r \theta^{m-k-1}\right) \theta^{k}$ and $\theta^{k}=\pi\left(s^{-1}-s^{-2} r \theta^{m-k-1}\right)=\pi\left(s^{-1}+r^{\prime} \theta^{m-k-1}\right)$ for some unit $r^{\prime} \in R_{0}$, so we can take $w=s^{-1}+r^{\prime} \theta^{m-k-1}$. By 5.3(iii), $s^{-1}=w_{0}+r_{1} \theta^{m-1}$ for some $r_{1} \in R_{0}$ and $w_{0} \in L$. Thus $w_{0}=h(\theta)$ for some $h(x) \in R_{0}^{\sigma}\left[x^{k^{\prime}}\right]$ with $\operatorname{deg} h(x)<k$. Then $\theta^{k}=\pi\left(w_{0}+r^{\prime} \theta^{m-k-1}\right)$, and we can take $w=w_{0}+r^{\prime} \theta^{m-k-1}$, which is of type given in (ii). All this proves that w can be chosen of the type given in (i) or (ii), and in any case this w is in $\mathcal{C}\left(R_{0}\right)$. Clearly, $\mathcal{C}\left(R_{0}\right)=R_{0}+\left\langle\theta^{k^{\prime}}\right\rangle, \mathcal{C}\left(R_{0}\right)$ is commutative, and $J\left(\mathcal{C}\left(R_{0}\right)\right)=\pi R_{0}+\left\langle\theta^{k^{\prime}}\right\rangle=\left\langle\theta^{k^{\prime}}\right\rangle$, as $\pi=w^{-1} \theta^{k} \in\left\langle\theta^{k^{\prime}}\right\rangle$. Hence $\mathcal{C}\left(R_{0}\right)$ is a chain ring.

In case k^{\prime} divides $m-1$, we have $\theta^{k}=\pi h(\theta)+\pi r^{\prime} \theta^{m-k-1}=\pi h(\theta)+r \theta^{m-1}$ for some $r \in R_{0}$. Once again consider the case when $k=m-1$. As seen above, $\theta^{k}=\pi r_{0}$ for some unit $r_{0} \in R$. Then $\theta \pi=0$, and this gives $\theta^{k}=$ $\pi+\left(r_{0}-1\right) \pi=\pi+r \theta^{m-1}=\pi h(\theta)+r \theta^{m-1}$ for some $r \in R_{0}, h(x)=1$. Then $(1-r) \theta^{k}=\pi h(\theta)$ shows that $1-r$ is a unit, as $h(\theta)$ is a unit. This proves (iv).

The following theorem generalizes [8, Theorem 4.15].
Theorem 5.5. Let (R, π) be a special primary ring with $\pi \neq 0$, and A be a local, faithful R-algebra such that $J(R)=R \cap J(A)$ and $\bar{A}=A / J(A)$ is a countably generated separable algebraic field extension of \bar{R}. Then the following are equivalent.
(a) A is a chain ring with $J(A)$ having index of nilpotency m.
(b) There exists a commutative local ring R_{0} which is a faithful unramified R-algebra, an R-automorphism σ of R_{0} of order a positive integer k^{\prime}, a positive integer $k \leq m-1$ divisible by k^{\prime}, a polynomial $g(x)=x^{k}-\pi h(x)$ with $h(x) \in R_{0}^{\sigma}\left[x^{k^{\prime}}\right]$, the constant term of $h(x)$ a unit and $\operatorname{deg} h(x)<k$, for which the following hold.
(i) If k^{\prime} does not divide $m-1$, then $A \cong R_{0}[x, \sigma] /\left\langle g(x), x^{m}\right\rangle$.
(ii) If k^{\prime} divides $m-1$ and $k<m-1$, then there exists $r \in R_{0}$ which is either zero or a unit such that

$$
A \cong R_{0}[x, \sigma] /\left\langle g(x)-r x^{m-1}, x^{m}\right\rangle
$$

(iii) If $k=m-1$, then there exists $r \in R_{0}$ such that either $r=0$ or both r and $1+r$ are units in R_{0}, and

$$
A \cong R_{0}[x, \sigma] /\left\langle g(x)-r x^{m-1}, x^{m}\right\rangle
$$

Proof. Let A be a chain ring and m be the index of nilpotency of $J(A)$. Let R_{0} be a coefficient subring of A, and (θ, σ) be a distinguishing pair of A with respect to R_{0}. Now, R_{0} is an unramified R-algebra. There exists a positive integer k and a unit $w \in A$ such that $\theta^{k}=\pi w$. By 5.3 , the order k^{\prime} of σ divides k. We can write $\theta^{k}=\pi h(\theta)+r \theta^{m-1}$ where $h(x)$ and r are as specified in 5.4(iv). Let $f(x)=x^{k}-\pi h(x)-r x^{m-1}$. It follows from 4.7 and 4.10 that $S=R_{0}[x, \sigma] / B$, where $B=\left\langle f(x), x^{m}\right\rangle$, is a chain ring with $J(S)$ having index of nilpotency m. We have an R-epimorphism $\lambda: S \rightarrow A$ such that for any $q(x) \in R_{0}[x, \sigma], \lambda(q(x)+B)=q(\theta)$. As the index of nilpotency of $J(A)$ is also m, λ is an R-isomorphism. Hence (a) implies (b). It follows from 4.7 and 4.10 that (b) implies (a).

Example (see [2]). Let F be any field of characteristic 2 and x, y be two indeterminates. Consider a one-dimensional vector space V over $K=$ $F(x, y)$. Fix a basis element α of V. Let L be the F-vector space of all finite formal sums $\sum a_{i j} x^{i} y^{j}, a_{i j} \in F$, where i, j are non-negative integers. Consider $S=L \oplus V$. Define

$$
\left(x^{n} y^{m}\right) \circ\left(x^{r} y^{s}\right)=x^{n+r} y^{m+s}+m r \alpha x^{n+r-1} y^{m+s-1} .
$$

In particular, $y \circ x=x y+\alpha$. For any $\alpha u, \alpha v \in V$ and $f \in L$, define $(\alpha u) \circ(\alpha v)=0$ and $f \circ(\alpha u)=(\alpha u) \circ f=\alpha(u f)$. Extend this operation to S. This makes S a ring, with $T=0 \times V$ an ideal such that $T^{2}=0$ and $y^{m} \circ x^{2 n}=x^{2 n} y^{m}$. For any $f \in L, f^{2} \in Z(S)$. It follows that S satisfies the right as well as left Öre condition. Consequently, S admits a total right quotient ring A with $J(A)=T$ and $A / J(A) \cong K$. Suppose S admits a coefficient subring T. Then T is a field isomorphic to K. There exist $u=x+\alpha r$ and $v=y+\alpha s$ in T. As $u \circ v=v \circ u$, it follows that $x \circ y=y \circ x$. This is a contradiction. Hence this ring does not admit a coefficient subring.

REFERENCES

[1] Y. Alkhamees and S. Singh, Inertial subrings of a locally finite algebra, Colloq. Math. 92 (2002), 35-42.
[2] -, -, A local artinian ring with no coefficient subring (unpublished).
[3] G. Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.
[4] W. E. Clark and D. A. Drake, Finite chain rings, Abh. Math. Sem. Univ. Hamburg 39 (1973), 147-153.
[5] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54-106.
[6] C. Faith, Algebra II, Ring Theory, Grundlehren Math. Wiss. 191, Springer, New York, 1976.
[7] R. Gilmer, Multiplicative Ideal Theory, Pure Appl. Math. 12, Dekker, New York, 1972.
[8] B. R. Wirt, Finite non-commutative local rings, Ph.D. thesis, Univ. of Oklahoma, 1972.
[9] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer, New York, 1960.

Department of Mathematics
King Saud University
P.O. Box 2455, Riyadh 11451

Kingdom of Saudi Arabia
E-mail: ykhamees@ksu.edu.sa
hananamo@hotmail.com
ssingh@ksu.edu.sa

Received 27 May 2002;
revised 23 December 2002

