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SPECTRAL SUBSPACES FOR THE FOURIER ALGEBRA

BY

K. PARTHASARATHY and R. PRAKASH (Chennai)

Abstract. In this note we define and explore, à la Godement, spectral subspaces
of Banach space representations of the Fourier–Eymard algebra of a (nonabelian) locally
compact group.

Godement, in his basic paper [2] on the Wiener Tauberian theorem and
spectral theory of bounded functions on a locally compact abelian group G,
defined and studied spectral subspaces of certain Banach space representa-
tions of G. In this note we undertake an analogous study for representations
of the Fourier algebra of a (nonabelian) locally compact group.

The Fourier algebra A(G) of a locally compact group G was defined
and studied by Eymard [1]. All that is needed here about A(G) can be
found in that paper. A(G) is a commutative, semisimple, regular Banach
algebra with pointwise operations whose Gelfand maximal ideal space is
identified with G via point evaluations λ(x), x ∈ G. For T in the dual
VN(G) of A(G), the support of T is defined by suppT = {x ∈ G : u ∈ A(G),
u(x) 6= 0 ⇒ u.T 6= 0} where u.T ∈ VN(G) is defined by 〈u.T, v〉 = 〈T, uv〉,
v ∈ A(G).

Let π : A(G) → B(X) be an algebra representation of A(G) on a Banach
space X which is continuous in the following sense: for each ξ ∈ X and
ϕ ∈ X∗, Tϕ,ξ defined on A(G) by 〈Tϕ,ξ, u〉 := 〈ϕ, π(u)ξ〉, u ∈ A(G), is a
bounded linear functional on A(G). Fix a continuous representation π of
A(G) as above. For a closed subset E of G, define

ME = {ξ ∈ X : suppTϕ,ξ ⊆ E for every ϕ ∈ X∗}.

Proposition 1. With notation as above:

(i) ME is a closed linear subspace of X.

(ii) ME is π-invariant : ξ ∈ ME ⇒ π(u)ξ ∈ ME for all u ∈ A(G).

Proof. (i) For ϕ ∈ X∗, ξ, η ∈ X and α ∈ C, it is easy to check that
Tϕ,ξ+η = Tϕ,ξ + Tϕ,η and Tϕ,αξ = αTϕ,ξ. These combined with the results of
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Eymard that, for S, T ∈ A(G)∗,

supp(S + T ) ⊆ suppS ∪ suppT, supp(αT ) ⊆ suppT,

show that ME is a linear subspace. Further, if ξn → ξ in X, then 〈Tϕ,ξn
, u〉 =

〈ϕ, π(u)ξn〉 → 〈ϕ, π(u)ξ〉 = 〈Tϕ,ξ, u〉, u ∈ A(G). This means that Tϕ,ξn

→ Tϕ,ξ in the weak-∗ topology of A(G)∗. By a result [1] of Eymard again,
suppTϕ,ξn

⊆ E for all n implies suppTϕ,ξ ⊆ E. This proves that ME is
closed.

(ii) A simple computation shows that, for u ∈ A(G), ξ ∈ X and ϕ ∈ X∗,
Tϕ,π(u)ξ = u.Tϕ,ξ. Again invoking Eymard [1], we therefore have

suppTϕ,π(u)ξ ⊆ suppu ∩ suppTϕ,ξ.

Now (ii) is an immediate consequence.

The subspace ME is called the π-spectral subspace of X associated to E.
Recall that the representation π is said to be nondegenerate if π(u)ξ = 0 for
all u ∈ A(G) implies ξ = 0.

Examples. (i) Suppose P ∈ B(X) is a projection, i.e. P 2 = P. Fix
x0 ∈ G. Define π = π(P, x0) by π(u) = u(x0)P, u ∈ A(G). Then π is a
representation of A(G). We have

kerP = {ξ ∈ X : π(u)ξ = 0 for all u ∈ A(G)}

= {ξ ∈ X : Tϕ,ξ = 0 for all ϕ ∈ X∗}

and M∅ = kerP, M{x0} = X. Observe that π is nondegenerate only when
P = I, the identity operator on X.

(ii) Consider the (nondegenerate) regular representation ̺ of A(G) acting
on itself by mutiplication: ̺(u)(v) = uv, u, v ∈ A(G). For a closed subset E
of G, it is easy to see that the ̺-spectral subspace is given by

ME = {u ∈ A(G) : suppu.T ⊆ E for all T ∈ VN(G)}.

By a result of Eymard [1], suppu.T ⊆ suppu ∩ suppT , so if suppu ⊆ E,
then u ∈ ME . If u is not supported in E, then there is an x /∈ E with
u(x) 6= 0 and then x ∈ suppu.λ(x). Thus u /∈ ME . Hence

ME = {u ∈ A(G) : suppu ⊆ E}.

Proposition 2. Suppose that π is a nondegenerate representation of

A(G) on a Banach space X. Then:

(i) M∅ = {0} and MG = X.

(ii) If {Ei} is a collection of closed subsets of G, then M⋂
Ei

=
⋂

MEi
.

(iii) If K1, K2 are disjoint compact subsets of G, then

MK1∪K2
= MK1

⊕ MK2
.

Proof. (i) It is trivially true that MG = X. If Tϕ,ξ = 0 for all ϕ ∈ X∗,
then 〈ϕ, π(u)ξ〉 = 0 for u ∈ A(G) and all ϕ ∈ X∗. This implies π(u)ξ = 0 for



SPECTRAL SUBSPACES FOR THE FOURIER ALGEBRA 181

all u ∈ A(G), and the assumed nondegeneracy of π now gives ξ = 0. This
proves M∅ = {0}. The easy proof of (ii) is omitted.

(iii) Let ξ ∈ MK1
∩MK2

. Then suppTϕ,ξ ⊆ K1 ∩K2 = ∅, so Tϕ,ξ = 0 for
all ϕ ∈ X∗. This implies that π(u)ξ = 0 for all u ∈ A(G) and so ξ = 0 since
π is nondegenerate. We have thus shown that MK1

∩ MK2
= {0}.

Next, choose open sets Ui and Vi, i = 1, 2, such that Ki ⊆ Ui ⊆ U i ⊆ Vi

with U i compact and V1 ∩ V2 = ∅. Then there are functions u1, u2 in A(G)
such that ui = 1 on Ui and suppui ⊆ Vi. For ξ ∈ X, write ξi = π(ui)ξ. Now
Tϕ,ξi

= Tϕ,π(ui)ξ = ui.Tϕ,ξ and so suppTϕ,ξi
⊆ suppui ∩ suppTϕ,ξ. Thus if

ξ ∈ MK1∪K2
, we have suppTϕ,ξi

⊆ Vi ∩ (K1 ∪ K2) = Ki. This means that
ξi ∈ MKi

. Moreover, for u ∈ A(G) and ϕ ∈ X∗,

〈ϕ, π(u)(ξ1 + ξ2 − ξ)〉 = 〈ϕ, π(uu1 + uu2 − u)ξ〉 = 〈Tϕ,ξ, uu1 + uu2 − u〉.

Now, uu1 + uu2 − u = 0 on U1 ∪ U2, and if ξ ∈ MK1∪K2
, then suppTϕ,ξ ⊆

K1 ∪K2 and so 〈Tϕ,ξ, uu1 + uu2 − u〉 = 0. Thus π(u)(ξ1 + ξ2 − ξ) = 0 for all
u ∈ A(G). Again nondegeneracy of π yields ξ = ξ1 + ξ2 ∈ MK1

+ MK2
. We

have proved that MK1∪K2
⊆ MK1

+ MK2
.

Conversely, suppose ξi ∈ MKi
and ξ = ξ1 + ξ2. Then, for ϕ ∈ X∗,

Tϕ,ξ = Tϕ,ξ1 + Tϕ,ξ2 and suppTϕ,ξ ⊆ suppTϕ,ξ1 ∪ supp Tϕ,ξ2 ⊆ K1 ∪ K2 by
the result of Eymard mentioned earlier. Thus ξ ∈ MK1∪K2

and the proof is
complete.

Here is the main result on spectral subspaces.

Theorem 3. Let π be a nondegenerate representation of A(G) on a

Banach space X. Suppose π has only the trivial spectral subspaces {0} and X.
Then there is an x0 ∈ G such that π(u) = u(x0)I for all u ∈ A(G).

Proof. By Proposition 2, there is a smallest nonempty closed set E in G
with the property ME = X. We first prove that E is a singleton.

Let x0 ∈ E. Suppose that there is an y0 ∈ E, y0 6= x0. Choose a v0 ∈
A(G) with v0 = 1 near x0 and v0 = 0 near y0. For u ∈ A(G), write u = v+w,
where v = u− uv0 and w = uv0. Observe that x0 /∈ V , where V := {x ∈ G :
v(x) 6= 0}. Hence there is a w0 ∈ A(G) such that w0 = 1 in a neighbourhood
W of x0 and suppw0 ∩ V = ∅. Note that vw0 ≡ 0. For ξ ∈ X and ϕ ∈ X∗,

suppTϕ,π(v)ξ ⊆ W c.

For, if x ∈ W, then w0(x) = 1 and w0.Tϕ,π(v)ξ = Tϕ,π(vw0)ξ = 0 since vw0 = 0
and so x /∈ suppTϕ,π(v)ξ. Thus, MW c = X if π(v)ξ 6= 0. But x0 /∈ W c and so
E is not a subset W c. The choice of E now forces that π(v)ξ = 0 for ξ ∈ X.
Thus π(v) = 0. In the same way, we can show that π(w) = 0. Hence π(u) = 0
for every u ∈ A(G), leading to a contradiction because π is different from
zero.



182 K. PARTHASARATHY AND R. PRAKASH

We have thus proved that E = {x0}, so M{x0} = X. This means that
suppTϕ,ξ ⊆ {x0} for all ξ ∈ X and ϕ ∈ X∗. Appealing to Eymard [1] once
more we conclude that Tϕ,ξ = cϕ,ξλ(x0) for some scalar cϕ,ξ. Now choose a
u0 ∈ A(G) with u0(x0) = 1. Then

cϕ,ξ = 〈Tϕ,ξ, u0〉 = 〈ϕ, π(u0)ξ〉

and so, for u ∈ A(G),

〈ϕ, π(u)ξ〉 = 〈Tϕ,ξ, u〉 = 〈ϕ, π(u0)ξ〉u(x0) = 〈ϕ, u(x0)π(u0)ξ〉.

Since this is true for all ϕ ∈ X∗, we have

π(u)ξ = u(x0)π(u0)ξ, ξ ∈ X.

Hence π(u) = u(x0)π(u0). But since π is an algebra representation, π(u0)
2 =

π(u0), i.e. π(u0) is a projection. The nondegeneracy of π forces π(u0) to be
the identity operator on X and the proof is complete.

Remark. The content of the theorem is that if π is a nondegenerate
representation having only the trivial spectral subspaces, then π is essentially
a “character”, i.e. π(u) is just the multiplication by the value of the character
λ(x0) of A(G) at u. Thus if π is not a “character”, then nontrivial spectral
subspaces exist.
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