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ON FLUCTUATIONS IN THE MEAN OF

A SUM-OF-DIVISORS FUNCTION, II

BY

Y.-F. S. PÉTERMANN (Genève)

Abstract. I give explicit values for the constant implied by an Omega-estimate due
to Chen and Chen [CC] on the average of the sum of the divisors of n which are relatively
coprime to any given integer a.

Let a be a positive integer, and consider the sum-of-divisors function

σ(a)(n) :=
∑

d|n
(d,a)=1

d

(when a = 1 this is the classical σ(n)). This function is known to be on

average of size π
2φ(a)
6a n, in the sense that the difference

Ea(x) :=
∑

n≤x

σ(a)(n)−
π2φ(a)

12a
x2

is small compared to x2. Exactly how small is a difficult problem. In this
note I confine myself to establishing explicit lower bounds for the oscillations
of Fa(x), where

Fa(x) :=
∑

n≤x

σ(a)(n)

n
−
π2φ(a)

6a
x+
1

2
log x
∑

d|a

µ(d).

Equivalent bounds for Ea(x) will then follow in view of the relation

Ea(x)

x
− Fa(x) = O(1),

which is proven for a > 1 in Lemma 5 of [CC] (the case a = 1 is well known,
and is for instance easy to obtain by adapting the previous one). In [P1]
I proved the two-sided Ω−estimate

(1) Fa(x) = Ω±(log log x)
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when a = 1. In [ACM] Adhikari, Coppola and Mukhopadhyay established
(1) in the case where a is a prime number, and finally in [CC] Chen and
Chen proved that (1) holds for every positive integer a.
I am now interested in providing explicit values for the constants implied

by the estimates (1). Define the positive numbers R0 and R1 by

Ri := lim sup
x→∞

(−1)iFa(x)

log log x
(i = 0, 1).

In [P2] I proved that

Ri ≥
eγ

2
(i = 0, 1)

when a = 1, and in [P3] that

Ri ≥
eγ

2
·
P − 1

P + 1
(i = 0, 1),

when a = P is a prime number.
In this note I establish the following generalization. (In what follows, the

symbols P , Pi, p will denote prime numbers.)

Theorem. For every positive integer a we have

Ri ≥
eγ

2
·
∏

P |a

P − 1

P + 1
(i = 0, 1).

Preliminary remark. If a0 is the squarefree core of a (i.e. if a0 is square-
free and satisfies p | a0 ⇔ p | a), then it is easy to verify that σ(a0) = σ(a),
φ(a0)/a0 = φ(a)/a, and

∑

d|a µ(d) =
∑

d|a0
µ(d) (= 0 when a > 1). Hence

Ea0(x) = Ea(x) and Fa0(x) = Fa(x), and we may assume in the following
that a = P1 · · ·Ps is sqarefree. (We also assume that s ≥ 1.)

We first state six lemmas needed for the proof of the theorem. The first
three are Lemmas 1–3 of [CC].

Lemma 1. For each natural number n we have

σ(a)(n)

n
=
∑

d|n

αa(d)

d
,

where αa(d) :=
∏

p|(a,d)(1− p).

Lemma 2. We have
∑

n≤x

αa(n)

n
=

{

logP1 +O(1/x) if s = 1,

O(1/x) if s > 1.

Lemma 3. We have

Fa(x) = −

∞
∑

n=1

αa(n)

n

{

x

n

}

,

where {y} denotes the fractional part of y.
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The proof of Lemma 4 is contained in the proof of Lemma 4 in [CC] (put
y = x3/4 there).

Lemma 4. We have
∑

x3/4<n≤x

αa(n)

n

{x

n

}

= O(x−1/2).

From Lemmas 2–4, straightforward Abel summations yield

Lemma 5. The error term Fa satisfies

Fa(x) = Ga(x) +

{

logP1 +O(1/x) if a = 1,

O(1/x) if s > 1,

where

Ga(x) := −
∑

n≤x

αa(n)

n
ψ

(

x

n

)

= −
∑

n≤x3/4

αa(n)

n
ψ

(

x

n

)

+ o(1),

with ψ(y) := {y} − 1/2.

Now for every positive integer M we define N = N(M) and q = q(M)
by

q :=
M !

P e11 · · ·P
es
s
=: N1/4 (P eii ‖M !, i = 1, . . . , s).

We also put β = 0 or β = q − 1, and u = u(N) = (qN + β)3/4, so that in
particular u ≪ N15/16. Since (again from Lemma 2 with a straightforward
Abel summation) we have

∑

n≤x

αa(n) = O(log x) = 0 · x+ o(x),

Theorem 1 (with Lemma 6, and with K = 0) of [P2] is applicable to Ga and
yields the following

Lemma 6. For Ga as defined in Lemma 5, and β = 0 or β = q − 1, we
have

1

N

N
∑

n=1

Ga(nq + β) =
∑

l≤u

αa(l)(q, l)

l2

(

1

2
−

β

(q, l)

)

+O(1).

We now proceed to prove the theorem, by evaluating the sum on the
right-hand side of this last equation. First note that we may restrict our
attention to the case where β = 0. Indeed, in the case β = q − 1 we have

(2)
1

2
−

β

(q, l)
= −
1

2
+
1

(q, l)
and

∑

l≤u

αa(l)

l2
= O(1).

In Lemma 6 put l = nm with n | q and p |m ⇒ p ∤ q/n. Then (q, l) = n and
αa(l) = αa(m) =

∏

Pi|m
(1− Pi). Thus if we denote by P the set of subsets
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of {1, . . . , s} we may write

(3)
1

N

N
∑

n=1

Ga(nq) =
1

2

∑

n|q

1

n

∑

E∈P

∑

m≤u/n
p|m⇒p∤q/n
Pi|m⇔i∈E

αa(m)

m2
.

The error committed by ignoring the condition m ≤ u/n is small. Indeed,
with the help of Lemma 2 we see that

∑

n|q

1

n

∑

u/n<m

αa(m)

m2
≪
∑

n|q

n

u2
≪

q

u2
d(q)≪ N−13/8+ǫ = o(1).

In order to lighten a bit the notation we assume, up to equation (6) below,
in sums in which the symbol m appears, that the condition p |m ⇒ p ∤ q/n
is always satisfied. With this convention and the remark just above we may
rewrite (3) as

(4)
1

N

N
∑

n=1

Ga(nq) =
1

2

∑

n|q

1

n

∑

E∈P

∏

i∈E

(1− Pi)
∑

Pi|m⇔i∈E

1

m2
+ o(1).

Now if we put E := P \ E the last sum on the right-hand side of (4) is
∑

Pi|m, ∀i∈E

1

m2
−

∑

Pi|m, ∀i∈E

∃j∈E,Pj |m

1

m2
=
∑

D⊂E

(−1)|D|
∑

Pi|m, ∀i∈E
Pj |m, ∀j∈D

1

m2

=
∑

D∈E

(−1)|D|
∏

i∈E P
2
i

∏

j∈D P
2
j

∞
∑

m=1

1

m2
=

∞
∑

m=1

1

m2

∏

i∈E

1

P 2i

∏

j 6∈E

(

1−
1

P 2j

)

.

Thus from (4) we have

(5)
1

N

N
∑

n=1

Ga(nq) =
1

2

∑

n|q

1

n

∞
∑

m=1

1

m2

∑

E∈P

∏

i∈E

1− Pi
P 2i

∏

j 6∈E

(

1−
1

P 2j

)

+ o(1).

The last sum on the right-hand side of (5) is

∑

E∈P

∏

i∈E

1− Pi
P 2i

∏

j /∈E

(Pj − 1)(1 + Pj)

P 2j
=
s
∏

i=1

1− Pi
P 2i

∑

E∈P

(−1)|E|
∏

j∈E

(1 + Pj)

=

s
∏

i=1

1− Pi
P 2i
(1−(1+Pi))=

s
∏

i=1

Pi − 1

Pi
,

and (5) can be rewritten as

(6)
1

N

N
∑

n=1

Ga(nq) =
1

2

∑

n|q

1

n

s
∏

i=1

Pi − 1

Pi

∞
∑

m=1

1

m2
+ o(1).
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Now the tacit condition p |m⇒ p ∤ q/n is less restrictive than p |m⇒ p = Pi
for some i with 1 ≤ i ≤ s. Hence

1

N

N
∑

n=1

Ga(nq) ≥
1

2

∑

n|q

1

n

s
∏

i=1

Pi − 1

Pi

∞
∑

j=0

1

P 2ji
+ o(1)(7)

=
1

2

∑

n|q

1

n

s
∏

i=1

Pi
Pi + 1

+ o(1).

Finally, since logM ∼ log logN we have

∑

n|q

1

n
=
∏

p≤M
pep‖q

(

1 +
1

p
+ · · ·+

1

pep

)

∼
∏

p≤M
p 6=Pi (1≤i≤s)

(

1−
1

p

)−1

∼
s
∏

i=1

(

1−
1

Pi

)

eγ log logN,

whence from (7) we obtain

1

N

N
∑

n=1

Ga(nq) ≥
eγ

2

s
∏

i=1

Pi − 1

Pi + 1
log logN (1 + o(1)).

This, in view of Lemma 5 and (2), concludes the proof of the Theorem.

Note. The referee, to whom I am grateful for this very pertinent ques-
tion, asked: “Can one expect similar results for the function

∑

d|n,(d,a)=1 d
k?”

Indeed, with the same method one can derive such estimates for this
function—call it σ(a),k(n)—for every real number k > 1 (the case k < 1
appears to be more difficult to handle). I briefly describe how below.

Consider (for k > 1) the remainder terms

Ea,k(x) :=
∑

n≤x

σ(a),k(n)−
φ(a)

a

ζ(k + 1)

k + 1
xk+1

and

Fa,k(x) :=
∑

n≤x

σ(a),k(n)

nk
−
φ(a)

a
ζ(k + 1)x.

Very similarly to the case k = 1 (and partly much more easily), one first
proves statements corresponding to Lemmas 1 through 5. Mutatis mutandis
this yields

(8) Fa,k(x) = Ha,k(x) + o(1),
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where

Ha,k(x) := −
∑

n≤x3/4

αa,k(n)

nk
ψ

(

x

n

)

and αa,k(n) :=
∏

p|(a,n)

(1− pk).

Now with the use of the Euler–Maclaurin sum formula for
∑

n≤x n
k we

obtain, similarly to the proof of Lemma 5 in [CC],

(9)
Ea,k(x)

xk
− Fa,k(x) = o(1).

Then an appeal to [P2] yields

1

N

N
∑

n=1

Ha,k(nq + β) =
∑

l≤u

αa,k(l)(q, l)

lk+1

(

1

2
−

β

(q, l)

)

+ o(1).

As in the case k = 1 we may restrict our attention to the case where β = 0,
but this time the justification for this requires considering β = q−ε (instead
of simply β = q− 1) for arbitrarily small values of ε (this is allowed: see the
Addendum of [P2]).

The rest of the argument is straightforward, as it fairly closely mimicks
that of the case k = 1, and yields

1

N

N
∑

n=1

Ha,k(nq) ≥
1

2
ζ(k)

s
∏

i=1

(Pi − 1)(P
k
i − 1)

P k+1i − 1
+ o(1).

This implies, in view of (8) and (9), that

lim sup (−1)i
Ea,k(x)

xk
≥
1

2
ζ(k)

s
∏

i=1

(Pi − 1)(P
k
i − 1)

P k+1i − 1
(i = 0, 1).

Finally, note that here xk is the true order of magnitude of Ea,k(x).
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Université de Genève
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