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CHARACTER INNER AMENABILITY OF CERTAIN
BANACH ALGEBRAS

BY

H. R. EBRAHIMI VISHKI and A. R. KHODDAMI (Mashhad)

Abstract. Character inner amenability for a certain class of Banach algebras includ-
ing projective tensor products, Lau products and module extensions is investigated. Some
illuminating examples are given.

1. Introduction. The concept of left amenability for a Lau algebra
(a predual of a von Neumann algebra for which the identity of the dual
is a multiplicative linear functional, [L]) has been extended to arbitrary
Banach algebras by introducing the notion of ϕ-amenability in Kaniuth
et al. [KLP1]. A Banach algebra A is called ϕ-amenable (ϕ ∈ 4(A) =
the spectrum of A) if there exists an m ∈ A∗∗ satisfying m(ϕ) = 1 and
m(f · a) = ϕ(a)m(f) (a ∈ A, f ∈ A∗), and character amenable if it is
ϕ-amenable for each ϕ ∈ 4(A). Many aspects of ϕ-amenability have been
investigated in [KLP2, M2, HMT]. Recently Jabbari et al. [JMZ] have in-
troduced the ϕ-version of inner amenability. A Banach algebra A is said to
be ϕ-inner amenable if there exists an m ∈ A∗∗ satisfying m(ϕ) = 1 and
m(f · a) = m(a · f) (f ∈ A∗, a ∈ A). Such an m will sometimes be referred
to as a ϕ-inner mean, and A is said to be character inner amenable if it is
ϕ-inner amenable for every ϕ ∈ 4(A). As remarked in [JMZ, Remark 2.4],
this concept considerably generalizes the notion of inner amenability for Lau
algebras which was introduced by Nasr-Isfahani [N]. The authors of [JMZ]
also gave several characterizations of ϕ-inner amenability. For instance, as
in the case of ϕ-amenability in [KLP1, Theorem 1.4], they showed that a
ϕ-inner mean is in fact some w∗-cluster point of a bounded net (aα) in A
satisfying ‖aαa − aaα‖ → 0 for all a ∈ A and ϕ(aα) = 1 for all α [JMZ,
Theorem 2.1].

In this paper, we are going to investigate the character inner amenabil-
ity for certain products of Banach algebras including the projective tensor
product A ⊗̂B, Lau product A×θ B and the module extension A⊕X. For
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instance, we show that the projective tensor product A ⊗̂ B is character
inner amenable if and only if both A and B have this property.

2. Preliminary results and examples. Before we proceed to the
results we need some preliminaries. The second dual A∗∗ of a Banach algebra
A can be made into a Banach algebra under each of the Arens products �

and ♦ which are defined as follows. For a, b ∈ A, f ∈ A∗ and m,n ∈ A∗∗,
〈m � n, f〉 = 〈m,n · f〉, 〈n · f, a〉 = 〈n, f · a〉, 〈f · a, b〉 = 〈f, ab〉;

and

〈f,m ♦ n〉 = 〈f ·m,n〉, 〈a, f ·m〉 = 〈a · f,m〉, 〈b, a · f〉 = 〈ba, f〉.
We commence with a definition from [JMZ].

Definition 2.1. Let A be a Banach algebra and let ϕ ∈ 4(A). Then A
is called ϕ-inner amenable if there exists an m ∈ A∗∗ such that m(ϕ) = 1
and m � a = a � m (a ∈ A). We call such an m a ϕ-inner mean. A Banach
algebra A is called character inner amenable if it is ϕ-inner amenable for all
ϕ ∈ 4(A).

The next straightforward characterization of ϕ-inner amenability (see
[JMZ, Theorem 2.1] which is inspired from [KLP1, Theorem 1.4] and [E,
LP1, LP2]) will be frequently used.

Proposition 2.2. Let A be a Banach algebra and ϕ ∈ 4(A). Then the
following statements are equivalent.

(i) A is ϕ-inner amenable.
(ii) There exists a bounded net (aα) in A such that ‖aaα − aαa‖ → 0

for all a ∈ A and ϕ(aα) = 1 for all α.
(iii) There exists a bounded net (aα) in A such that ‖aaα − aαa‖ → 0

for all a ∈ A and ϕ(aα)→ 1.

Examples 2.3. (i) Every Banach algebra with a bounded approximate
identity (eα) is character inner amenable. Indeed, one can verify that ‖aeα−
eαa‖ → 0 and ϕ(eα)→ 1 for each ϕ ∈ 4(A).

(ii) Every commutative Banach algebra is character inner amenable.
(iii) Let A =

{(
0 a
0 b

)
: a, b ∈ C

}
and define ϕ : A → C by ϕ

((
0 a
0 b

))
= b.

A direct verification shows that there is no bounded net (aα) in A satisfying
the conditions of Proposition 2.2. Therefore A is not ϕ-inner amenable.

(iv) Given a Banach space A, fix a non-zero ϕ ∈ A∗ with ‖ϕ‖ ≤ 1. Then
the product a · b = ϕ(a)b turns A into a Banach algebra with 4(A) = {ϕ}.
Trivially A has a left identity (indeed, every e ∈ A with ϕ(e) = 1 is a left
identity), while it has no bounded approximate identity in the case where
dim(A) > 1. In this case A is not ϕ-inner amenable. Indeed, if m is a
ϕ-inner mean for A then m(ϕ) = 1 and m � a = a � m for all a ∈ A. But a
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simple calculation shows that m�a = m(ϕ)a and a�m = ϕ(a)m. Therefore
a = ϕ(a)m for each a ∈ A, that is, dim(A) = 1.

(v) Let the Banach algebra A of (iv) be generated by two elements a and
b, that is, dim(A) = 2, and let ϕ ∈ A∗ be such that ϕ(a) = 1 and ϕ(b) = 0.
If I is the subspace generated by b then I is a closed ideal for which I and
A/I are character inner amenable; however, A itself is not.

Note that, as [JMZ, Theorem 2.8] demonstrates, if A is character inner
amenable then so is A/I for each closed ideal I of A. However, I may not be
character inner amenable; for example, the unitization of a non-character
inner amenable Banach algebra is character inner amenable.

(vi) For a reflexive Banach algebra A with ϕ ∈ 4(A) it is easy to verify
that A is ϕ-inner amenable if and only if Z(A) ∩ (A − kerϕ) 6= ∅, where
Z(A) is the algebraic center of A.

3. Projective tensor product A ⊗̂ B. Let A ⊗̂ B be the projective
tensor product of two Banach algebras A and B. For f ∈ A∗ and g ∈ B∗,
let f ⊗ g denote the element of (A⊗̂B)∗ satisfying (f ⊗ g)(a⊗ b) = f(a)g(b)
(a ∈ A, b ∈ B). Recall that

4(A ⊗̂B) = {ϕ⊗ ψ : ϕ ∈ 4(A), ψ ∈ 4(B)}.
In the next result, as in the case of character amenability in [KLP1, The-
orem 3.3], we investigate the character inner amenability of A ⊗̂ B. It is
worth mentioning that our method of proof provides an alternative proof
for [KLP1, Theorem 3.3] which does not rely on derivation techniques.

Theorem 3.1. Let A and B be Banach algebras and let ϕ ∈ 4(A),
ψ ∈ 4(B). Then A ⊗̂ B is (ϕ ⊗ ψ)-inner amenable if and only if A is ϕ-
inner amenable and B is ψ-inner amenable. In particular, A⊗̂B is character
inner amenable if and only if both A and B are character inner amenable.

Proof. Let m ∈ (A ⊗̂B)∗∗ be a (ϕ⊗ψ)-inner mean. Then m(ϕ⊗ψ) = 1
and

m((f ⊗ ψ) · (a⊗ b)) = m((a⊗ b) · (f ⊗ ψ)) (f ∈ A∗, a ∈ A, b ∈ B).

Define mϕ : A∗ → C by mϕ(f) = m(f ⊗ ψ). Then mϕ(ϕ) = m(ϕ⊗ ψ) = 1.
Choose b0 ∈ B such that ψ(b0) = 1 and let f ∈ A∗ and a ∈ A. Then

mϕ(f · a) = m(f · a⊗ ψ) = m(f · a⊗ ψ · b0)
= m((f ⊗ ψ) · (a⊗ b0)) = m((a⊗ b0) · (f ⊗ ψ))
= m(a · f ⊗ b0 · ψ) = m(a · f ⊗ ψ) = mϕ(a · f).

It follows that A is ϕ-inner amenable, and similarly B is ψ-inner amenable.
For the converse, let A be ϕ-inner amenable and B ψ-inner amenable.

Then there exist bounded nets (aα) in A and (bβ) in B such that ϕ(aα) = 1,
‖aaα − aαa‖ → 0 (a ∈ A) and ψ(bβ) = 1 ‖bbβ − bβb‖ → 0, (b ∈ B). The net
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(aα⊗ bβ) is bounded in A ⊗̂B and (ϕ⊗ψ)(aα⊗ bβ) = ϕ(aα)ψ(bβ) = 1. Now
suppose ‖aα‖ ≤M1, ‖bβ‖ ≤M2 and let F =

∑N
j=1 cj ⊗ dj ∈ A⊗B. Then

‖F (aα ⊗ bβ)− (aα ⊗ bβ)F‖

=
∥∥∥ N∑
j=1

[(cjaα − aαcj)⊗ djbβ + aαcj ⊗ (djbβ − bβdj)]
∥∥∥

≤
N∑
j=1

M2‖dj‖ ‖cjaα − aαcj‖+
N∑
j=1

M1‖cj‖ ‖djbβ − bβdj‖.

Since ‖cjaα−aαcj‖ → 0 and ‖djbβ− bβdj‖ → 0 (1 ≤ j ≤ N), it follows that
‖F (aα ⊗ bβ)− (aα ⊗ bβ)F‖ → 0.

Now let w ∈ A ⊗̂ B, so there exist sequences {cj} ⊆ A and {dj} ⊆ B
such that w =

∑∞
j=1 cj⊗dj with

∑∞
j=1 ‖cj‖ ‖dj‖ < ∞. Let ε > 0 be given,

and choose N ∈ N such that
∑∞

j=N+1 ‖cj‖ ‖dj‖ < ε/4M1M2. Put F =∑N
j=1 cj ⊗ dj . As ‖F (aα ⊗ bβ)− (aα ⊗ bβ)F‖ → 0, there exists (α0, β0) such

that

‖F (aα ⊗ bβ)− (aα ⊗ bβ)F‖ < ε/2 for all (α, β) ≥ (α0, β0).

Now for such (α, β),

‖w(aα ⊗ bβ)− (aα ⊗ bβ)w‖

=
∥∥∥F (aα ⊗ bβ)− (aα ⊗ bβ)F +

∞∑
j=N+1

[cjaα ⊗ djbβ − aαcj ⊗ bβdj ]
∥∥∥

≤ ‖F (aα ⊗ bβ)− (aα ⊗ bβ)F‖+ 2M1M2

∞∑
j=N+1

‖cj‖ ‖dj‖

< ε/2 + (2M1M2 · ε/4M1M2) = ε.

Hence ‖w(aα⊗ bβ)− (aα⊗ bβ)w‖ → 0. Applying Proposition 2.2 shows that
A ⊗̂B is (ϕ⊗ ψ)-inner amenable.

4. The Lau product A ×θ B. Let A and B be two Banach algebras
with 4(B) 6= ∅. For a θ ∈ 4(B) the θ-Lau product A×θ B is defined as the
cartesian product A×B with the algebra multiplication

(a, b) · (c, d) = (ac+ θ(d)a+ θ(b)c, bd)

and with the norm ‖(a, b)‖ = ‖a‖ + ‖b‖. This product was first introduced
by Lau [L] for Lau algebras and then by Monfared [M1] for the general case.
A×θ B is a Banach algebra and it is shown in [M1, Proposition 2.4] that

4(A×θ B) = (4(A)× {θ}) ∪ ({0} ×4(B)).
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In a natural way the dual space (A ×θ B)∗ can be identified with A∗ × B∗
via (f, g)((a, b)) = f(a) + g(b). Recall that the dual norm on A∗ × B∗ is
‖(f, g)‖ = max{‖f‖, ‖g‖}. Also if A∗∗, B∗∗ and (A ×θ B)∗∗ are equipped
with their first Arens products then (A×θB)∗∗ = A∗∗×θB∗∗ as an isometric
isomorphism. Also for (m,n), (p, q) ∈ (A ×θ B)∗∗ we have (m,n) � (p, q) =
(m � p+ n(θ)p+ q(θ)m,n � q); see [M1, Proposition 2.12].

The next result, which extends [N, Proposition 4.2], studies character
inner amenability of A×θ B.

Theorem 4.1. Let ϕ ∈ 4(A) and ψ ∈ 4(B). Then

(i) A ×θ B is (ϕ, θ)-inner amenable if and only if either A is ϕ-inner
amenable or B is θ-inner amenable.

(ii) A×θB is (0, ψ)-inner amenable if and only if B is ψ-inner amenable.
(iii) A ×θ B is character inner amenable if and only if B is character

inner amenable.

Proof. (i) Let A×θB be (ϕ, θ)-inner amenable. Then there exists (m,n)
∈ A∗∗×θB∗∗ such that (m,n)((ϕ, θ)) = 1 and (m,n)�(a, b) = (a, b)�(m,n)
for all (a, b) ∈ A×θ B. It follows that m(ϕ) + n(θ) = 1, m � a = a � m and
n � b = b � n for all a ∈ A and b ∈ B. Now if n(θ) = 0 then m(ϕ) = 1 and
so m is a ϕ-inner mean for A. If n(θ) 6= 0 then n

n(θ) � b = b � n
n(θ) , that is,

n
n(θ) is a θ-inner mean for B.

For the converse, suppose that m is a ϕ-inner mean for A; then trivially
(m, 0) is a (ϕ, θ)-inner mean for A ×θ B. The same argument is used for
the case where B is ψ-inner amenable. (ii) needs a similar proof, and (iii)
follows trivially from (i) and (ii).

Now we turn to the question of character inner amenability of the Banach
algebras A⊕∞B and A⊕pB. Recall that these are equipped with the usual
direct product multiplication and the norms ‖(a, b)‖ = max{‖a‖, ‖b‖} and
‖(a, b)‖ = (‖a‖p + ‖b‖p)1/p, respectively. A direct verification shows that

4(A⊕p B) = (4(A)× {0}) ∪ ({0} ×4(B)), 1 ≤ p ≤ ∞,
from which we get the next result.

Proposition 4.2. Let A and B be Banach algebras and let 1 ≤ p ≤ ∞.
Then A ⊕p B is character inner amenable if and only if both A and B are
character inner amenable.

5. Module extension and triangular Banach algebras. For a Ba-
nach algebra A and a Banach A-module X let A⊕X be the module extension
Banach algebra which is equipped with the algebra product (a, x) · (b, y) =
(ab, ay + xb) (a, b ∈ A, x, y ∈ X) and the norm ‖(a, x)‖ = ‖a‖ + ‖x‖. The
second dual (A⊕X)∗∗ can be identified with A∗∗⊕1X

∗∗ as a Banach space,
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and it is not difficult to verify that the first Arens product on (A ⊕ X)∗∗

is given by (m,λ) � (n, µ) = (m � n,mµ + λn). Some aspects of module
extension Banach algebras have been discussed in [Z].

Let A and B be Banach algebras and let X be a Banach A-B-bimodule,
that is, a left A-module and a right B-module satisfying

‖axb‖ ≤ ‖a‖ ‖x‖ ‖b‖ (a ∈ A, b ∈ B x ∈ X).

The corresponding triangular Banach algebra

τ =
{(

a x

0 b

)
: a ∈ A, x ∈ X, b ∈ B

}
is equipped with the norm

∥∥( a x
0 b

)∥∥ = ‖a‖+ ‖x‖+ ‖b‖ and the usual 2× 2-
matrix operations. The Arens products on the second dual of τ are studied
in [FM]. Recall that the class of module extension Banach algebras includes
the triangular Banach algebras. Indeed, τ can be identified with the module
extension (A⊕1B)⊕X in which X is considered as an A⊕1B-module under
the operations (a, b) · x = ax and x · (a, b) = xb.

Proposition 5.1. Let A be a Banach algebra and X be a Banach A-
module. Then for the module extension Banach algebra A⊕X, 4(A⊕X) =
4(A) × {0}. In particular, for the triangular Banach algebra τ, 4(τ) =
4(A⊕1 B)× {0}.

Proof. Trivially 4(A)×{0} ⊆ 4(A⊕X). Let (ϕ,ψ) ∈ 4(A⊕X). Then
for a, b ∈ A, (ϕ,ψ)((a, 0)(b, 0)) = (ϕ,ψ)((a, 0))(ϕ,ψ)((b, 0)). It follows that
ϕ(ab) = ϕ(a)ϕ(b) and also

0=(ϕ,ψ)((0, x)(0, y))=(ϕ,ψ)((0, x))(ϕ,ψ)((0, y))=ψ(x)ψ(y) (x, y ∈ X).

So ψ = 0 and finally ϕ ∈ 4(A). Hence 4(A⊕X) = 4(A)×{0}. The second
part is clear.

The next result on the character amenability of A⊕X and τ is a direct
application of [KLP1, Theorem 1.4] to the module extension A⊕X.

Proposition 5.2. Let A be a Banach algebra, X be a Banach A-module
and let ϕ ∈ 4(A). Then A⊕X is (ϕ, 0)-amenable if and only if there exists
a bounded net (aα, xα) in A⊕X satisfying

(i) ‖aaα − ϕ(a)aα‖ → 0 for all a ∈ A and ϕ(aα) = 1 for all α,
(ii) ‖axα − ϕ(a)xα‖ → 0 for all a ∈ A,

(iii) ‖xaα‖ → 0 for all x ∈ X.

Corollary 5.3.

(i) If A⊕X is character amenable then so is A. The converse also holds
in the case where XA = 0.
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(ii) If τ is character amenable then both A and B are character amenable.
The converse also holds in the case where XB = 0.

Similar to Proposition 5.2 we have the next result, which is based on
Proposition 2.2, characterizing the character inner amenability of A⊕X.

Proposition 5.4. Let A be a Banach algebra, X be a Banach A-module
and let ϕ ∈ 4(A). Then A⊕X is (ϕ, 0)-inner amenable if and only if there
exists a bounded net (aα, xα) in A⊕X satisfying

(i) ‖aaα − aαa‖ → 0 for all a ∈ A and ϕ(aα) = 1 for all α,
(ii) ‖xaα − aαx‖ → 0 for all x ∈ X,
(iii) ‖axα − xαa‖ → 0 for all a ∈ A.

Corollary 5.5. If A⊕X is character inner amenable then A is char-
acter inner amenable. In particular if τ is character inner amenable then
both A and B are character inner amenable.
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