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MARKOV PRODUCT OF POSITIVE DEFINITE KERNELS AND
APPLICATIONS TO Q-MATRICES OF GRAPH PRODUCTS

BY

NOBUAKI OBATA (Sendai)

Abstract. We show positivity of the Q-matrix of four kinds of graph products: direct
product (Cartesian product), star product, comb product, and free product. During the
discussion we give an alternative simple proof of the Markov product theorem on positive
definite kernels.

1. Introduction. This short paper is motivated by the elegant result
on positive definite kernels due to Bożejko [3]. Although his result is more
general on operator-valued kernels, keeping our purpose in mind we state it
in the following form:

Theorem 1.1 (Bożejko). Let V be a (finite or infinite) set which is the
union of two subsets V1, V2 whose intersection consists of a single point, say
o ∈ V :

V = V1 ∪ V2 , V1 ∩ V2 = {o}.

For i = 1, 2 let Ki be a positive definite (resp. strictly positive definite) kernel
on Vi and assume that K1(o, o) = K2(o, o) = 1. Then the C-valued function
K on V × V defined by

K(x, y) =


K1(x, y) if x, y ∈ V1,
K2(x, y) if x, y ∈ V2,
K1(x, o)K2(o, y) if x ∈ V1, y ∈ V2,
K2(x, o)K1(o, y) if x ∈ V2, y ∈ V1,

is a positive definite (resp. strictly positive definite) kernel on V .

The positive definite kernel K defined in the above theorem is called the
Markov product of K1 and K2. There are many applications. For example,
positivity of the Haagerup states [9] on a free group follows as a direct
consequence. Being valid for an arbitrary underlying set and for positive
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definite operator-valued kernels, Bożejko’s theorem unifies various results on
positive definite kernels (see [3]).

As is well known, various matrices associated with a graph, e.g., the adja-
cency matrix, distance matrix, incidence matrix, Laplacian, transition matrix
and so forth, are keys for algebraic, analytic, or probabilistic approaches to
the structural study of graphs (see e.g., [2, 4, 5, 6, 16] and references cited
therein). The Q-matrix of a graph G = (V,E), defined by

Q = Q(G; q) = [q∂G(x,y)]x,y∈V , q ∈ C,

where ∂G(x, y) stands for the graph distance between two vertices, is also
worthy of attention. It defines the q-deformed vacuum states and plays an
interesting role in (asymptotic) spectral analysis of graphs along with quan-
tum probability theory [10, 11, 12]. However, positivity of the Q-matrix is a
difficult question in general and so a systematic approach is desirable. The
detour join of two graphs is one of the attempts [15]. In this paper we discuss
the positivity of the Q-matrix in connection with four kinds of graph prod-
ucts: direct product (Cartesian product), star product, comb product and
free product. It is noteworthy that these four graph products are related to
four concepts of independence in quantum probability theory, namely, com-
mutative independence, Boolean independence, monotone independence, and
free independence (see, e.g., [11]).

This paper is organized as follows: In Section 2 we collect basic notions
and notations. In Section 3 we give an alternative simple proof of Bożejko’s
theorem. In Section 4 we recall basic properties of Q-matrices. Finally in
Section 5 we prove the positivity of the Q-matrices of graph products.

2. Positive definite kernels. In order to avoid confusion we assemble
some notions and notations. Let V be a non-empty (finite or infinite) set.
We denote by C(V ) the space of C-valued functions on V and by C0(V ) the
subspace of those with finite supports. For f, g ∈ C(V ) we define

〈f, g〉 =
∑
x∈V

f(x) g(x),

whenever the sum is absolutely convergent. We always assume that C0(V )
is a pre-Hilbert space equipped with the inner product defined above.

A C-valued function K defined on V ×V is called a kernel on V . A kernel
K is identified with a linear operator from C0(V ) into C(V ) (denoted by the
same symbol) in the usual manner:

Kf(x) =
∑
y∈V

K(x, y)f(y), f ∈ C0(V ).

Motivated by the above expression, we sometimes employ a matrix repre-
sentation K = [K(x, y)]x,y∈V .
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Definition 2.1. A kernel K is called positive definite (abbr. pd) if

〈f, Kf〉 =
∑

x,y∈V

f(x) K(x, y)f(y) ≥ 0 for all f ∈ C0(V ).

It is called strictly positive definite (abbr. spd) if

〈f, Kf〉 =
∑

x,y∈V

f(x) K(x, y)f(y) > 0 for all f ∈ C0(V ), f 6= 0.

Let K be a kernel on V . For a non-empty subset W ⊂ V , we denote by
K�W the restriction of K to W ×W . Obviously, if K is a pd (or spd) kernel,
then so are all restrictions. In particular, if W is a finite set, K�W is regarded
as a positive definite (resp. strictly positive definite) matrix and hence it is
hermitian symmetric with non-negative (resp. positive) eigenvalues.

The following criterion, which is straightforward by definition, will be
repeatedly used below.

Lemma 2.2. A kernel K on V is pd (resp. spd) if there exists a sequence
of finite subsets W1 ⊂W2 ⊂ · · · ⊂ V with V =

⋃
n Wn such that K�Wn

is pd
(resp. spd) for all n = 1, 2, . . . .

For further properties of positive definite kernels, see, e.g., [7, 13].

3. A simple proof of Theorem 1.1. Let K1 and K2 be kernels on
V1 and V2, respectively. The tensor product K1 ⊗K2 is a kernel on V1 × V2

defined by

(K1 ⊗K2)((x1, y1), (x2, y2)) = K1(x1, x2)K2(y1, y2)

for (x1, y1), (x2, y2) ∈ V1 × V2. Note that K1 ⊗K2 is identified with a linear
operator from C0(V1)⊗ C0(V2) ∼= C0(V1 × V2) into C(V1 × V2).

We start with the following fairly obvious result.

Theorem 3.1. Let K1 and K2 be pd (resp. spd) kernels on V1 and V2,
respectively. Then K = K1 ⊗K2 is a pd (resp. spd) kernel on V = V1 × V2.

Proof. By Lemma 2.2, it is sufficient to prove the assertion when V1 and
V2 are finite sets, i.e., when K1 and K2 are matrices (of finite orders). But
the assertion for matrices is well known and easy to show, for example by
diagonalization (see, e.g., [13, Chap. 4]).

Proof of Theorem 1.1. We only prove the case where K1 and K2 are
positive definite kernels on V1 and V2, respectively. The argument for strictly
positive definite kernels is parallel. Let X = V1 × V2 and set

Ṽ = {(x, o2) : x ∈ V1} ∪ {(o1, y) : y ∈ V2}.
Since K1 ⊗ K2 becomes a positive definite kernel on X by Theorem 3.1,
so is the restriction (K1 ⊗K2)�Ṽ . On the other hand, through the natural
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bijection between Ṽ and V , we see that (K1 ⊗K2)�Ṽ = K. Therefore, K is
a positive definite kernel on V .

4. Q-matrices. By a graph we mean a pair G = (V,E), where V is a
non-empty (finite or infinite) set and E ⊂ {{x, y} : x, y ∈ V, x 6= y}. An
element of V is called a vertex and one in E an edge. We write x ∼ y if
{x, y} ∈ E. A finite sequence of vertices x0, x1, . . . , xn ∈ V is called a walk
connecting x, y ∈ V if

x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn = y.

In this case n is called the length of the walk. A graph is called connected if
any two vertices x, y ∈ V , x 6= y, are connected by a walk. For a connected
graph G = (V,E) the distance between x, y ∈ V , x 6= y, is defined to be the
shortest length of a walk connecting them, and is denoted by ∂G(x, y). By
definition ∂G(x, x) = 0 for all x ∈ V .

Throughout this paper a graph can be finite or infinite, but is always
assumed to be connected. The Q-matrix of a graph G = (V,E) is defined by

Q = Q(G; q) = [q∂G(x,y)]x,y∈V , q ∈ C.

By definition the diagonal elements of Q(G; q) are 1 for all q. We see easily
that if G is non-trivial, i.e., |V | ≥ 2, then Q(G; q) can be pd only when
−1 ≤ q ≤ 1. Accordingly, we set

q̃[G] = {−1 ≤ q ≤ 1 : Q(G; q) is pd},
q[G] = {−1 ≤ q ≤ 1 : Q(G; q) is spd}.

It is noted that q[G] ⊂ q̃[G] and q̃[G] is a closed subset of [−1, 1].
Here are simple examples: For a complete graph Kn (n ≥ 2), we have

q[Kn] =
(
− 1

n− 1
, 1
)

, q̃[Kn] =
[
− 1

n− 1
, 1
]
.

For a complete bipartite graph Km,n (2 ≤ m ≤ n) we have

q(Km,n) =
(
− 1√

(m− 1)(n− 1)
,

1√
(m− 1)(n− 1)

)
,

q̃(Km,n) =
[
− 1√

(m− 1)(n− 1)
,

1√
(m− 1)(n− 1)

]
∪ {−1, 1}.

For the proofs and further examples, see [11, 15].
We close this section with the following simple fact.

Lemma 4.1. Let G = (V,E) be a graph and H = (W, F ) a subgraph,
i.e., H is a graph with W ⊂ V and F ⊂ E. Assume that both G and H are
connected. If H is isometrically embedded in G, i.e.,

∂H(x, y) = ∂G(x, y), x, y ∈W,
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then Q(H; q) = Q(G; q)�W and

q[G] ⊂ q[H], q̃[G] ⊂ q̃[H].

5. Graph products. To determine q[G] and q̃[G] is a difficult question
in general. When a graph G is composed of two graphs G1 and G2 in some
way, we may expect that the positivity of the Q-matrix of G would be in-
herited from that of the Q-matrices of G1 and G2. In this line the concept
of detour join of two graphs is introduced in [15]. Our purpose here is to
discuss four kinds of graph products: direct product (Cartesian product),
star product, comb product, and free product.

In the following let G1 = (V1, E1) and G2 = (V2, E2) be connected graphs.

5.1. Direct product (Cartesian product). We set V = V1 × V2 and

E =

{
{(x1, y1), (x2, y2)} :

(i) x1 = x2 and {y1, y2} ∈ E2,
or (ii) {x1, x2} ∈ E1 and y1 = y2

}
.

Then G = (V,E) is called the direct product or Cartesian product of G1 and
G2, and is denoted by G = G1 ×G2.

Lemma 5.1. For two graphs G1 = (V1, E1) and G2 = (V2, E2) we have

∂G1×G2((x1, y1), (x2, y2)) = ∂G1(x1, x2) + ∂G2(y1, y2)

for x1, x2 ∈ V1 and y1, y2 ∈ V2.

Proof. Straightforward and omitted.

Lemma 5.2. Q(G1 ×G2 ; q) = Q(G1; q)⊗Q(G2; q).

Proof. For simplicity we set Q = Q(G1 × G2; q), Q1 = Q(G1; q) and
Q2 = Q(G2; q). By definition we have

Q((x1, y1), (x2, y2)) = q∂G1×G2
((x1,y1),(x2,y2)),

Q1(x1, x2) = q∂G1
(x1,x2), Q2(y1, y2) = q∂G2

(y1,y2).

Then by Lemma 5.1 we see that

Q((x1, y1), (x2, y2)) = Q1(x1, x2)Q2(y1, y2),

which means that Q = Q1 ⊗Q2.

Theorem 5.3. For the direct product G1 ×G2 we have

q[G1 ×G2] = q[G1] ∩ q[G2], q̃[G1 ×G2] = q̃[G1] ∩ q̃[G2].

Proof. For simplicity we set Q = Q(G1 × G2; q), Q1 = Q(G1; q) and
Q2 = Q(G2; q). We only show the first relation, for the second is proved in
a parallel manner.

Take q ∈ q[G1] ∩ q[G2]. Since both Q1 and Q2 are pd, so is Q1 ⊗ Q2

by Theorem 3.1. On the other hand, Q = Q1 ⊗ Q2 by Lemma 5.2. Hence
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q ∈ q[G1×G2], so that q[G1]∩ q[G2] ⊂ q[G1×G2]. For the converse, we first
note that, taking a cross section, G1 and G2 are isometrically embedded
in G = G1 × G2. Then applying Lemma 4.1, we see that q[G1 × G2] ⊂
q[G1] ∩ q[G2].

5.2. Star product. Assume that two graphs G1 and G2 are equipped
with distinguished vertices o1 and o2, respectively. The star product is defined
to be a graph obtained by gluing G1 and G2 at the vertices o1 and o2. The
star product is denoted by G1 o1 ?o2 G2 or simply by G1 ? G2. For relevant
discussion see [14].

Lemma 5.4. The star product G = G1?G2 is identified with the subgraph
of the direct product G1 ×G2 induced (or spanned) by the vertices

V = {(o1, y) : y ∈ V2} ∪ {(x, o2) : x ∈ V1}.
Moreover, G = G1 ? G2 is isometrically embedded in G1 ×G2.

Proof. Straightforward by definition.

Theorem 5.5. For the star product G1 ? G2 we have

q[G1 ? G2] = q[G1] ∩ q[G2], q̃[G1 ? G2] = q̃[G1] ∩ q̃[G2].

Proof. For simplicity we set Q = Q(G1 ? G2; q), Q1 = Q(G1; q) and
Q2 = Q(G2; q). We only show the first relation.

Combining Lemmas 5.4 and 4.1, we have

q[G1 ? G2] ⊃ q[G1 ×G2] = q[G1] ∩ q[G2],

where Theorem 5.3 is also taken into account. On the other hand, G1 and
G2 are isometrically embedded in G1 ? G2 in the obvious manner. It then
follows from Theorem 4.1 that

q[G1 ? G2] ⊂ q[G1] ∩ q[G2].

The assertion follows from the above two inclusion relations.

The positivity of the Haagerup states on a free group is a simple corollary.
In fact, it is sufficient to consider a finite tree T . Since T is obtained by
repeated application of the star product of K2, appealing to Theorem 5.5 we
obtain

q[T ] = q[K2] = (−1, 1), q̃[T ] = q̃[K2] = [−1, 1].

This argument, originally due to Bożejko [3], not only gave an alternative
simple proof to Haagerup [9] but also broadened applications and indicated
a further generalization.

5.3. Comb product. Assume that G2 is equipped with a distinguished
vertex o2 ∈ V2. We prepare |V1| copies of G2. The comb product is defined
to be the graph obtained by gluing each vertex of G1 with a copy of G2

at the vertex o2. The comb product is denoted by G1 Bo2 G2 or simply by
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G1 B G2. By definition, G1 B G2 is identified with a subgraph (but not an
induced subgraph) of G1 ×G2.

Theorem 5.6. For the comb product G1 B G2 we have

q[G1 B G2] = q[G1] ∩ q[G2], q̃[G1 B G2] = q̃[G1] ∩ q̃[G2].

Proof. Since the comb product G1 B G2 is obtained by repeated appli-
cation of star product, this a direct consequence of Theorem 5.5.

5.4. Free products. Given two graphs G1 and G2 with distinguished
vertices, the free product G1 ∗G2 is defined. The construction shares a com-
mon spirit with free product groups. However, the formal definition is lengthy
and omitted (see, e.g., [1, 8]).

Theorem 5.7. For the free product G1 ∗G2 we have

q[G1 ∗G2] = q[G1] ∩ q[G2], q̃[G1 ∗G2] = q̃[G1] ∩ q̃[G2].

Proof. Wemay choose an increasing sequence {Hn} of induced subgraphs
of G1 ∗G2 such that (i) Hn is obtained by finitely many applications of star
product of G1 and G2; (ii) Hn is isometrically embedded in G1 ∗ G2; and
(iii) G1 ∗G2 is the inductive limit of {Hn}. For example, Hn is taken to be
the graph spanned by the vertices corresponding to the words of length ≤ n.
Then by Theorem 5.5 we obtain

q[G1 ∗G2] = q[Hn] = q[G1] ∩ q[G2], q̃[G1 ∗G2] = q̃[Hn] = q̃[G1] ∩ q̃[G2],

as desired.
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