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ON FLUCTUATIONS IN THE MEAN OF
A SUM-OF-DIVISORS FUNCTION, II

BY

Y.-F. S. PETERMANN (Genéve)

Abstract. I give explicit values for the constant implied by an Omega-estimate due
to Chen and Chen [CC] on the average of the sum of the divisors of n which are relatively
coprime to any given integer a.

Let a be a positive integer, and consider the sum-of-divisors function

U(Q) Z d

(d, a) 1

(when @ = 1 this is the classical o(n)). This function is known to be on
m ¢(a)

n, in the sense that the difference

2) = 3 o) - =22

n<z

average of size

is small compared to x2. Exactly how small is a difficult problem. In this
note I confine myself to establishing explicit lower bounds for the oscillations
of F,(x), where

Fo(a) = Z a(a;l(n) o éﬁa(a)x n %longu(d)

n<z d|a

Equivalent bounds for E,(x) will then follow in view of the relation
Eq(z)
x

— Fa(z) = O(1),

which is proven for a > 1 in Lemma 5 of [CC] (the case a = 1 is well known,
and is for instance easy to obtain by adapting the previous one). In [P1]
I proved the two-sided {2—estimate

(1) F.(z) = 2+ (loglogx)
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when a = 1. In [ACM] Adhikari, Coppola and Mukhopadhyay established
(1) in the case where a is a prime number, and finally in [CC] Chen and
Chen proved that (1) holds for every positive integer a.

I am now interested in providing explicit values for the constants implied
by the estimates (1). Define the positive numbers Ry and R; by

(—1)'Fa(x)

L= i = 0,1).
R lfljgp loglog z (i=0,1)
In [P2] I proved that o
R; > o} (1=0,1)
when a = 1, and in [P3] that
e’ P-1
1 S 1 ) = 7]- )
Bizg pyn 0500

when a = P is a prime number.
In this note I establish the following generalization. (In what follows, the
symbols P, P;, p will denote prime numbers.)

THEOREM. For every positive integer a we have

Y —
Pla *

(i=0,1).

Preliminary remark. If ag is the squarefree core of a (i.e. if ag is square-
free and satisfies p|ag < p|a), then it is easy to verify that o(,,) = 0(a),
¢(ao)/ao = ¢(a)/a, and 3, , u(d) = 3_ 44, #(d) (= 0 when a > 1). Hence
E. (x) = E,(x) and Fy,(z) = F,(x), and we may assume in the following
that a = Py - - - Py is sqarefree. (We also assume that s > 1.)

We first state six lemmas needed for the proof of the theorem. The first
three are Lemmas 1-3 of [CC].

LEMMA 1. For each natural number n we have
T(a) (n) B aq(d)
n dz: d '’
where aq(d) == [],q.a) (1 —P)-
LEMMA 2. We have
Z ag(n) {logPl +0(1/x) if s=1,
n  lO(1/z) if s> 1.

n<z
LEMMA 3. We have
L ag(n) [z
n=1

where {y} denotes the fractional part of y.



SUM-OF-DIVISORS FUNCTION 173

The proof of Lemma 4 is contained in the proof of Lemma 4 in [CC] (put
y = 23/4 there).

LEMMA 4. We have
S 2l I oo,
n n
z3/4<n<x
From Lemmas 24, straightforward Abel summations yield
LEMMA 5. The error term F, satisfies

_ logP, +0O(1/x) ifa=1,
Fa(@) = Ga(@) + { O(1/x) if s >1,

o ag(n) (z\ ag(n) (=
Ga(z) ==Y - ¢<E> -—- > T¢<E> +o(1),
n<zx n<g3/4

with P(y) := {y} — 1/2.

Now for every positive integer M we define N = N(M) and ¢ = ¢(M)
by

M!
= B

We also put 3=0or f=¢—1, and u = u(N) = (¢gN + 5)3/%, so that in
particular u < N'/16_ Since (again from Lemma 2 with a straightforward
Abel summation) we have

Z aq(n) =0(logz) =02+ o(z),

n<z

Theorem 1 (with Lemma 6, and with K = 0) of [P2] is applicable to G, and
yields the following

= NY* (pfi

M i=1,...,s).

LEMMA 6. For G, as defined in Lemma b5, and 3 =0 or B =q— 1, we

have
1 & o)) (1 B
N;Ga(HQ-l-ﬁ):Zi(l)Q(q )<§—m> +0(1).

I<u

We now proceed to prove the theorem, by evaluating the sum on the
right-hand side of this last equation. First note that we may restrict our
attention to the case where 8 = 0. Indeed, in the case 8 = ¢ — 1 we have

15 11 aa(l) _
(2) s @D 2wl and ; o =0(1).

In Lemma 6 put | = nm with n|q and p|m = pfq/n. Then (¢q,1) = n and
aq(l) = aa(m) = [1p,},, (1 = Pi). Thus if we denote by P the set of subsets
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of {1,...,s} we may write

3 NZG TEESDED DEND DI 0}

n|q EGP m<u/n

plm=-piq/n

The error committed by ignoring the condition m < wu/n is small. Indeed,
with the help of Lemma 2 we see that

Z > Ga(m <<Z—<<—d ) < N713/8+¢ — o(1).

n|q u/n<m n|q

In order to lighten a bit the notation we assume, up to equation (6) below,
in sums in which the symbol m appears, that the condition p|m = ptq/n
is always satisfied. With this convention and the remark just above we may
rewrite (3) as

(1) Nza TEED DED DI | (RN SRl

n\q EE'P S P;|lmsi€E

Now if we put E := P \ E the last sum on the right-hand side of (4) is

DRI DI DI LI D=

P;|m,VicE Pi|m,Vi€eE DCE Pi|m, Vi€ E
3j€E, Pj|lm Pj|m,V¥j€D
_y (—1)IPI =1 =1 1 L1
P2 E : 2 §: 2 H P2 H - p2 )
DcE HzeE HJGD me1 " m=1"" g i Jj¢E J

Thus from (4) we have

ZG -2y Ly H<1_%>+om.

nlg m=1 E€PicE v j¢E

The last sum on the right-hand side of (5) is

S I I3 =TT S ™ [Ta+r)

EcPicE Fi Jj¢E J i=1 " EeP JEE

=
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Now the tacit condition p|m = p{g/n is less restrictive than p|m = p = P,
for some 7 with 1 < < s. Hence

N s Pz— o]
1) S ACHEES S | | P‘lz%+o(1)
n=1 nlg =1 tog=0"ti
I— 14 P
RS | ot
nq 1=

Finally, since log M ~ loglog N we have

—1

1 1 1 1

SL=T(epevn)~ T (1))

"\qn p<M p p p<M p
pllq p#P; (1<i<s)

= 1
~ 11(1 — F)e”loglogN,

1

whence from (7) we obtain

! NG 2 § B il SN
— J(ng) > & 1+ o(1)).
anl (nQ)_QgPﬁlogog (1+o0(1))

This, in view of Lemma 5 and (2), concludes the proof of the Theorem.

NOTE. The referee, to whom I am grateful for this very pertinent ques-
tion, asked: “Can one expect similar results for the function ) | dln,(d,a)=1 dk?”

Indeed, with the same method one can derive such estimates for this
function—call it 0(4) 1 (n)—for every real number £ > 1 (the case k < 1
appears to be more difficult to handle). I briefly describe how below.

Consider (for k > 1) the remainder terms

Eor(@) = o s(n) - o(a) C(k’fi:ll) 1

a
n<z

and

O k(n)  o(a)

F, = : - .

wlw) = S0 T A (1),
n<zx

Very similarly to the case £ = 1 (and partly much more easily), one first

proves statements corresponding to Lemmas 1 through 5. Mutatis mutandis

this yields
(8) For(x) = Hop(z) + o(1),
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where
g k(N x
Hgp(x):=— Z nk( )1/’(5) and  aqi(n) = H (1 —p").
n<z3/4 pl(a,n)
Now with the use of the Euler-Maclaurin sum formula for anw n* we

obtain, similarly to the proof of Lemma 5 in [CC],
Ea,k .T})
(9) Eax(x)

i For(z) =o(1).
Then an appeal to [P2] yields

1 aar(D(g,1) (1
N 3 Hustna +9) = 3 et 8D (5 - 25 ) + ot

I<u

As in the case k = 1 we may restrict our attention to the case where 3 = 0,
but this time the justification for this requires considering § = ¢ —e¢ (instead
of simply 8 = ¢ — 1) for arbitrarily small values of € (this is allowed: see the
Addendum of [P2]).

The rest of the argument is straightforward, as it fairly closely mimicks
that of the case k = 1, and yields

- (P —1)(PF —
%Z:lﬂa,k(n@ > %C(k)ﬂ S P,ﬁﬁpj ; Y 4 o),

This implies, in view of (8) and (9), that

. E, > (P, — 1)(PF — ,
limsup (—1)* %x) > %C(k:) 11 ( P,}jg - : D (i=0,1).
i=1 i

Finally, note that here x* is the true order of magnitude of E, x(x).
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