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Abstract. We investigate gradings on tame blocks of group algebras whose defect
groups are dihedral. For this subfamily of tame blocks we classify gradings up to graded
Morita equivalence, we transfer gradings via derived equivalences, and we check the exis-
tence, positivity and tightness of gradings. We classify gradings by computing the group
of outer automorphisms that fix the isomorphism classes of simple modules.

1. Introduction. In this paper we study gradings on tame blocks of
group algebras of finite groups. Erdmann classified tame blocks of group
algebras up to Morita equivalence (cf. [8]). A block of a group algebra over
a field of characteristic p is of tame representation type if and only if p = 2
and its defect group is a dihedral, semidihedral, or generalized quaternion
group. If the defect group of a block is a dihedral (respectively semidihedral,
quaternion) group, then we say that the block is of dihedral (respectively
semidihedral, quaternion) type. The number of simple modules in a tame
block is 1, 2 or 3 (see [8] for more details). Erdmann’s classification has been
used by Holm [9] to classify tame blocks up to derived equivalence (the case
of blocks with dihedral defect groups and three simple modules has been
dealt with by Linckelmann in [15]). We will follow Erdmann’s and Holm’s
classification, and use some of the tilting complexes given in [9] and [15] to
transfer gradings via derived equivalences in order to prove the existence of
non-trivial gradings on an arbitrary dihedral block.

As in the case of Brauer tree algebras (cf. [4]), we classify gradings up to
graded Morita equivalence by computing the group of outer automorphisms
that fix the isomorphism classes of simple modules. From our computation
of these groups we are able to deduce that, in the case of dihedral blocks
with two simple modules, for different scalars (which remain undetermined
in Erdmann’s classification) we get algebras that are not derived equiva-
lent. This is a well known result, first proven in [13], but our proof is more
elementary.
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The paper is organized as follows. In the second section we list some
preliminary results that will be used throughout this paper. This section
contains a classification criterion, and a criterion for tightness and positivity
of gradings. In the third section we investigate gradings on dihedral blocks
with three simple modules. In the fourth section we investigate gradings on
dihedral blocks with two simple modules. The fifth section is devoted to
dihedral blocks with one simple module.

1.1. Notation. Throughout this text, k will be an algebraically closed
field of characteristic 2. All algebras will be finite-dimensional algebras
over the field k, and all modules will be left modules. The category of
finite-dimensional A-modules is denoted by A-mod and the full subcate-
gory of finite-dimensional projective A-modules is denoted by PA. The de-
rived category of bounded complexes over A-mod is denoted by Db(A), and
the homotopy category of bounded complexes over PA will be denoted by
Kb(PA).

1.1.1. Graded modules. We say that an algebra A is a graded algebra if A
is the direct sum of subspaces, A =

⊕
i∈ZAi, such that AiAj ⊂ Ai+j for all

i, j ∈ Z. If Ai = 0 for i < 0, we say that A is positively graded . An A-module
M is graded if it is the direct sum of subspaces, M =

⊕
i∈ZMi, such that

AiMj ⊂ Mi+j for all i, j ∈ Z. If M is a graded A-module, then N = M〈i〉
denotes the graded module given by Nj = Mi+j , j ∈ Z. An A-module
homomorphism f between two graded modulesM andN is a homomorphism
of graded modules if f(Mi) ⊆ Ni for all i ∈ Z. For a graded algebra A, we
denote by A-modgr the category of graded finite-dimensional A-modules. We
set HomgrA(M,N) :=

⊕
i∈Z HomA-gr(M,N〈i〉), where HomA-gr(M,N〈i〉)

denotes the space of all graded homomorphisms between M and N〈i〉 (the
space of homogeneous morphisms of degree i). There is an isomorphism of
vector spaces HomA(M,N) ∼= HomgrA(M,N) that gives us a grading on
HomA(M,N) (cf. [16, Corollary 2.4]).

1.1.2. Graded complexes. Let X = (Xi, di) be a complex of A-modules.
We say that X is a complex of graded A-modules, or just a graded com-
plex , if for each i ∈ Z, Xi is a graded module and di is a homomor-
phism between graded A-modules. If X is a graded complex, then X〈j〉
denotes the complex of graded A-modules given by (X〈j〉)i := Xi〈j〉 and
diX〈j〉 := di. Let X and Y be graded complexes. A homomorphism f =
{f i}i∈Z between complexes X and Y is a homomorphism of graded com-
plexes if for each i ∈ Z, f i is a homomorphism of graded modules. The
category of complexes of graded A-modules will be denoted by Cgr(A). We
set HomgrA(X,Y ) :=

⊕
i∈Z HomCgr(A)(X,Y 〈i〉), where HomCgr(A)(X,Y 〈i〉)
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denotes the space of graded homomorphisms between X and Y 〈i〉 (the space
of homogeneous morphisms of degree i). As for modules, we have an isomor-
phism of vector spaces HomgrA(X,Y ) ∼= HomA(X,Y ) that gives us a grad-
ing on HomA(X,Y ). From this we get a grading on HomKb(A-mod)(X,Y ),
since the subspace of zero homotopic maps is homogeneous. We denote this
graded space by HomgrKb(A-mod)(X,Y ).

Unless otherwise stated, for a graded algebra A given by a quiver and
relations, we will assume that the projective indecomposable A-modules are
graded as in Example 2.8 below, i.e. we will assume that their tops are
in degree 0 (we recommend [2] as a good introduction to path algebras of
quivers). We note here that if we have two different gradings on an inde-
composable module (bounded complex), then they differ only by a shift (cf.
[3, Lemma 2.5.3]).

2. Preliminaries

2.1. Derived equivalences. We say that two symmetric algebras A
and B are derived equivalent if their derived categories of bounded com-
plexes are equivalent. From Rickard’s theory we know that A and B are
derived equivalent if and only if there exists a tilting complex T of projec-
tive A-modules such that EndKb(PA)(T ) ∼= Bop. For more details on derived
categories and derived equivalences we recommend [14].

We remind the reader that derived equivalent algebras share many
common properties. Among these is the identity component Out0(A)
of the group of outer automorphisms (cf. [11, Theorem 17] or [17, The-
orem 4.6]).

2.2. Algebraic groups and a classification criterion. For a finite-
dimensional k-algebra A, there is a correspondence between gradings on A
and homomorphisms of algebraic groups from Gm to Aut(A), where Gm is
the multiplicative group k∗ of the field k. For each grading A =

⊕
i∈ZAi

there is a homomorphism of algebraic groups π : Gm → Aut(A) where an
element x ∈ k∗ acts on Ai by multiplication by xi (see [17, Section 5]). If A
is graded and π is the corresponding homomorphism, we will write (A, π)
to denote that A is graded with grading π.

Definition 2.1. Let (A, π) and (A, π′) be two gradings on a finite-
dimensional k-algebra A, and let S1, . . . , Sr be the isomorphism classes of
simple A-modules. We say that (A, π) and (A, π′) are graded Morita equiva-
lent if there exist integers dij , where 1 ≤ j ≤ dimSi and 1 ≤ i ≤ r, such that
the graded algebras (A, π′) and Endgr(A,π)(

⊕
i,j Pi〈dij〉)op are isomorphic,

where Pi denotes the projective cover of Si.
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Note that two graded algebras (A, π) and (A, π′) are graded Morita
equivalent if and only if their categories of graded modules are equivalent
(see [17, Section 5].

Let A =
⊕

i∈ZAi be a grading on A. If r ∈ Z, then A =
⊕

i∈ZBi, where
Bri := Ai, i ∈ Z, and Bi := 0 if r - i, is a grading on A. This procedure of
multiplying (or dividing) each degree by the same integer is called rescaling .

We now give some background on algebraic groups (more details can be
found in [5]). An algebraic torus is a linear algebraic group isomorphic to
Gn
m = Gm×· · ·×Gm (n factors) for some n ≥ 1. A maximal torus in an alge-

braic group G is a closed subgroup of G which is a torus but is not contained
in any larger torus. Tori are contained in G0, the connected component of G
that contains the identity element. For a given torus T , a cocharacter of T
is a homomorphism of algebraic groups from Gm to T . A cocharacter of an
algebraic group G is a homomorphism of algebraic groups from Gm to T ,
where T is a maximal torus of G. We say that cocharacters π and π′ of G are
conjugate if there exists g ∈ G such that π′(x) = gπ(x)g−1 for all x ∈ Gm.
We see that a grading on a finite-dimensional algebra A can be seen as a
cocharacter π : Gm → Aut(A). We will use the same letter π to denote the
corresponding cocharacter of Out(A), which is given by composition of π
and the canonical surjection.

The following proposition tells us how to classify all gradings on A up
to graded Morita equivalence.

Proposition 2.2 ([17, Corollary 5.9]). Two basic graded algebras (A, π)
and (A, π′) are graded Morita equivalent if and only if the corresponding
cocharacters π : Gm → Out(A) and π′ : Gm → Out(A) are conjugate.

From this proposition we see that in order to classify gradings on A up
to graded Morita equivalence, we need to compute maximal tori in Out(A).
Let OutK(A) be the subgroup of Out (A) of those automorphisms fixing the
isomorphism classes of simple A-modules. Since OutK(A) contains Out0(A),
the connected component of Out(A) that contains the identity element, we
see that maximal tori in Out(A) are actually contained in OutK(A). It
follows that it is sufficient to compute maximal tori in OutK(A).

Lemma 2.3. Let A be a basic finite-dimensional algebra such that the
maximal tori in Out(A) are isomorphic to Gm. Up to graded Morita equiv-
alence and rescaling there is a unique grading on A.

Proof. We saw at the beginning of this section that gradings on A corre-
spond to cocharacters of Aut(A). If A =

⊕
i∈ZAi is a grading on A, then the

corresponding cocharacter is given by the action of x on Ai by x ∗ai = xiai,
where ai ∈ Ai. Let T and T ′ be two maximal tori in Out(A). Let τ be a
cocharacter of Out(A) such that its image is contained in T ′. Since any two
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maximal tori in Out(A) are conjugate, there exists an invertible element a
such that aT ′a−1 = T . The cocharacter given by x 7→ aτ(x)a−1, x ∈ Gm,
is conjugate to τ and its image is contained in T . This cocharacter gives
rise to a grading which is graded Morita equivalent to the grading given
by τ . It follows that when classifying gradings on A up to graded Morita
equivalence it is sufficient to consider cocharacters whose image is in T . The
only homomorphisms from Gm to Gm

∼= T are given by maps x 7→ xr for
x ∈ Gm and r ∈ Z. Let π : Gm → Out(A), x 7→ xl, be the cocharacter that
corresponds to the grading A =

⊕
i∈ZAi. If we rescale this grading by mul-

tiplying by r ∈ Z, then we get the grading A =
⊕

i∈ZBi, where Bri := Ai,
i ∈ Z, and Bi := 0 if r - i. This grading corresponds to the cocharacter
π1 : Gm → Out(A), x 7→ xrl. This is easily seen if one thinks of the action
of x ∈ Gm on Bri. If bri ∈ Bri, then bri = ai, ai ∈ Ai. The action of x is
given by

π1(x)(bri) = x ∗ bri = xribri = xriai = (π(x))r(ai).

We see that the grading corresponding to the cocharacter x 7→ xr, r ∈ Z,
can be obtained by rescaling by r from the grading corresponding to the
cocharacter x 7→ x. It follows that there is a unique grading on A up to
rescaling (dividing or multiplying each degree by the same integer) and
graded Morita equivalence (shifting each projective indecomposable module
by an integer).

2.3. A criterion for tightness and positivity

Proposition 2.4. Let A =
⊕

i≥0Ai be a positively graded algebra. Let
e and f be homogeneous primitive idempotents such that Ae ∼= Af . Then
Ae and Af are isomorphic as graded A-modules.

Proof. The modules Ae =
⊕

i≥0Aie and Af =
⊕

i≥0Aif are posi-
tively graded. Since Ae ∼= Af , there exists an invertible element a such
that aea−1 = f. If a0 is the degree 0 component of a, then a0ea

−1
0 = f .

Right multiplication by a0 is an isomorphism between the graded modules
Af and Ae.

Example 2.5. Let A be a positively graded algebra and let P be a
projective indecomposable A-module. There is a canonical way to grade
P as follows. Let {f1, . . . , fr} be a complete set of primitive orthogonal
idempotents. If ei is the degree 0 component of fi, then by comparing degree
0 components of f2

i = fi, we conclude that ei is a primitive idempotent.
Hence, {e1, . . . , er} is a complete set of primitive orthogonal idempotents and
A =

⊕r
i=1Aei is a sum of graded modules. The projective indecomposable

module P is isomorphic to Aei for some i. This gives us a grading on P ,
which by the previous proposition does not depend on the choice of the
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idempotent ei. It follows that every projective A-module is graded as a
direct sum of graded modules.

Definition 2.6. Let A be a graded algebra. An ideal I of A is called
homogeneous if it is generated by homogeneous elements.

Lemma 2.7. Let A be a graded algebra and let I be a homogeneous ideal
of A. Then A/I is a graded algebra.

Proof. We define (A/I)i := (Ai + I)/I.

Example 2.8. Let A be a finite-dimensional algebra given by the quiver
Q and the ideal of relations I, i.e. A = kQ/I, where I is an admissible ideal
of kQ. The algebra kQ is generated, as an algebra, by the vertices and
arrows of Q. In order to grade kQ it is sufficient to define the degrees of the
arrows since the vertices of Q will be in degree 0. In order to grade kQ/I it
is sufficient to ensure that I is a homogeneous ideal of kQ. In other words,
if for each relation

∑
i λiαi = 0 from a generating set of I, where the λ’s are

scalars and the α’s are paths in Q with the same source and the same target,
we have deg(αi) = deg(αj) for all i, j, then I is generated by homogeneous
elements.

Let us assume that A = kQ/I is graded in such a way that the arrows
and the vertices of Q are homogeneous, and that I is a homogeneous ideal
of kQ. Let Ae be the projective indecomposable module that corresponds
to a vertex e of the quiver Q. Then Ae is graded in a natural way as follows.
As a vector space

Ae = Span{ρ | ρ is a path ending at e}.
If the degree of a path ρ ending at the vertex e is l in kQ, then the degree
of the 1-dimensional subspace of Ae corresponding to ρ is l. This gives us
a canonical way to grade projective indecomposable A-modules even if the
grading on A is not positive.

Definition 2.9 ([6, Section 4]). Let grradA(A) be the graded algebra
given by the radical filtration on a k-algebra A. We say that A is a tightly
graded algebra if there is an algebra isomorphism

A ∼= grradA(A).

By Proposition 4.4 in [6], A is a tightly graded algebra if and only if
there exists a positive grading A =

⊕
i≥0Ai such that A0 is semisimple,

and A is generated, as an algebra, by A0 and A1. Such a grading is called
tight .

We remark here that if A is an algebra given by a quiver Q and an ideal
of relations I, where the generators of the ideal I are linear combinations
of paths of the same length, then A is tightly graded. In this case, if we
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define that the arrows of Q are in degree 1, then I is a homogeneous ideal
of kQ.

Lemma 2.10. Let A =
⊕

i≥0Ai be a tight grading on a k-algebra A. If
a is an invertible element in A, then

A =
⊕
i≥0

aAia
−1

is a tight grading on A.

Proof. This is obvious.

Lemma 2.11. Let A =
⊕

i≥0Ai be a tight grading on A. If A≥i :=⊕
j≥iAj, then

radiA = A≥i,

and A0 is a maximal semisimple subalgebra of A.

Proof. Since A is an artinian algebra, A≥1 is a nilpotent ideal. Therefore,
A≥1 ⊂ radA. Let S be a maximal semisimple subalgebra of A such that
A = S⊕radA. Any two maximal semisimple subalgebras of A are conjugate
(cf. [7, Theorem 6.2.1]), and hence have the same dimension. Because A0

is a semisimple subalgebra, the dimension argument gives us that A0 is a
maximal semisimple subalgebra and that A≥1 = radA. It follows easily that
A≥i = radiA for i ≥ 1.

Lemma 2.12. Let A be an algebra given by a quiver Q and an ideal of
relations I. If A is a tightly graded algebra, then there exists a tight grading
on A such that for every arrow α of the quiver Q, there exists a degree 1
element tα of the form α+ yα, where yα ∈ rad2A is a linear combination of
paths that have the same source and the same target as α.

Proof. Let us assume that A =
⊕

i≥0Ai is a tight grading on A. From
the previous lemma it follows that A0 is a maximal semisimple subalge-
bra of A. Since any two maximal semisimple subalgebras are conjugate (cf.
[7, Theorem 6.2.1]), by Lemma 2.10 we can assume that A0 = S, where
S is the maximal semisimple subalgebra given by the linear span of the
vertices of Q. Let α be an arrow of the quiver Q. By the previous lemma,
radA = A1 ⊕ A≥2. It follows that the arrow α can be written as a linear
combination

α = t+ y,

where t is a homogeneous element of degree 1, and y ∈ rad2A is a linear
combination of homogeneous elements of degree greater than 1. Because
vertices are homogeneous, we can multiply this equation from the left by es,
the source vertex of α, and from the right by et, the target vertex of α. It
follows that

α = estet + esyet.
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If we define tα := estet and yα := −esyet, then tα = α + yα is a degree 1
element, and yα is a linear combination of paths that have the same source
and the same target as the arrow α.

Remark 2.13. The previous lemma can be used to prove that certain
algebras are not tightly graded, as in the following case.

We keep the notation of the previous lemma. Let us assume that one
of the generators of I, say v, is a non-trivial linear combination of paths
such that at least two of them are of different lengths. We can assume that
v =

∑r
i=1 λipi, where pi is a path of length si, i.e. pi = αi1αi2 · · ·αisi , where

αi1, αi2, . . . , αisi are arrows of Q. If from the structure of A it follows that
pi = tαi1tαi2 · · · tαisi

, for all pi, where tα is as in the previous lemma, then
deg(tαi1tαi2 · · · tαisi

) = deg(pi) = si. Without loss of generality, let us assume
that p1, . . . , pm are paths of degree s, and that pm+1, . . . , pr are paths whose
degree is greater than s. Then

m∑
i=1

λipi = −
r∑

j=m+1

λjpj .

Since the left-hand side of the above equality is a homogeneous element
of degree s, and the right-hand side is a sum of homogeneous elements of
degrees greater than s, we have a contradiction. Hence, A is not tightly
graded.

2.4. The group Aut(k[x]/(xr)). This group will play an important role
in our classification of gradings on dihedral blocks. By Lemma 11.4 in [4],
the group Aut(k[x]/(xr)) is isomorphic to the group Hr from the following
definition.

Definition 2.14. We define Hr to be the group

(k∗ × k × · · · × k︸ ︷︷ ︸
r−1

, ∗ ),

where the multiplication ∗ is given by

(2.1) β ∗ α :=
( l∑
i=1

αi

( ∑
k1+···+ki=l
k1,...,ki>0

βk1 · · ·βki

))r
l=1

where β = (β1, . . . , βr) and α = (α1, . . . , αr).

Let L be the subgroup of Hr consisting of the elements of the form
(1, α2, . . . , αr) and let K be the subgroup of Hr consisting of the elements
of the form (α1, 0, . . . , 0). The following proposition is straightforward.

Proposition 2.15. The group Hr is a semidirect product of L and K,
where L � G is unipotent and the subgroup K ∼= Gm is a maximal torus
in Hr.
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3. Three simple modules. For background details about blocks of
group algebras and their defect groups, we refer the reader to [1].

Any block with a dihedral defect group and three isomorphism classes
of simple modules is Morita equivalent to some algebra from the following
list (cf. [8] or [9]).

(1) For any r ≥ 1, let Ar be the algebra defined by the quiver and relations

3•
b2

��

•2

a2
xx1•

a1

99

b1

VV a2a1 = b2b1 = 0,
(a1a2b1b2)r = (b1b2a1a2)r.

(2) For any r ≥ 1, let Br be the algebra defined by the quiver and relations

3•

c3

��

d2
++ •2

c2

kk

d1

��1•

c1

AA

d3

SS
c1c2 = c2c3 = c3c1 = 0,
d1d3 = d3d2 = d2d1 = 0,
c1d1 = d3c3,
d1c1 = (c2d2)r, c3d3 = (d2c2)r.

(3) For any r ≥ 2, let Cr be the algebra defined by the quiver and relations

1•
a1

��

•3

b2xx

c

��

2•

a2

99

b1

VV
a1b1 = b2a2 = a2c = cb2 = 0,
cr = b2b1a1a2,
a2b2b1a1 = b1a1a2b2.

For r = 1 we set C1 = A1.

3.1. Classification of gradings. We start by classifying all gradings
up to graded Morita equivalence on Ar, Br and Cr. In order to do this
we need to compute maximal tori in Out(A), where A is Ar, Br or Cr.
Linckelmann proved in [15] that for a fixed integer r, the algebras Ar, Br and
Cr are derived equivalent, i.e. any two blocks with the same dihedral defect
group and with three isomorphism classes of simple modules are derived
equivalent. Since OutK(A), the group of outer automorphisms that fix the
isomorphism classes of simple modules, contains Out0(A), and since Out0(A)
is invariant under derived equivalence (cf. [17, Theorem 4.6] or [11, The-
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orem 17]), it is sufficient to compute OutK(A) for one of these algebras. We
will compute OutK(Cr). Moreover, we will see that OutK(Cr) and Out0(Cr)
are equal, because OutK(Cr) will turn out to be connected.

Let ϕ be an arbitrary automorphism of Cr fixing the isomorphism classes
of simple Cr-modules. The set {e1, e2, e3} of the vertices of the quiver of
Cr is a complete set of primitive orthogonal idempotents. Also, the set
{ϕ(e1), ϕ(e2), ϕ(e3)} is a complete set of primitive orthogonal idempotents.
From classical ring theory (cf. [12, Theorem 3.10.2]) we know that there ex-
ists an invertible element x such that x−1ϕ(ei)x = eσ(i) for all i, where σ is
some permutation. Since ϕ fixes the isomorphism classes of simple modules
we can assume that

ϕ(ei) = ei, i = 1, 2, 3.

Since ϕ(radCr) ⊆ radCr and ϕ(eitej) = eiϕ(t)ej , for a given arrow t in
the quiver of Cr, ϕ(t) is a linear combination of paths whose source is the
source of t and whose target is the target of t. It follows that

ϕ(a1) = α1a1 + β1a1a2b2,

ϕ(a2) = α2a2 + β2b1a1a2,

ϕ(b1) = α3b1 + β3a2b2b1,

ϕ(b2) = α4b2 + β4b2b1a1,

ϕ(c) =
r∑
i=1

γic
i,

where the α’s, β’s and γ’s are scalars. From a1b1 = 0 and b2a2 = 0 we
conclude that α1β3 + α3β1 = 0 and α4β2 + α2β4 = 0. We note here that
αi 6= 0 and γ1 6= 0 because ϕ is injective.

We will now compose ϕ with a suitable inner automorphism to get a nice
representative of the class of ϕ in OutK(Cr) by eliminating βi, i = 1, 2, 3, 4.

Let y be an arbitrary invertible element in Cr. Then y is of the form

y = l1e1 + l2e2 + l3e3 + z,

where l1, l2, l3 ∈ k∗ and z ∈ radCr is a linear combination of the remaining
paths of strictly positive length. Its inverse y−1 is l−1

1 e1 + l−1
2 e2 + l−1

3 e3 + z1,
where z1 ∈ radCr is easily computed from yy−1 = 1. Direct computation
gives us that

ycy−1 = c.

Let x := l1e1 + l2e2 + l3e3 + l4b1a1 + l5a2b2, where l1, l2 and l3 are
invertible, and where we set l4 := l2α

−1
2 β2 and l5 := l2α

−1
3 β3. The inner

automorphism given by x has the following action on a set of generators
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of Cr:
xa1x

−1 = l1l
−1
2 a1 + l1l

−2
2 l5a1a2b2,

xa2x
−1 = l2l

−1
3 a2 + l4l

−1
3 b1a1a2,

xb1x
−1 = l2l

−1
1 b1 + l−1

1 l5a2b2b1,

xb2x
−1 = l3l

−1
2 b2 + l3l

−2
2 l4b2b1a1,

xcx−1 = c, xeix
−1 = ei, i = 1, 2, 3.

We denote by fx the inner automorphism given by this specific x, and we
define ϕ1 := fx ◦ ϕ. This is an element of OutK(Cr) that is a nice class
representative. Its action on our set of generators is given by

ϕ1(a1) = l1l
−1
2 α1a1 + (α1l1l

−2
2 l5 + β1l1l

−1
2 )a1a2b2,

ϕ1(a2) = l2l
−1
3 α2a2 + (α2l4l

−1
3 + β2l2l

−1
3 )b1a1a2,

ϕ1(b1) = l2l
−1
1 α3b1 + (α3l

−1
1 l5 + β3l2l

−1
1 )a2b2b1,

ϕ1(b2) = l3l
−1
2 α4b2 + (α4l3l

−2
2 l4 + β4l3l

−1
2 )b2b1a1,

ϕ1(ei) = ei, i = 1, 2, 3, ϕ1(c) = c.

We have chosen l4 and l5 in such a way that, in the above equations, the
coefficients of the paths of length 3 are all equal to 0. The automorphism
φ := fw ◦ ϕ1, where fw is the inner automorphism given by w, where w :=
l−1
1 e1 + l−1

2 e2 + l−1
3 e3, represents the same class in OutK(Cr) as ϕ. It has

the following action on a set of algebra generators:

φ(ei) = ei, i = 1, 2, 3,

φ(a1) = α1a1, φ(b1) = α3b1,

φ(a2) = α2a2, φ(b2) = α4b2,

φ(c) =
r∑
i=1

γic
i.

We see that the (r + 4)-tuple (α1, α2, α3, α4, γ1, . . . , γr) completely deter-
mines φ, where αi, i = 1, 2, 3, 4, and γ1 belong to k∗ and γ2, . . . , γr ∈ k.
From the relations of Cr we see that α1α2α3α4 = γr1 . It follows that an
arbitrary element φ of OutK(Cr) is determined by an (r + 3)-tuple, say
(α1, α2, α3, γ1, . . . , γr), where α4 = (α1α2α3)−1γr1 . Composition of homo-
morphisms induces a group operation on the set of (r+3)-tuples, i.e. on the
set k∗ × k∗ × k∗ × (k∗ × k × · · · × k︸ ︷︷ ︸

r−1

). This is componentwise multiplication

on the first three coordinates and the operation ∗ of the group Hr from
Definition 2.14 on the remaining r coordinates. In other words, we have the
group (k∗)3 ×Hr.
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Any (r + 3)-tuple (α1, α2, α3, γ1, . . . , γr) gives rise to a representative of
an element of OutK(Cr), i.e. we have an epimorphism from (k∗)3×Hr onto
OutK(Cr). The above (r + 3)-tuple gives us the same class in OutK(Cr)
as the (r + 3)-tuple (l1l−1

2 α1, l2l
−1
1 α2, l2l

−1
3 α3, γ1, . . . , γr), where l1, l2 and

l3 are arbitrary scalars from k∗. This corresponds to multiplication by an
inner automorphism given by an invertible element l1e1 + l2e2 + l3e3. If we
set l1l−1

2 = w and l2l
−1
3 = v, then (k∗)3 ×Hr/R, where R is the subgroup

generated by all (r + 3)-tuples of the form (w,w−1, v, 1, 0, . . . , 0), where
v, w ∈ k∗, is isomorphic to OutK(Cr). This quotient is isomorphic to the
direct product of one copy of the multiplicative group k∗ and a copy of the
group Hr. Thus, we see that OutK(Cr) is a connected algebraic group, and
it follows that it is equal to Out0(Cr).

Theorem 3.1. Let A be one of the algebras Ar, Br or Cr. Then

Out0(A) ∼= k∗ ×Hr.

The maximal tori in Out0(A) are isomorphic to Gm ×Gm.

Proof. This follows from the above discussion and the fact that Out0(A)
is preserved under derived equivalence.

Corollary 3.2. Let A be one of the algebras Ar, Br or Cr. Let T be a
maximal torus in Out(A). Then up to graded Morita equivalence the gradings
on A are in one-to-one correspondence with conjugacy classes in Out(A) of
cocharacters of Out(A) whose image is in T . Up to graded Morita equiva-
lence the gradings on A are parameterized by the corresponding subset of Z2.

Proof. By Proposition 2.2, up to graded Morita equivalence the grad-
ings on A are given by conjugacy classes in Out(A) of the algebraic group
homomorphisms from Gm to Out(A). Let T ′ be another maximal torus in
Out(A) and let f be a cocharacter of Out(A) such that its image is con-
tained in T ′. Since any two maximal tori in Out(A) are conjugate, there
exists an invertible element a such that aT ′a−1 = T . The cocharacter given
by x 7→ af(x)a−1, x ∈ Gm, is conjugate to f and its image is contained in T .
This cocharacter gives rise to a grading which is graded Morita equivalent
to the grading given by f . It follows that when classifying gradings on A up
to graded Morita equivalence it is sufficient to consider cocharacters whose
image is in T . Algebraic group homomorphisms from Gm to T ∼= Gm×Gm

are in one-to-one correspondence with Z2.

Corollary 3.3. Up to graded Morita equivalence the gradings on Cr,
r ≥ 2, are in one-to-one correspondence with Z2.

Proof. From the relations of Cr it follows that Out(Cr) = OutK(Cr). Let
T be the maximal torus in Out(Cr) consisting of the (r + 1)-tuples of the
form (v, d1, 0, . . . , 0), where v, d1 ∈ k∗. Let π1 and π2 be the cocharacters of
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T corresponding to the pairs of integers (m1,m2) and (n1, n2) respectively.
If π1 and π2 are conjugate in Out(Cr), then from multiplication in Out(Cr)
it follows that m1 = n1 and m2 = n2.

Remark 3.4. There are cases where the group of outer automorphisms
of a given algebra A strictly contains the group of outer automorphisms
fixing the isomorphism classes of simple modules. In this case it is possible
that the normalizer NOut(A)(T ) is not contained in Out0(A), where T is a
maximal torus in Out(A).

For example, for the remaining two families Ar and Br, the group of outer
automorphisms strictly contains the group of outer automorphisms fixing
the isomorphism classes of simple modules. This is because there are outer
automorphisms in Out(A), where A is Ar or Br, that interchange e2 and e3,
and fix e1. Also, OutK(A) is not necessarily connected, i.e. it is not equal
to Out0(A). In this case NOut(A)(T ) is not contained in Out0(A), and for
different pairs of integers we get gradings that are graded Morita equivalent.
Thus, Ar and Cr are derived equivalent, but NOut(Ar)(T ) � NOut(Cr)(T ′),
where T and T ′ are maximal tori.

This tells us that derived equivalent algebras, in general, do not have the
same number of gradings up to graded Morita equivalence.

3.2. Transfer of gradings via derived equivalences. We will use
derived equivalences between Ar, Br and Cr to transfer gradings from Ar
to Br and Cr. The tilting complexes that we use in this section have been
constructed by Linckelmann in [15].

We assume that Ar is graded in such a way that the vertices and the
arrows of the quiver of Ar are homogeneous. Moreover, we assume that
deg(a1) = α1, deg(a2) = α2, deg(b1) = β1, deg(b2) = β2. Also, we set
Σ := α1 + α2 + β2 + β2.

By Example 2.8, the graded radical layers of the projective indecompos-
able Ar-modules with respect to this grading are:

S1 0

α2 S2 S3 β2

α1+α2 S1 S1 β1+β2

α1+α2+β2 S3 S2 β1+β2+α2

Σ S1 S1 Σ
...

...
...

(r−1)Σ+α2 S2 S3 (r−1)Σ+β2

rΣ−β1−β2 S1 S1 rΣ−α1−α2

rΣ−β1 S3 S2 rΣ−α1

S1 rΣ
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S2 0

S1 α1

S3 α1+β2

S1 α1+β1+β2

S2 Σ

...
S1 (r−1)Σ+α1

S3 rΣ−α2−β1

S1 rΣ−α2

S2 rΣ

S3 0

S1 β1

S2 β1+α2

S1 β1+α1+α2

S3 Σ

...
S1 (r−1)Σ+β1

S2 rΣ−α1−β2

S1 rΣ−β2

S3 rΣ

Here, numbers to the left or right of the composition factors denote their
degrees.

Let T1 be the complex given by T1 : P2〈−α2〉 ⊕ P3〈−β2〉
(γ2,δ2)−−−−→ P1,

where P1 is in degree 1, and γ2, δ2 are given by right multiplication by a2

and b2 respectively. Let T2 and T3 be the stalk complexes with P2 and P3

respectively in degree 0. A complex T that tilts from Ar to Br is given by
the direct sum T := T1 ⊕ T2 ⊕ T3.

Viewing T as a graded object and calculating HomgrKb(PAr )(T, T ) as a
graded vector space will give us a grading on Br. It is clear that the following
isomorphisms of graded vector spaces hold:

HomgrKb(PAr )(T2, T2) ∼= HomgrAr
(P2, P2) ∼=

r⊕
t=0

k〈−tΣ〉,

HomgrKb(PAr )(T3, T3) ∼= HomgrAr
(P3, P3) ∼=

r⊕
t=0

k〈−tΣ〉,

HomgrKb(PAr )(T2, T3) ∼= HomgrAr
(P2, P3) ∼=

r−1⊕
t=0

k〈−(β1 + α2)− tΣ〉,

HomgrKb(PAr )(T3, T2) ∼= HomgrAr
(P3, P2) ∼=

r−1⊕
t=0

k〈−(β2 + α1)− tΣ〉.

It follows that deg(d2) = α1 +β2 and deg(c2) = β1 +α2 in the quiver of Br.
Also, non-zero maps in HomgrKb(PAr )(T1, T2) and HomgrKb(PAr )(T1, T3)
have to map surjectively P2 ⊕ P3 onto P2 and P3 respectively. We
conclude that HomgrKb(PAr )(T1, T2) ∼= k〈α2〉, and HomgrKb(PAr )(T1, T3)
∼= k〈β2〉. It follows that deg(c1) = −α2 and deg(d3) = −β in the quiver
of Br.



GRADED BLOCKS OF GROUP ALGEBRAS 163

Every non-zero map in HomgrKb(PAr )(T2, T1) has to map topP2 onto
socP2. It follows that HomgrKb(PAr )(T2, T1) ∼= k〈−α2 − rΣ〉, and similarly
we deduce that HomgrKb(PAr )(T3, T1) ∼= k〈−β2 − rΣ〉. This implies that
deg(c3) = β2 + rΣ and deg(d1) = α2 + rΣ.

From the above computation we get a grading on Br. With respect to
this grading, the graded quiver of Br is given by

3• ]]

−β2

α1+β2
++ •2

β1+α2

kk

α2+rΣ

��1•

−α2

AA

��

β2+rΣ

If we assume that we started with the tight grading on Ar, i.e. if we
assume that the arrows of the quiver of Ar are in degree 1, then the resulting
graded quiver of Br is given by

3• ]]

−1

2
++ •2

2

kk

4r+1

��1•

−1

AA

��

4r+1

We remark here that the resulting grading on Br is not tight. Moreover,
it is not a positive grading. This example tells us that when we transfer a
tight (respectively positive) grading via derived equivalence, the resulting
grading is not necessarily tight (respectively positive). We state this known
fact in the following proposition.

Proposition 3.5. Tightness and positivity of a grading are not pre-
served, in general, under the transfer of gradings via derived equivalence.

Let us now assume that the algebra Br is graded in such a way that the
vertices and the arrows of the quiver of Br are homogeneous. Furthermore,
we assume that deg(c1) = γ1, deg(c2) = γ2, deg(c3) = γ3, deg(d1) = δ1,
deg(d2) = δ2 and deg(d3) = δ3. We set Σ := γ2 + δ2.

The graded radical layers of the projective indecomposable Br-modules
are:
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S1 0

δ1 S2 S3 γ3

S1 rΣ

S2 0

S3 δ2

S2 Σ

γ1 S1 S3 Σ+δ2

S2 2Σ
...
S3 rΣ−γ2

S2 rΣ

S3 0

S2 γ2

S3 Σ

δ3 S1 S2 Σ+γ2

S3 2Σ

...
S2 rΣ−δ2

S3 rΣ

We will now transfer this grading from Br to Cr. Let T1 and T3 be the
stalk complexes with P1 and P3 respectively in degree 0. Let T2 be the
complex

T2 : P1〈−γ1〉 ⊕ P3〈−δ2〉
(ρ1,τ2)−−−−→ P2,

where P2 is in degree 1, and ρ1, τ2 are given by right multiplication by c1
and d2 respectively. Define T to be the direct sum T := T1 ⊕ T2 ⊕ T3. The
complex T is a tilting complex for Br and EndKb(PBr )(T ) ∼= Cop

r .
As above, we conclude that the space HomgrKb(PBr )(T3, T3) is isomor-

phic to
⊕r

t=0 k〈−tΣ〉, HomgrKb(PBr )(T1, T1) is isomorphic to k〈0〉⊕k〈−rΣ〉,
HomgrKb(PBr )(T3, T1) ∼= k〈−γ3〉, and HomgrKb(PBr )(T1, T3) ∼= k〈−δ3〉. It fol-
lows that deg(c) = Σ in the quiver of Cr. Since ker(ρ1, τ2) contains two
copies of S1, one copy in degree δ3 + δ2 and one copy in degree γ1 + rΣ,
HomgrKb(PBr )(T1, T2) ∼= k〈−(δ3+δ2)〉⊕k〈−(γ1+rΣ)〉. The same arguments
give us that HomgrKb(PBr )(T3, T2) ∼= k〈−(γ1 + γ3)〉 ⊕ k〈−(δ2 + rΣ)〉. Sim-
ilarly, there are isomorphisms HomgrKb(PBr )(T2, T3) ∼= k〈δ2〉 ⊕ k〈γ1 − δ3〉,
and HomgrKb(PBr )(T2, T1) ∼= k〈γ1〉 ⊕ k〈δ2 − γ3〉.

Using these data and looking at the relations of Cr, we find that in
the quiver of Cr, deg(a1) = δ2 + δ3, deg(a2) = −δ2, deg(b1) = −γ1 and
deg(b2) = γ1 + γ3. With respect to this grading, the graded quiver of Cr is
given by

1•

δ2+δ3 &&

•3

γ1+γ3xx

Σ

��

2•

−δ2
99

−γ1
ee
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The graded radical layers of the projective indecomposable Cr-modules are:

S1 0

S2 −γ1

S3 γ3

S2 γ3−δ2

S1 rΣ

S2 0

δ2+δ3 S1 S3 γ1+γ3

δ2+δ3−γ1 S2 S2 γ1+γ3−δ2

δ2+δ3+γ3 S3 S1 γ1+γ3+δ3

S2 rΣ

S3 0

Σ S3 S2 −δ2

2Σ S3 S1 δ3
... S2 δ3−γ1

(r−1)Σ S3

S3 rΣ

3.3. Positivity and tightness

Proposition 3.6. Let A be one of the algebras Ar, Br and Cr. Then A
can be positively graded.

Proof. This follows directly from the relations of these algebras. For Ar
we can set that every arrow is in degree 1 and we will get homogeneous
relations. For the algebra Br, if deg(c1) = deg(d1) = deg(c3) = deg(d3) = r
and deg(c2) = deg(d2) = 1, then the relations of Br are homogeneous. If
deg(c) = 4, deg(a1) = deg(a2) = deg(b1) = deg(b2) = r, then the relations
of Cr are homogeneous.

Proposition 3.7. For every positive integer r, Ar is a tightly graded
algebra.

Proof. From the proof of the previous proposition, if the vertices of the
quiver of Ar are in degree 0, and the arrows are in degree 1, then the ideal
of relations of Ar is homogeneous. Therefore, there exists a positive grading
on A such that the subalgebra of degree 0 elements is semisimple, and A is
generated by the homogeneous elements of degrees 0 and 1.

Proposition 3.8. The algebra Br is tightly graded if and only if r = 1.

Proof. It is clear that B1 is tightly graded. Let us assume that Br is
tightly graded. By Lemma 2.12, for each arrow a of the quiver of Br, there
exists a degree 1 element of the form a +

∑
i λizi, where zi ∈ rad2A is a

path with the same source and the same target as a. It follows that c1, c3,
d1 and d3 are homogeneous elements of degree 1, since there are no other
paths with the same source and the same target. Also, there are degree 1
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elements of the form

tc2 := c2 +
r−1∑
i=1

λic2(d2c2)i, td2 := d2 +
r−1∑
i=1

µid2(c2d2)i,

where the λ’s and µ’s are scalars. It follows that (tc2td2)r = (c2d2)r is a
homogeneous element of degree 2r. Since (c2d2)r = d1c1 is a homogeneous
element of degree 2, it follows that r = 1.

Proposition 3.9. The algebra Cr is tightly graded if and only if r = 4.

Proof. If r = 4, then it is obvious that Cr is tightly graded.
Let us assume that Cr, r ≥ 2, is tightly graded. By Lemma 2.12, there

are degree 1 elements of the form

ta1 := a1 + λ1a1a2b2, tb1 := b1 + λ3a2b2b1,

ta2 := a2 + λ2b1a1a2, tb2 := b2 + λ4b2b1a1,

tc := c+
r∑
i=2

µic
i,

where the λ’s and µ’s are scalars. It follows that b2b1a1a2 = tb2tb1ta1ta2 is a
homogeneous element of degree 4. At the same time b2b1a1a2 = cr = trc is a
homogeneous element of degree r. It follows that r = 4.

We note here that from the previous propositions it follows that the
existence of a tight grading is not preserved under derived equivalence, unlike
under Morita equivalence (see Proposition 4.4 in [6]).

It is worth noting that for dihedral blocks with three simple modules,
in every derived equivalence class there is at least one block that is pos-
itively graded and there is at least one block that is tightly graded. The
same statement does not hold for all derived equivalence classes of tame
blocks.

4. Two simple modules. Any block with a dihedral defect group and
two isomorphism classes of simple modules is Morita equivalent to some
algebra from the following list (cf. [8] or [9]).

(1) For any r ≥ 1 and c ∈ {0, 1} let D(2A)r,c be the algebra defined by
the quiver and relations

0•α
(( β

++ •1
γ

kk
γβ = 0, α2 = c(αβγ)r,
(αβγ)r = (βγα)r.

(2) For any r ≥ 1 and c ∈ {0, 1} let D(2B)r,c be the algebra defined by
the quiver and relations
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0•α
(( β

++ •1
γ

kk η
vv

βη = ηγ = γβ = 0,
αβγ = βγα,

α2 = c(αβγ), γαβ = ηr.

4.1. Classification of gradings. In [9], Holm proved that for fixed r
and c, the algebras D(2A)r,c and D(2B)r,c are derived equivalent. Since the
identity component of the group of outer automorphisms is invariant under
derived equivalence, it is sufficient to compute this group for D(2B)r,c.

As before, for an arbitrary outer automorphism ϕ in OutK(D(2B)r,c),
we will find a suitable automorphism that represents the same element as ϕ,
but which is easy to work with.

We assume that ϕ(ei) = ei for i = 1, 2. It follows that

ϕ(α) = a1α+ a2βγ + a3αβγ,

ϕ(β) = b1β + b2αβ, ϕ(γ) = c1γ + c2γα,

ϕ(η) =
r∑
i=1

diη
i,

for some ai, bi, ci, di ∈ k. From the relation γβ = 0 we get b1c2 = b2c1. From
the relation ηr = γαβ it follows that dr1 = a1b1c1. Since ϕ(ηr) 6= 0, it follows
that d1 6= 0. Hence, a1, b1 and c1 are all non-zero. The inner automorphism
given by y, where y := l1e1 + l2e2 + l3α and l3 := l1c

−1
1 c2, when composed

with ϕ has the following action on a set of generators:

yϕ(ei)y−1 = ei, yϕ(η)y−1 =
r∑
i=1

diη
i,

yϕ(γ)y−1 = c1l2l
−1
1 γ, yϕ(β)y−1 = b1l1l

−1
2 β,

yϕ(α)y−1 = a1α+ a2βγ + a3αβγ.

Let φ be the composition of yϕy−1 and the inner automorphism given by
l−1
1 e1 + l−1

2 e2. Then φ represents the same element in OutK(D(2B)r,c) as ϕ.
Its action is given by

φ(ei) = ei, φ(η) =
r∑
i=1

diη
i,

φ(γ) = c1γ, φ(β) = b1β,

φ(α) = a1α+ a2βγ + a3αβγ.

It follows that an arbitrary automorphism in OutK(D(2B)r,c) is completely
determined by an (r + 5)-tuple (a1, a2, a3, b1, c1, d1, . . . , dr). By an elemen-
tary, but tedious calculation, one can show that it is not possible to eliminate
the coefficients a2 and a3 by composing φ with inner automorphisms.
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We have a map from the set of all (r + 5)-tuples onto OutK(D(2B)r,c).
Composition of morphisms gives us the group multiplication on the set of
all (r + 5)-tuples.

From dr1 = a1b1c1 it follows that one of these four coefficients, say a1, is
determined by the remaining three.

If c = 0, then there are no further restrictions on the coefficients of ϕ. In
this case, ϕ is determined by the (r+4)-tuple (a2, a3, b1, c1, d1, . . . , dr), where
b1, c1, d1 ∈ k∗. Multiplication of these (r+ 4)-tuples is given by composition
of the corresponding automorphisms, where we replace a1 with dr1(b1c1)−1.
If G is the group of all such (r + 4)-tuples, then multiplication is given by

(a′2, a
′
3, b
′
1, c
′
1,d
′) ∗ (a2, a3, b1, c1,d)

= (dr1(b1c1)−1a′2 + a2b
′
1c
′
1, d

r
1(b1c1)−1a′3 + a3(d′1)r, b1b′1, c1c

′
1,d
′d),

where d = (d1, . . . , dr) and d′ = (d′1, . . . , d
′
r), and the product d′d is the

product of elements of the group Hr from Definition 2.14.
Thus, we have a map from the group G of all (r+4)-tuples onto the group

OutK(D(2B)r,c). The kernel of this epimorphism is given by the set of all
(r + 4)-tuples that correspond to inner automorphisms. Let R be the sub-
group of G generated by all (r+4)-tuples that correspond to inner automor-
phisms. The (r + 4)-tuple (a2, a3, b1, c1,d) represents the same class in the
quotient group M := G/R as (a2, a3, l1l

−1
2 b1, l

−1
1 l2c1,d), where l1, l2 ∈ k∗.

In particular, if l1l−1
2 = c1, then the (r+4)-tuple (a2, a3, b1, c1,d) represents

the same element as the (r + 4)-tuple (a2, a3, b1c1, 1,d). If v = b1c1, then
M can be seen as the group consisting of (r + 3)-tuples (a2, a3, v,d), where
multiplication is defined by

(a′2, a
′
3, v
′,d′) ∗ (a2, a3, v,d) = (dr1v

−1a′2 + a2v
′, dr1v

−1a′3 + a3(d′1)r, vv′,d′d).

Proposition 4.1. Let M be as above and let A be D(2B)r,0 or D(2A)r,0.
There is an isomorphism of groups

Out0(A) ∼= M.

The maximal tori in Out0(A) are isomorphic to Gm ×Gm.

Proof. From the above discussion it follows that OutK(D(2B)r,c) is iso-
morphic to M . Because OutK(D(2B)r,c) is connected, it is equal to the
identity component Out0(D(2B)r,c). The identity component of the group
of outer automorphisms is invariant under derived equivalence. Hence, the
first statement of the proposition is true.

The subgroup L of M which is generated by the (r+3)-tuples of the form
(a2, a3, 1, 1, d2, . . . , dr) is a normal subgroup of M . The subgroup T of M
generated by the (r+3)-tuples of the form (0, 0, v, d1, 0, . . . , 0) is isomorphic
to the quotient M/L. It follows that M is isomorphic to the semidirect
product L o T . The group L is unipotent and the group T is semisimple.
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Since T ∼= Gm ×Gm, it follows that the maximal tori in OutK(D(2B)r,0)
are isomorphic to Gm ×Gm.

Corollary 4.2. Let A be one of the algebras D(2B)r,0 or D(2A)r,0. Let
T be a maximal torus in Out(A). Then up to graded Morita equivalence the
gradings on A are in one-to-one correspondence with conjugacy classes in
Out(A) of cocharacters of Out(A) whose image is in T . Up to graded Morita
equivalence the gradings on A are parameterized by the corresponding subset
of Z2.

Proof. The proof is the same as the proof of Corollary 3.2.

Corollary 4.3. Up to graded Morita equivalence the gradings on
D(2B)r,0 are in one-to-one correspondence with Z2.

Proof. It follows from the relations of D(2B)r,0 that an arbitrary outer
automorphism has to fix the vertices of the quiver of D(2B)r,0. Hence,
Out(D(2B)r,0) = OutK(D(2B)r,0). Let T be the maximal torus consist-
ing of the (r + 4)-tuples of the form (0, 0, v, d1, 0, . . . , 0), where v, d1 ∈ k∗.
Let π1 and π2 be the cocharacters of T corresponding to the pairs of in-
tegers (m1,m2) and (n1, n2) respectively. If π1 and π2 are conjugate in
Out(D(2B)r,0), then from multiplication in Out(D(2B)r,0) it follows that
m1 = n1 and m2 = n2.

As in the case of three simple modules, the same remarks about the
gradings on D(2A)r,0 hold, since OutK(D(2A)r,0) is not a connected group.

If c = 1 there is an additional restriction on the coefficients of ϕ coming
from the relation α2 = αβγ. From this relation we have a1 = b1c1. This
implies that b1c1 =

√
dr1. It follows that one of these coefficients, say b1,

is determined by the remaining two. In this case ϕ is determined by the
(r + 3)-tuple (a2, a3, c1, d1, . . . , dr). We have a map from the group G of
all (r + 3)-tuples onto OutK(D(2B)r,1). Multiplication in G is the same as
before, in this case we just set b1c1 =

√
dr1. The kernel of the above map

is the subgroup R generated by all (r + 3)-tuples corresponding to inner
automorphisms. It follows that in the quotient group G/R, the (r + 3)-
tuple (a2, a3, c1, d1, . . . , dr) represents the same element as the (r+ 3)-tuple
(a2, a3, 1, d1, . . . , dr). We find that G/R can be seen as the group consisting
of (r + 2)-tuples (a2, a3, d1, . . . , dr), with multiplication given by

(a′2, a
′
3,d
′) ∗ (a2, a3,d) = (

√
dr1a
′
2 + a2

√
(d′1)r,

√
dr1a
′
3 + a3(d′1)r,d′d).

Proposition 4.4. Let A be one of the algebras D(2B)r,1 or D(2A)r,1.
Let G and R be as above. Then Out0(A) ∼= G/R. The maximal tori in
Out0(A) are isomorphic to Gm. Up to graded Morita equivalence and rescal-
ing there is a unique grading on the algebra A.
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Proof. It is obvious that OutK(D(2B)r,1) is connected, hence it is equal
to its identity component Out0(D(2B)r,1). That Out0(A) ∼= G/R follows
from the above discussion and the fact that the identity component of the
group of outer automorphisms is invariant under derived equivalence. It is
easily verified that G/R ∼= LoT , where T is the subgroup of G/R generated
by all (r + 2)-tuples of the form (0, 0, d1, 0, . . . , 0), and L is the subgroup
generated by all (r + 2)-tuples of the form (a2, a3, 1, d2, . . . , dr). It follows
that the maximal tori are isomorphic to Gm. By Lemma 2.3, there is a
unique grading on A up to graded Morita equivalence and rescaling.

An easy corollary of our results is that for different values of the scalar
c we get algebras that are not derived equivalent. This statement follows
from the fact that Out0(A) is invariant under derived equivalence. On the
other hand, Out0(D(2B)r,0) and Out0(D(2B)r,1) are not isomorphic because
they do not have isomorphic maximal tori. Even though this is known (see
Corollary 5.3 in [13], or Theorem 1.1 in [10]), we record it in the following
corollary.

Corollary 4.5. Let Cr,0 be one of the algebras D(2A)r,0 or D(2B)r,0,
and let Cr,1 be one of the algebras D(2A)r,1 or D(2B)r,1. Then Cr,0 and
Cr,1 are not derived equivalent.

4.2. Transfer of gradings via derived equivalences. We will use
tilting complexes given in [9] to transfer gradings from D(2A)r,c to D(2B)r,c.
Let us fix an integer r and c ∈ {0, 1}, and assume that D(2A)r,c is graded
in such a way that the vertices and the arrows of the quiver of D(2A)r,c

are homogeneous. We assume that the arrows α, β and γ of the quiver of
D(2A)r,c are in degrees d1, d2 and d3 respectively. We set d := d1 + d2 + d3.

The graded radical layers of the projective indecomposable D(2A)r,c-
modules are:

S0 0

d1 S0 S1 d3

d1+d3 S1 S0 d2+d3

d S0 S0 d

...
...

...
...

(r−1)d+d1 S0 S1 (r−1)d+d3

rd−d2 S1 S0 rd−d1

S0 rd

S1 0

S0 d2

S0 d1+d2

S1 d

...
S0 (r−1)d+d2

S0 (r−1)d−d3

S1 rd

Since the relations are homogeneous we have (r − 2)d1 + rd2 + rd3 = 0 if
c = 1. In this case d1, d2 and d3 cannot all be non-negative (unless they are
all equal to zero). If c = 0, all relations are trivially homogeneous and we
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can choose d1, d2 and d3 arbitrarily. In particular, if c = 0, then D(2A)r,c is
a tightly graded algebra.

A graded tilting complex T := T0 ⊕ T1 of projective D(2A)r,c-modules
that tilts fromD(2A)r,c toD(2B)r,c is given by the direct sum of the complex
T1, which is the stalk complex with P1 in degree 0, and the complex

T0 : 0→ P1〈−d3〉 ⊕ P1〈−(d1 + d3)〉 (γ,γα)−−−−→ P0,

where P0 is in degree 1, and where γ and γα are given by right multiplication
by γ and γα respectively. It was shown in [9] that T is a tilting complex
for D(2A)r,c and that EndKb(PD(2A)r,c )(T ) ∼= (D(2B)r,c)op. Viewing T as a
graded object and calculating EndgrKb(PD(2A)r,c )(T ) as a graded vector space
will give us a grading on D(2B)r,c.

From HomgrKb(PD(2A)r,c )(T1, T1) ∼=
⊕r

t=0 k〈−td〉 we have deg(η) = d.

To calculate HomgrKb(PD(2A)r,c )(T1, T0) notice that this space is isomor-
phic to HomgrD(2A)r,c(P1, ker(γ, γα)). Non-zero maps in the latter space
have to map topP1 to socP1〈−d3〉, or to socP1〈−(d1 + d3)〉. This gives us
that

HomgrKb(PD(2A)r,c )(T1, T0) ∼= k〈−(rd+ d3)〉 ⊕ k〈−(rd+ d1 + d3)〉.

Since the only non-zero paths in the quiver of D(2B)r,c that start at vertex 1
and end at vertex 0 are γ and γα, we have

{deg(γ), deg(γα)} = {rd+ d3, rd+ d1 + d3}.

To calculate HomgrKb(PD(2A)r,c )(T0, T1) notice that non-zero maps in this
space have to map P1〈−d3〉 or P1〈−(d1 + d3)〉 onto P1. It follows that

HomgrKb(PD(2A)r,c )(T0, T1) ∼= k〈d3〉 ⊕ k〈d1 + d3〉.

Since the only non-zero paths in the quiver of D(2B)r,c that start at vertex
0 and end at vertex 1 are β and αβ, we have

{deg(β), deg(αβ)} = {−d3,−d1 − d3}.

There are two choices for deg(α). If deg(α) = d1, then deg(β) = −d1−d3

and deg(γ) = rd+d3. This gives us a grading on D(2B)r,c. If deg(α) = −d1,
then deg(β) = −d3 and deg(γ) = rd+d1+d3. This will not give us a grading
on D(2B)r,c if c = 1, because the relations are not homogeneous. If c = 0,
this grading is the same as the previous one via suitable substitution of the
integers d1, d2, d3, i.e. we get this grading from the former one if we choose
−d1, d1 + d2, d1 + d3 instead of d1, d2 and d3 respectively for the degrees of
the corresponding arrows.
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With respect to the resulting grading, the graded quiver of D(2B)r,c is
given by

0•d1
(( −d1−d3

++ •1
rd+d3

kk d
vv

4.3. Positivity and tightness

Proposition 4.6. The algebra D(2B)r,c is positively graded for every c
and every r. The algebra D(2B)r,c is tightly graded if and only if c = 0 and
r = 3.

Proof. That D(2B)r,c is a positively graded algebra follows easily from
its relations. If deg(α) = 2r, deg(β) = deg(γ) = r and deg(η) = 4, then the
relations are homogeneous.

If D(2B)r,c is tightly graded, then by Lemma 2.12, there are degree 1
elements of the form

tα := α+ a1βγ + a2αβγ,

tβ := β + b1αβ, tγ := γ + b2γα,

tη := η +
r∑
i=2

diη
i,

where a1, a2, b1, b2, d1, . . . , dr are scalars.
It follows that α2 = t2α is a homogeneous element of degree 2, and αβγ

is homogeneous of degree 3. If c = 1, then this leads to a contradiction. If
c = 0, then from γαβ = tγtαtβ and ηr = trη, we see that r = 3.

Proposition 4.7. The algebra D(2A)r,0 is tightly graded for every r.
The algebra D(2A)r,1 is positively graded if and only if r ≤ 2. The algebras
D(2A)1,1 and D(2A)2,1 are not tightly graded.

Proof. If r = 0, then it is obvious that if we put the arrows of the
quiver of D(2A)r,0 in degree 1, then the relations are homogeneous. Hence,
D(2A)r,0 is tightly graded.

If c = 1 and r = 1, then if deg(α) = 2, deg(β) = 1 and deg(γ) = 1 we
get a positive grading on D(2A)1,1. If c = 1 and r = 2, then if deg(α) = 2,
deg(β) = 0 and deg(γ) = 0, we get a positive grading on D(2A)2,1.

For r > 2, if deg(α) = r, deg(β) = −(r − 2) and deg(γ) = 0, we get a
grading on D(2A)r,1. The graded quiver is given by

0•r
(( 2−r

++ •1
0

kk

This is not a positive grading. Also, this grading is not graded Morita
equivalent to the trivial grading on D(2A)r,1. By Proposition 4.4, any other
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grading on D(2A)r,1 can be obtained from this grading by rescaling and
graded Morita equivalence. When we rescale a grading such that there are
homogeneous elements in both negative and positive degrees, the result-
ing grading still has the same property. Let n0 and n1 be integers and let
EndgrD(2A)r,1(P0〈n0〉⊕P1〈n1〉)op be a graded algebra that is graded Morita
equivalent to the above graded algebra. By Proposition 9.1 in [4], the graded
quiver of EndgrD(2A)r,1(P0〈n0〉 ⊕ P1〈n1〉)op is given by

0•r
(( (2−r)+n0−n1

++ •1
n1−n0

kk

If (2 − r) + n0 − n1 ≥ 0, then n1 − n0 < 0. If n1 − n0 ≥ 0, then
(2 − r) + n0 − n1 < 0. It follows that the resulting grading is not positive.
Hence, if r > 2, then D(2A)r,1 is not positively graded.

To prove that D(2A)2,1 is not tightly graded we start with the grading
on D(2A)2,1 given by the graded quiver

0•1
(( 0

++ •1
0

kk

This grading is not graded Morita equivalent to the trivial grading on
D(2A)2,1. As above, it follows easily that any other grading that is graded
Morita equivalent to this grading is not positive. Hence, D(2A)2,1 is not a
tightly graded algebra.

To prove that D(2A)1,1 is not tightly graded we again use Lemma 2.12.
Assuming that D(2A)1,1 is tightly graded, we infer that α2 is a homogeneous
element of both degree 2 and degree 3, which is impossible.

5. One simple module. Any block with a dihedral defect group and
one isomorphism class of simple modules is Morita equivalent to some alge-
bra from the following family (cf. [8] or [9]):

For a given integer r ≥ 1, let D := D(1C)r be the algebra defined by the
quiver and relations

•α
%%

β
yy

α2 = 0 = β2, (αβ)r = (βα)r.

5.1. Classification of gradings. The relations of D are homogeneous,
regardless of the degrees of α and β. It follows that for any pair of integers
(a, b), we get a grading on D by setting deg(α) = a and deg(β) = b. We
denote this graded algebra by Da,b. When a = b = 1 we get a tight grading
on D. The graded radical layers of the only projective indecomposable Da,b-
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module DD are

S 0

a S S b

a+b S S a+b

2a+b S S 2b+a

...
...

a+(r−1)(a+b) S S b+(r−1)(a+b)

S (a+b)r

where S denotes the only simple D-module.
For a given integer d, the graded algebra EndgrDa,b(D〈d〉)op is graded

Morita equivalent to Da,b by Definition 2.1. But EndgrDa,b(D〈d〉)op ∼= Da,b

as graded algebras. It follows that the only graded algebra which is graded
Morita equivalent to Da,b is Da,b itself. From this we have the following
proposition.

Proposition 5.1. For any pair of integers (a, b) there is a grading Da,b

on D. For different pairs of integers (a, b) and (c, d), the graded algebras
Da,b and Dc,d are not graded Morita equivalent.

It follows from this proposition that the maximal tori in OutK(D) are
isomorphic to Gl

m, where l > 1, for if l ≤ 1, then we would have a unique
grading up to rescaling and graded Morita equivalence on D, which is not
the case.

If ϕ is an arbitrary automorphism in OutK(D), then we can assume that

ϕ(e) = e,

ϕ(α) = a1α+ a2β + a3x,

ϕ(β) = b1α+ b2β + b3y,

where ai, bi ∈ k, and x, y ∈ rad2D. Since ϕ(α2) = ϕ(β2) = 0, we find that
a1a2 = 0 and b1b2 = 0. From ϕ((αβ)r) 6= 0 and ϕ((βα)r) 6= 0 it follows that
either a1 6= 0 6= b2 and a2 = b1 = 0, or a2 6= 0 6= b1 and a1 = b2 = 0. The
action of ϕ on radD/rad2D is given by matrices of the form(

a1 0
0 b2

)
or

(
0 b1

a2 0

)
.

It now follows easily (one can see this directly or by using Remark 3.5
in [17]) that the maximal tori in OutK(D) are isomorphic to the product of
at most two copies of Gm. Combining this conclusion with the above remarks
shows that the maximal tori in OutK(D) are isomorphic to Gm ×Gm.
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Proposition 5.2. The maximal tori in OutK(D) are isomorphic to G2
m.

Up to graded Morita equivalence the gradings on D are parameterized by Z2

and are in one-to-one correspondence with algebraic group homomorphisms
from Gm to Gm ×Gm.

Proof. Follows from the above discussion and the previous proposition.

6. Summary of the results. In the following table we summarize the
results of this paper. The first three columns tell us respectively if there
exists a non-trivial, a positive and a tight grading on a given block. The
last column gives the isomorphism class of the maximal tori in the group
of outer automorphisms of a given block. Derived equivalence classes are
separated by horizontal lines.

Block Non-trivial Positive Tight Maximal torus

Ar Yes Yes Yes Gm ×Gm

Br Yes Yes Only if r = 1 Gm ×Gm

Cr Yes Yes Only if r = 4 Gm ×Gm

D(2A)r,0 Yes Yes Yes Gm ×Gm

D(2B)r,0 Yes Yes Only if r = 3 Gm ×Gm

D(2A)r,1 Yes Only if r ≤ 2 No Gm

D(2B)r,1 Yes Yes No Gm

D(1C)r Yes Yes Yes Gm ×Gm
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