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ON THE FOURIER TRANSFORM,

BOEHMIANS, AND DISTRIBUTIONS

BY

DRAGU ATANASIU (Bor̊as) and PIOTR MIKUSIŃSKI (Orlando, FL)

Abstract. We introduce some spaces of generalized functions that are defined as
generalized quotients and Boehmians. The spaces provide simple and natural frameworks
for extensions of the Fourier transform.

1. Introduction. The Fourier transform is one of the most important
tools in analysis. When using the Fourier transform on a space of functions
or generalized functions, knowing the range is usually essential. For this
reason, the space of square integrable functions and the space of tempered
distributions are very useful. However, the space of square integrable func-
tions is often too small, while the space of tempered distributions requires
substantial machinery from functional analysis.

In this paper we consider a number of spaces of generalized functions
for which the Fourier transform can be defined in a simple manner and the
range can be easily characterized. The constructions have algebraic char-
acter, which means that the definitions do not require topological consid-
erations. On the other hand, the spaces have natural topologies that have
desirable properties.

Some of the relevant objects are examples of the so-called “generalized
quotients” (see [6] and [3]), other are examples of Boehmians. One of the
spaces of Boehmians is isomorphic to the space of all Schwartz distribu-
tions.

The space B(L2(RN ),G) is an example of the so-called generalized quo-
tients. We start by recalling essential details of the construction of general-
ized quotients.

Let X be a nonempty set and let G be a commutative semigroup acting
on X injectively. This means that every ϕ∈G is an injective map ϕ : X→X
and (ϕψ)x = ϕ(ψx) for all ϕ, ψ ∈ G and x ∈ X.
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Let A = X ×G. For (x, ϕ), (y, ψ) ∈ A we write

(x, ϕ) ∼ (y, ψ) if ψx = ϕy.

It is easy to check that this is an equivalence relation in A. Finally, we define

B(X,G) = A/∼,

the set of generalized quotients.

The equivalence class of (x, ϕ) will be denoted by x
ϕ
. This is a slight abuse

of notation, but we follow here the tradition of denoting rational numbers
by p

q
even though the same formal problem is present there.

Elements of X can be identified with elements of B(X,G) via the em-
bedding ι : X → B(X,G) defined by

ι(x) =
ϕx

ϕ
,

where ϕ is an arbitrary element of G. Clearly, ι is well defined, that is, it is
independent of ϕ. Action of G can be extended to B(X,G) via

ϕ
x

ψ
=
ϕx

ψ
.

If ϕ x
ψ

= ι(y) for some y ∈ X, we will write ϕ x
ψ

∈ X and ϕ x
ψ

= y, which

is formally incorrect, but convenient and harmless. For instance, we have
ϕ x
ϕ

= x.

The construction of Boehmians is similar to the construction of gen-
eralized quotients. We start with a nonempty set X and a commutative
semigroup G acting on X. However, we do not assume that G acts on X in-
jectively. Instead, we assume that there is a ∆ ⊂ GN such that the following
two conditions are satisfied:

1. If (ϕn), (ψn) ∈ ∆, then (ϕnψn) ∈ ∆.
2. If x, y ∈ X, (ϕn) ∈ ∆, and ϕnx = ϕny for every n ∈ N, then x = y.

Members of ∆ are called delta sequences.

Now we introduce an equivalence relation on a subset of XN ×∆:

A = {(xn, ϕn) : xn ∈ X, (ϕn) ∈ ∆, ϕnxm = ϕmxn for all m,n ∈ N}.

If (xn, ϕn), (yn, ψn) ∈ A and ϕnym = ψmxn for all m,n ∈ N, then we write
(xn, ϕn) ∼ (yn, ψn). It is easy to verify that this defines an equivalence
relation in A. The equivalence classes are called Boehmians. To simplify
notation, the equivalence class of (xn, ϕn) will be denoted by xn

ϕn
. Hence,

xn
ϕn

=
yn
ψn

means ϕnym = ψmxn for all m,n ∈ N.

The space of Boehmians will be denoted by B(X,∆). Elements of X can
be identified with elements of B(X,∆) via the embedding ι : X → B(X,∆)
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defined by
ι(x) =

ϕnx

ϕn
,

where (ϕn) ∈ ∆ is arbitrary. It is easy to check that ι is independent of
(ϕn).

All functions considered in this paper are complex-valued, unless other-
wise stated. An infinitely differentiable function f : R

N → C is called rapidly

decreasing if
sup
|α|≤m

sup
x∈RN

(1 + x2
1 + · · · + x2

N )m|Dαf(x)| <∞

for every nonnegative integer m, where x = (x1, . . . , xN ), α = (α1, . . . , αN ),
αn’s are nonnegative integers, |α| = α1 + · · · + αN , and

Dα =
∂|α|

∂xα
=

∂|α|

∂xα1

1 . . . ∂xαN

N

.

The space of all rapidly decreasing functions is denoted by S(RN ). The space
of all smooth functions with compact support is denoted by D(RN ).

The Fourier transform will play a major role in our considerations. The
Fourier transform of f will be denoted by either Ff or f̂ and defined by

Ff(x) = f̂(x) =
\

RN

f(y)e−2πix·y dy.

2. The space B(L2(RN ),G). In this section we consider the space of
generalized quotients where X = L2(RN ) and G is the family of functions

G = {ϕ ∈ S(RN ) : supp ϕ̂ = R
N}

acting on L2(RN ) by convolution. Here supp denotes the closed support, so
the Fourier transform of a function from G may vanish at some points.

Clearly, G is a semigroup with respect to convolution. Moreover, since
for any f, g ∈ L2(RN ) and any ϕ ∈ G, f̂ ϕ̂ = ĝϕ̂ implies f = g a.e., G
acts on L2(RN ) injectively. Note that the space of all smooth functions with
compact support is a proper subspace of G.

The following operations can be defined in a natural way for elements of
B(L2(RN ),G):

(a)
f

ϕ
+
g

ψ
=
f ∗ ψ + g ∗ ϕ

ϕ ∗ ψ
and α

f

ϕ
=
αf

ϕ
, α ∈ C.

(b) Tz
f

ϕ
=
Tzf

ϕ
, where Tz is the shift operator.

(c)
f

ϕ
∗
g

ψ
=
f ∗ g

ϕ ∗ ψ
, where g ∈ S(RN ).

(d) Dα f

ϕ
=
f ∗Dαϕ

ϕ ∗ ϕ
.
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The Fourier transform of F = f
ϕ

∈ B(L2(RN ),G) can be defined as

F̂ = F
(
f
ϕ

)
= f̂

ϕ̂
. Since f

ϕ
= g

ψ
implies f̂ ψ̂ = ĝϕ̂, F̂ is well defined as a

function defined a.e. It is easy to see that the Fourier transform thus defined
has the usual properties:

(a) F is linear.

(b) F(TzF )(x) = e−2πix·zF̂ (x).

(c) F(F ∗ g) = F̂ ĝ, where g ∈ L1(RN ).

(d) F
(
∂
∂xk

F
)

= 2πixkF̂ .

A function is called locally square integrable if its restriction to any com-
pact set is square integrable over that set. The space of all locally square
integrable functions will be denoted by L2

loc(R
N ). Note that

C(RN ) ⊂ L2
loc(R

N ) ⊂ Lloc(R
N ),

where C(RN ) denotes the space of all continuous functions and Lloc(R
N )

denotes the space of all locally integrable functions.

Theorem 2.1. Every locally square integrable function is the Fourier

transform of some F ∈ B(L2(RN ),G).

Proof. Let ψ1, ψ2, . . . ∈ D(RN ) be a partition of unity. If g ∈ L2
loc(R

N ),
then there are positive constants α1, α2, . . . such that the series

∑∞
n=1 αnψng

converges in L2(RN ) and the series
∑∞

n=1 αnψn converges in S(RN ). Then∑∞
n=1 αnψn = ϕ̂ for some ϕ ∈ G and gϕ̂ = f̂ for some f ∈ L2(RN ). Hence

F

(
f

ϕ

)
=
f̂

ϕ̂
=
gϕ̂

ϕ̂
= g.

The range of the Fourier transform on B(L2(RN ),G) contains functions
that are not locally integrable. For example, consider the function g(t) =

te−t
2

. Then g
g∗g ∈ B(L2(R),G), but F

(
g
g∗g

)
= 1

ĝ
is not locally integrable.

3. Integrable and square integrable Boehmians. In this section
we compare two spaces of Boehmians with the space B(L2(RN ),G). First
we consider integrable Boehmians, introduced in [7]. To obtain them we take
X = L1(RN ) and G = L1(RN ) acting on X by convolution. For ∆ we take
the family ∆L1 of all sequences of functions ϕn ∈ L1(RN ) satisfying the
following three conditions:

(a)
\

RN

ϕn(x) dx = 1 for all n ∈ N.

(b)
\

RN

|ϕn(x)| dx ≤M for all n ∈ N and some constant M .
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(c) For every ε > 0, lim
n→∞

\
‖x‖≥ε

|ϕn(x)| dx = 0.

It is shown in [7] that for every Boehmian F = fn

ϕn
∈ B(L1(RN ), ∆L1) the

sequence (f̂n) converges uniformly on compact sets and the limit does not de-
pend on the representation of F . Hence, one can define the Fourier transform
of F as F̂ = limn→∞ f̂n. It follows that the Fourier transform of an inte-
grable Boehmian is a continuous function. Every distribution with compact
support can be identified with an integrable Boehmian. There are integrable
Boehmians that are not distributions, for example,

∑∞
n=0 δ

(n)/(2n)!, where
δ is the Dirac delta distribution (see [2]).

Now we define the space of square integrable Boehmians B(L2(RN ), ∆S).
The family of delta sequences ∆S is defined as the collection of all sequences
ϕ1, ϕ2, . . . ∈ S such that ϕ̂n → 1 uniformly on compact sets. It is easy to see
that the conditions necessary for the construction of the space of Boehmians
B(L2(RN ), ∆S) are satisfied. The Fourier transform of fn

ϕn
∈ B(L2(RN ), ∆S)

is defined as

F

(
fn
ϕn

)
=
f̂n
ϕ̂n
.

The expression f̂n

ϕ̂n
should be interpreted as a Boehmian with respect to

pointwise multiplication. Since f̂nϕ̂m = f̂mϕ̂n a.e. for all m,n ∈ N, the

quotient f̂n

ϕ̂n
is well defined. Moreover, f̂n

ϕ̂n
defines a locally square integrable

function. Indeed, for any compact K ⊂ R
N there exists an n ∈ N such that

ϕ̂n 6= 0 on K. Then we can define f(x) = f̂n(x)
ϕ̂n(x) for x ∈ K.

Theorem 3.1. The Fourier transform is a vector space isomorphism

between B(L2(RN ), ∆S) and L2
loc(R

N ).

Proof. It suffices to show that the Fourier transform is surjective. Let
f ∈ L2

loc(R
N ) and let (ϕn) ∈ ∆S be such that ϕ̂n ∈ D(RN ). Then, for

every n ∈ N, there exists a gn ∈ L2(RN ) such that ĝn = fϕ̂n. Then gn

ϕn
∈

B(L2(RN ), ∆S) and

F

(
gn
ϕn

)
=
fϕ̂n
ϕ̂n

= f.

Theorem 3.2. B(L1(RN ), ∆L1) ⊂ B(L2(RN ), ∆S) ⊂ B(L2(RN ),G).

Proof. The first inclusion follows from the fact that the Fourier transform
of an integrable Boehmian is a continuous function and from Theorem 3.1.
The second inclusion follows from Theorem 2.1.

Since B(L2(RN ),G) contains both integrable and square integrable Boeh-
mians and the construction is simpler, it may seem that there is no point
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in considering the two spaces of Boehmians. This is not necessarily true.
For example, continuity of the Fourier trasform of an integrable Boehmian
is a desirable property. Moreover, the simple description of the range of
the Fourier transform on B(L2(RN ), ∆S) makes it a convenient framework.
Integrable and square integrable Boehmians are local objects. It makes sense
to compare two Boehmians on an open set. This is not the case with elements
of B(L2(RN ),G).

4. Schwartz distributions as a space of Boehmians. First we con-
sider a subspace of B(L2(RN ),G):

K =
{ m∑

n=1

λnD
αnfn : λn ∈ C, fn ∈ L2(RN ), and αn ∈ N

N
0

}
,

where N0 = {0, 1, . . . } and Dαnfn is defined as an element of B(L2(RN ),G),
that is,

Dαnfn =
fn ∗D

αnϕ

ϕ
,

where ϕ ∈ G is arbitrary.
Since K ⊂ B(L2(RN ),G), the Fourier transform is defined for every F

in K. It can be written in the following explicit form:

(4.1) F
( m∑

n=1

λnD
αnfn

)
=

m∑

n=1

(2πi)|αn|λnMαn
f̂n,

where Mα is the multiplication operator defined by Mαf(x) = xαf(x).
The range of the Fourier transform on K is the space of moderate func-

tions. A function f : R
N → C will be called moderate if f = pg where p

is a polynomial and g ∈ L2(RN ). The space of all moderate functions will
be denoted by M. Note that M is a vector space that is closed under mul-
tiplication by polynomials. M contains all slowly increasing functions as a
proper subspace. (A locally integrable function f : R

N → C is called slowly

increasing if |f | ≤ p for some polynomial p.)

Theorem 4.1. The Fourier transform is a vector space isomorphism

between K and M.

This follows easily from (4.1).

Lemma 4.2. If ϕ ∈ S and f ∈ L2(RN ), then ϕ ∗ (pf) ∈ M for any

polynomial p.

Proof. It suffices to prove the lemma for p(x) = xα = xα1

1 . . . xαN

N . Then

ϕ ∗ (pf)(y) =
\

RN

ϕ(y − x)xαf(x) dx =
∑

β≤α

(−1)|β|
(
α

β

)
yα−β(yβϕ(y) ∗ f(y)).

Since yβϕ(y) ∗ f(y) is in L2(RN ) for every β, we conclude ϕ ∗ (pf) ∈ M.
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In view of the above lemma and Theorem 4.1, for any ϕ ∈ S and F ∈ K
we can define the product

(4.2) ϕF = F−1(Fϕ ∗ FF ).

Since F is a bijection from K onto M, F−1f is well defined for all f ∈ M.
F−1 should not be interpreted as the usual inverse Fourier transform. Note
that for any ϕ ∈ S and f ∈ L2(RN ) we have

(4.3) ϕDαf =
∑

β≤α

(−1)|β|
(
α

β

)
Dα−β(Dβϕf).

Now we are going to construct a space of Boehmians that is isomorphic
to the space of all Schwartz distributions D′. Before we describe that con-
struction, it is essential to observe that K can be identified with a subspace
of the space of tempered distributions S ′. Indeed, elements of K are defined
in terms of derivatives of square integrable functions. If these derivatives
are interpreted in the distributional sense, then K becomes a space of dis-
tributions. Formally, the identification map ι : K → S ′ can be defined by
ι(F ) = F−1

S′ (FF ), where F denotes the Fourier transform F : K → M de-

fined above and F−1
S′ : M → S ′ is the distributional inverse transform. It is

possible to define ι directly: if

F =
m∑

n=1

λnD
αnfn =

∑m
n=1 fn ∗D

αnϕ

ϕ
∈ K,

then

〈ι(F ), ψ〉 =

m∑

n=1

λn(−1)αn

\
RN

fnD
αnψ,

for any ψ ∈ S. Moreover, we have the following properties:

(a) ι is linear,
(b) Dαι(F ) = ι(DαF ),
(c) ι(F )ϕ = ι(Fϕ) for any ϕ ∈ S,
(d) ι(F ) ∗ ϕ = ι(F ∗ ϕ) for any ϕ ∈ S.

These properties follow from the definition of ι and some elementary prop-
erties of distributions and the Fourier transform. Note that all distributions
with compact support are in ι(K).

Now we describe the space B(K, ∆
Ŝ
). First note that S with pointwise

multiplication is a commutative semigroup acting on K by multiplication de-
fined in (4.2). By a delta sequence in S we mean any sequence ϕ1, ϕ2, . . . ∈ S
convergent to the constant function 1 uniformly on compact sets. The family
of all such delta sequences is denoted by ∆

Ŝ
. It is easy to see that the con-

ditions necessary for the construction of the space of Boehmians B(K, ∆
Ŝ
)

are satisfied.
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Theorem 4.3. D′ and B(K, ∆
Ŝ
) are isomorphic vector spaces.

Proof. Let f ∈ D′ and let (ϕn) ∈ ∆
Ŝ

be such that ϕn ∈ D for all n ∈ N.
Then fϕn is a distribution with compact support, and thus fϕn = ι(Fn) for
some Fn ∈ K. We define an isomorphism σ : D′ → B(K, ∆

Ŝ
) via

σ(f) =
ι−1(fϕn)

ϕn
.

This is clearly a linear map. Moreover, if

ι−1(fϕn)

ϕn
=
ι−1(gϕn)

ϕn
,

then fϕnϕm = gϕmϕn for every m,n ∈ N, and hence f = g.
Now, let Fn

ψn
∈ B(K, ∆

Ŝ
) and ϕ ∈ D. We define a distribution f ∈ D′ by

〈f, ϕ〉 =

〈
ι(Fn),

ϕ

ψn

〉
,

where n ∈ N is any index for which ψn 6= 0 on the support of φ. This
definition is independent of n. Indeed, if ψn 6= 0 and ψm 6= 0 on the support
of ϕ, then
〈
ι(Fn),

ϕ

ψn

〉
=

〈
ι(Fn)ψm,

ϕ

ψnψm

〉
=

〈
ι(Fnψm),

ϕ

ψnψm

〉

=

〈
ι(Fmψn),

ϕ

ψnψm

〉
=

〈
ι(Fm)ψn,

ϕ

ψnψm

〉
=

〈
ι(Fm),

ϕ

ψm

〉
.

Since 〈f, ϕ〉 is clearly linear and continuous in ϕ, f is a distribution.

5. Convergence and continuity. In this section we examine continu-
ity of maps considered in the previous sections. Since we are only dealing
with sequential topologies, all the proofs are formulated in terms of sequen-
tial continuity.

Let X be a topological space and let G be a commutative semigroup
of continuous injections acting on X. We assume that G is equipped with
the discrete topology. Now we can define the product topology on A and
then the quotient topology in B(X,G). We will refer to this topology as the
natural topology. Properties of such topologies are discussed in [3].

The following theorem describes convergence in the natural topology of
B(X,G).

Theorem 5.1 ([3]). If X × G is first countable, then Fn → F in the

natural topology in B(X,G) if and only if every subsequence of (Fn) has a

subsequence (Fpn
) such that ϕFpn

→ ϕF in X for some ϕ ∈ G.

Let Ĝ = {ϕ̂ : ϕ∈G}. The range of the Fourier transform on B(L2(RN ),G)
is the space of all functions f : R

N → C such that fψ ∈ L2(RN ) for some
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ψ ∈ Ĝ. Note that this space can be described as the space B(L2(RN ), Ĝ)

of generalized quotients with X = L2(RN ) and G = Ĝ acting on X by
multiplication. As a space of generalized quotients, it can be equipped with
the natural topology. The following theorem is an obvious consequence of
the definitions and the Plancherel theorem.

Theorem 5.2. The Fourier transform is a topological isomorphism be-

tween B(L2(RN ),G) and B(L2(RN ), Ĝ).

The natural topology in spaces of Boehmians is the topology of the so-
called ∆-convergence [5]. Let F, Fn ∈ B(X,∆), n ∈ N. The sequence (Fn)

is ∆-convergent to F , denoted by Fn
∆
→ F , if there exists a delta sequence

(ϕn) ∈ ∆ such that ϕn(Fn − F ) ∈ X for every n ∈ N and ϕn(Fn − F ) → 0
in the topology of X. A second type of convergence, called δ-convergence, is

also used. The sequence (Fn) is δ-convergent to F , denoted by Fn
δ
→ F , if

there exists a delta sequence (ϕn) ∈ ∆ such that ϕk(Fn − F ) ∈ X for every
k, n ∈ N and, for every k ∈ N, ϕk(Fn − F ) → 0 in the topology of X as
n→ ∞. Under some natural conditions on the topology of X and the family
of delta sequences ∆, we can prove the following relationship between these

two types of convergence (see [5]): Fn
∆
→ F if and only if every subsequence

of (Fn) has a subsequence (Fpn
) such that Fpn

δ
→ F .

Now we consider continuity of the isomorphism ̺ : B(L1(RN ), ∆L1) →
B(L2(RN ),G) defined by

̺

(
fn
ϕn

)
= F−1( lim

n→∞
f̂n),

where F−1 : B(L2(RN ), Ĝ) → B(L2(RN ),G). In other words, ̺ is the com-
position of the Fourier transform F : B(L1(RN ), ∆L1) → C(RN ) with the

inverse of the Fourier transform F : B(L2(RN ),G) → B(L2(RN ), Ĝ).

Theorem 5.3. ̺ : B(L1(RN ), ∆L1) → B(L2(RN ),G) is continuous.

Proof. The Fourier transform F : B(L1(RN ), ∆L1) → C(RN) is continu-
ous with respect to the topology of uniform convergence on compact sets in
C(RN ) (see [7]). Since uniform convergence on compact sets is stronger than
the convergence in B(L2(RN ),G), the conclusion follows from Theorem 5.2.

Theorem 5.4. ω : B(L2(RN ), ∆S) → B(L2(RN ),G) is continuous.

Proof. It suffices to show that Fn
δ
→ 0 in B(L2(RN ), ∆S) implies Fn → 0

in B(L2(RN ),G). If Fn
δ
→ 0 in B(L2(RN ), ∆S), then there exists a delta

sequence (ϕn) ∈ ∆S such that, for every k ∈ N, Fn ∗ ϕk → 0 in L2(RN ) as
n→ ∞. Consequently, Fn → 0 in B(L2(RN ),G).
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Theorem 5.5. F : B(L2(RN ), ∆S) → L2
loc(R

N ) is a topological isomor-

phism.

Proof. If Fn
∆
→ 0 in B(L2(RN ), ∆S), then Fn ∗ ϕn → 0 in L2(RN ) for

some (ϕn) ∈ ∆S . Hence F̂nϕ̂n → 0 in L2(RN ) and |F̂n|
2|ϕ̂n|

2 → 0 in L1(RN ).
If K ⊂ RN is compact, then there exists n0 ∈ N such that |ϕ̂n|

2 > 1/2 for
all n > n0. Then \

K

|F̂n|
2 =

\
K

|F̂n|
2|ϕ̂n|

2

|ϕ̂n|2
< 2

\
K

|F̂n|
2|ϕ̂n|

2

for all n > n0. Hence
T
K
|F̂n|

2 → 0. Since K is arbitrary, we conclude that

F̂n → 0 in L2
loc(R

N ).

Now assume that F1, F2, . . . ∈ B(L2(RN ), ∆S) and F̂n → 0 in L2
loc(R

N ).

Let (ϕn) ∈ ∆S be such that ϕ̂n ∈ D for all n ∈ N. Then F̂nϕ̂k → 0 in
L2(RN ) as n → ∞, for every k ∈ N. Applying the diagonal method, we

can find a sequence of positive integers pn → ∞ such that F̂nϕ̂pn
→ 0 in

L2(RN ), and hence Fn ∗ ϕpn
→ 0 in L2(RN ). Since (ϕpn

) ∈ ∆S , we have

Fn
∆
→ 0 in B(L2(RN ), ∆S).

The above theorem also implies that the embedding of B(L1(RN ), ∆L1)

into B(L2(RN ), ∆S) is continuous. Indeed, if Fn
∆
→ 0 in B(L1(RN ), ∆L1),

then F̂n → 0 uniformly on compact sets. Hence F̂n → 0 in L2
loc(R

N ). This

implies Fn
∆
→ 0 in B(L2(RN ), ∆S), by Theorem 5.5.

Now we consider the question of continuity of the Fourier transform from
K(RN ) to M(RN ). The space M(RN ) has a natural convergence: a sequence
of functions fn ∈ M(RN ) converges to 0 if there exist functions gn ∈ L2(RN )
and a polynomial p such that fn = pgn, for all n ∈ N, and gn → 0 in L2(RN ).
Then we define fn → f in M(RN ) as fn−f → 0 in M(RN ). In order to define
convergence in K(RN) we first note that every F ∈ K(RN) can be written in
the form F = Af where f ∈ L2(RN ) and A is a linear diferential operator
with constant coefficients. A sequence F1, F2, . . . ∈ K(RN ) converges to 0
if there are fn ∈ L2(RN ) and a linear diferential operator A with constant
coefficients such that Fn = Afn, for all n ∈ N, and fn → 0 in L2(RN ).
Convergence to an arbitrary element of K(RN ) is defined by linearity. With
these definitions the following theorem is obvious.

Theorem 5.6. F : K(RN ) → M(RN ) is a topological isomorphism.

Finally, we address the question of continuity of the identification map in
Theorem 4.3. In the following theorem, the topology of B(K, ∆S) is defined

as the topology of δ-convergence: Fn
δ
→ F in B(K, ∆S) if there exists (ϕn) ∈

∆S such that Fnϕk → Fϕk in K for every k ∈ N.
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Theorem 5.7. ̺ : D′ → B(K, ∆S) is a topological isomorphism.

Proof. Let fn → 0 in D′ and let (ϕn) ∈ ∆S be such that ϕn ∈ D for all
n ∈ N. Then, for every k ∈ N, there exist continuous functions g1, g2, . . . and
a multi-index α such that fnϕk = Dαgnϕk and gn → 0 uniformly. Since,

for every k ∈ N, gnχsuppϕk
→ 0 in L2(RN ) as n → ∞, we have ̺fn

δ
→ 0 in

B(K, ∆S).

Conversely, if fn ∈ D′ and ̺fn
δ
→ 0 in B(K, ∆S), then fnϕk → 0 in K for

every k ∈ N and (ϕn) ∈ ∆S . Let ψ ∈ D and let k ∈ N be such that ϕk 6= 0
on the support of ψ. Then there exist functions g1, g2, . . . ∈ L2(RN ) such
that gn → 0 in L2(RN ) and fnϕk = Dαgn for some multi-index α and all
n ∈ N. Since

〈fn, ψ〉 =

〈
fnϕk,

ψ

ϕk

〉
=

〈
Dαgn,

ψ

ϕk

〉
= (−1)|α|

〈
gn, D

α ψ

ϕk

〉
→ 0,

it follows that fn → 0 in D′.

6. Applications. In this section we consider three different applications
of the introduced framework. Our goal is to show that it provides convenient
and effective tools.

6.1. Sobolev space. First we present a simplified definition of Sobolev
spaces. If F ∈ B(L2(RN ),G) can be written in the form F = f∗ϕ

ϕ
for some

f ∈ L2(RN ) and ϕ ∈ G, then we write F ∈ L2(RN ) and F = f . This
convention is used in the following definition of the Sobolev space Wm(RN ):

Wm(RN ) = {f ∈ L2(RN ) : Dαf ∈ L2(RN ) for all |α| ≤ m}.

The inner product in Wm(RN ) is defined in the usual way:

〈f, g〉 =
∑

|α|≤m

\
RN

Dαf Dαg.

To illustrate the simplicity of this approach, we will show that Wm(RN ) is
complete.

Let (fn) be a Cauchy sequence inWm(RN ) and let |α| ≤ m. Then (Dαfn)
is a Cauchy sequence in L2(RN ), and hence Dαfn → gα in L2(RN ) for some
gα ∈ L2(RN ). To complete the proof it suffices to show that Dαg0 = gα in
B(L2(RN ),G). Indeed, since Dαfn → gα, we have

fn ∗D
αϕ = Dαfn ∗ ϕ→ gα ∗ ϕ

for any ϕ ∈ G. On the other hand,

fn ∗D
αϕ→ g0 ∗D

αϕ.
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Hence g0 ∗D
αϕ = gα ∗ ϕ and consequently

Dαg0 =
g0 ∗D

αϕ

ϕ
=
gα ∗ ϕ

ϕ
= gα.

6.2. p.v.
(

1
x

)
. Now we turn our attention to the distribution p.v.

(
1
x

)
. We

show how it can be introduced as an element of K. Since we use two different
kinds of quotients, we need to indicate which one we mean. We adopt the
following convention. If the variables are not explicitly used (for instance
f
ϕ
), then it is a convolution quotient. On the other hand, if the variables

are explicitly used (for instance f(x)
ϕ(x)), then it is a quotient with respect to

pointwise multiplication. In order to use this notation consistently, we need
to name the functions we use:

L(x) = ln |x| and M(x) = x.

Let θ : R → [0, 1] be a smooth function with compact support such that
θ(−x) = θ(x) for all x ∈ R and θ(x) = 1 for all x ∈ [−1, 1]. If ϕ ∈ G (for

instance, ϕ(x) = e−x
2

), then

ϕ′ ∗ L = ϕ′ ∗ ((1 − θ)L) + ϕ′ ∗ (θL)(6.1)

= ϕ ∗ ((1 − θ)L′ − θ′L) + ϕ′ ∗ (θL).

Consequently,
ϕ′ ∗ L

ϕ
= (1 − θ)L′ − θ′L+

ϕ′ ∗ (θL)

ϕ
.

Since (1 − θ)L′, θ′L, θL ∈ L2(R), we have ϕ′∗L
ϕ

∈ K. We will show that, for

every ψ ∈ S(R),

(6.2) (Mψ) ·
ϕ′ ∗ L

ϕ
= ψ.

Let θn(x) = θ(nx), n ∈ N. Using (6.1) and (4.3) we obtain

(Mψ) ·
ϕ′ ∗ L

ϕ
= (Mψ) ·

{
ϕ ∗ [(1 − θn)L

′ − θ′nL]

ϕ
+
ϕ′ ∗ (θnL)

ϕ

}

=
ϕ ∗ [ψ(1 − θn) −Mψθ′nL]

ϕ
+
ϕ′ ∗ (MψθnL)

ϕ
+
ϕ ∗ [(ψ +Mψ′)θnL]

ϕ

for all n ∈ N. Now (6.2) can be obtained by letting n→ ∞, as Mψθ′nL→ 0,
MψθnL→ 0, (ψ +Mψ′)θnL→ 0 and ψ(1 − θn) → ψ in L2(R).

Let F = ϕ′∗L
ϕ

. From (6.2) we obtain − 1
2πi ψ̂

′ ∗ F̂ = ψ̂. Now consider the

function ω = F̂ +2πiH, where H is the Heaviside function. Then ψ̂′ ∗ω = 0,
and hence ψ̂ ∗ ω = cψ, where cψ is a complex number. Since ψ ∈ S(R) is
arbitrary, we must have ω = c, where c is a complex number. Thus we have
F̂ = −2πiH + c. Since F̂ is an odd function, it follows that F̂ = −πiσ,
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where σ is the sign function. Consequently,

F = p.v.

(
1

x

)
=
ϕ′ ∗ L

ϕ
.

6.3. Hilbert transform. Let

Q(x) =
x

x2 + 1
.

It can be shown (for example, see [4, 399]) that, for any ψ ∈ L2(R), we have
Q ∗ ψ ∈ L2(R) and F(Q ∗ ψ) = F(Q)F(ψ). If we define

P (x) =






1

x(x2 + 1)
if |x| ≥ 1,

−
x

x2 + 1
if |x| < 1,

then we have

P (x) +Q(x) =






1

x
if |x| ≥ 1,

0 if |x| < 1,

Note that P ∈ L1(R) ∩ L2(R). Now

ϕ′ ∗ L = ϕ ∗
[
(1 − θ)L′ − θ′L

]
+ ϕ′ ∗ (θL)

= ϕ ∗
[
(1 − θ)(P +Q) − θ′L

]
+ ϕ′ ∗ (θL)

and

(6.3) p.v.

(
1

x

)
=
ϕ′ ∗ L

ϕ
= (1 − θ)P + (1 − θ)Q− θ′L+

ϕ′ ∗ (θL)

ϕ
.

Consequently, for every ψ ∈ L2(R), p.v.
(

1
x

)
∗ ψ ∈ K and

F

(
p.v.

(
1

x

)
∗ ψ

)
= −iπσψ̂.

Since σψ̂ ∈ L2(R), we must have p.v.
(

1
x

)
∗ ψ ∈ L2(R). On the other hand,

(6.3) implies p.v.
(

1
x

)
∗ p.v.

(
1
x

)
∈ K and so

F

(
p.v.

(
1

x

)
∗ p.v.

(
1

x

))
= −π2.

Hence

p.v.

(
1

x

)
∗ p.v.

(
1

x

)
= −π2δ,

where δ = ϕ
ϕ
. Therefore

p.v.

(
1

x

)
∗ p.v.

(
1

x

)
∗ ψ = −π2ψ

for any ψ ∈ L2(R). This shows that the mapping ψ 7→ 1
π
p.v.

(
1
x

)
∗ ψ is

an injection from L2(R) to L2(R) and its inverse is given by the mapping



276 D. ATANASIU AND P. MIKUSIŃSKI

ψ 7→ − 1
π
p.v.

(
1
x

)
∗ ψ. The transformation ψ 7→ 1

π
p.v.

(
1
x

)
∗ ψ is known as the

Hilbert transform.

REFERENCES

[1] D. Atanasiu, Fourier transform and the Boehme property, Integral Transform. Spec.
Funct. 17 (2006), 687–693.
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[5] P. Mikusiński, Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), 159–179.
[6] —, Generalized quotients with applications in analysis, Methods Appl. Anal. 10

(2003), 377–386.
[7] —, Fourier transform for integrable Boehmians, Rocky Mountain J. Math. 17 (1987),

577–582.
[8] —, Tempered Boehmians and ultradistributions, Proc. Amer. Math. Soc. 123 (1995),

813–817.

Bor̊as University
Bor̊as, Sweden
E-mail: dragu.atanasiu@hb.se

Department of Mathematics
University of Central Florida

Orlando, FL 32816-1364, U.S.A.
E-mail: piotrm@mail.ucf.edu

Received 30 March 2006;

revised 26 October 2006 (4745)


