VOL. 122

2011

NO. 2

A NOTE ON RINGS OF CONSTANTS OF DERIVATIONS IN INTEGRAL DOMAINS

ΒY

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. We observe that the characterization of rings of constants of derivations in characteristic zero as algebraically closed subrings also holds in positive characteristic after some natural adaptation. We also present a characterization of such rings in terms of maximality in some families of rings.

1. Introduction. Throughout this paper by a ring we mean a commutative ring with unity, and by an integral domain (briefly, a domain) we mean a ring without nonzero zero divisors. If R is a domain, then R_0 denotes its field of fractions. If $K \subseteq L$ is a field extension, then (L:K) is its degree.

Let A be a domain and let $d: A \to A$ be a derivation. The kernel of d is denoted by A^d and is called the *ring of constants* of d. If char A = p > 0, then $A^p \subseteq A^d$, where $A^p = \{a^p; a \in A\}$. Let K be a subring of A. If d is a K-derivation, then A^d is a K-subalgebra of A. If char A = p > 0 and d is a K-derivation, then $KA^p \subseteq A^d$.

Let A be a finitely generated k-domain, where k is a field of characteristic zero. Let R be a k-subalgebra of A. Nowicki ([N1, Theorem 4.1.4]; [N2, Theorem 5.4]) proved that the following conditions are equivalent:

(1) $R = A^d$ for some k-derivation d of A,

(2) R is integrally closed in A and $R_0 \cap A = R$.

Daigle [D] observed that the condition (2) means that R is algebraically closed in A.

In [J3, Theorem 1.1] the present author obtained a positive characteristic analog of the above theorem: if char k = p > 0, then $R = A^d$ for some k-derivation d if and only if $kA^p \subseteq R$ and $R_0 \cap A = R$. He also noted a generalization of this fact for B-derivations, where B is a subalgebra of A such that $A^p \subseteq B$ and A is finitely generated over B (not necessarily over a field) [J1, Theorem 2.5]. In [J2] the author obtained a characterization,

²⁰¹⁰ Mathematics Subject Classification: Primary 13N15; Secondary 13B22.

Key words and phrases: derivation, ring of constants, separably algebraically closed subring.

which is quite similar in form to algebraic closedness: for every $g \in A$ and $a_0, a_1, \ldots, a_{p-1} \in R$, such that $a_i \neq 0$ for some *i*, if $a_{p-1}g^{p-1} + \cdots + a_1g + a_0 = 0$, then $g \in R$. In this note we show how to introduce the notion of separable algebraic closedness of a subring so that Nowicki's characterization holds true in arbitrary characteristic in a more general form, presented in Theorem 3.1.

In Theorem 3.1 we also present a characterization of rings of constants as maximal elements in suitable families of rings. Nowicki and Nagata [NN, Lemma 3.1], [N1, Proposition 5.2.1] proved that for a polynomial $f \in k[x_1, \ldots, x_n]$, where k is a field of characteristic zero, the ring k[f] is integrally closed in $k[x_1, \ldots, x_n]$ if and only if it is a maximal element of the family $\{k[g]; g \in k[x_1, \ldots, x_n]\}$. The author observed in [J2] that there is no direct analog of this property in positive characteristic for rings of constants. However, if we consider a family of subrings $R \subseteq k[x_1, \ldots, x_n]$ such that $k[x_1^p, \ldots, x_n^p] \subseteq R$ and $(R_0 : k(x_1^p, \ldots, x_n^p)) = p$, then maximal elements of this family are exactly rings of constants of k-derivations. It turns out that such families may be constructed for all rings of constants of K-derivations in an arbitrary finitely generated K-domain A.

2. Separably algebraically closed subrings. Daigle [D] introduced the notions of algebraic elements and algebraic closedness for domains of characteristic zero. Let us extend them to domains of arbitrary characteristic introducing separably algebraic elements.

DEFINITION 2.1. Let A be a domain of characteristic $p \ge 0$, and let R be a subring of A. If p = 0, we put $T^p = 1$ and $R_0[T^p] = R_0$.

- (a) An element $a \in A$ is called *separably algebraic* over R if w(a) = 0 for some irreducible polynomial $w(T) \in R_0[T] \setminus R_0[T^p]$.
- (b) The set of all elements of A separably algebraic over R is called the separable algebraic closure of R in A and is denoted by \overline{R}^A .
- (c) A subring R is called *separably algebraically closed* in A if $\overline{R}^A = R$.

The definition of a separably algebraic element of A over R means that this element is separably algebraic over the subfield R_0 as an element of the field A_0 . Observe that irreducibility of the polynomial w(T) is essential only in positive characteristic.

Recall that if char A = 0, then $\overline{R}^A = \overline{R_0}^{A_0} \cap A$ ([D, Exercise 1.2]). In the case of positive characteristic we are interested in subrings containing A^p . In this particular case we have the following.

PROPOSITION 2.2. Let A be a domain of characteristic p > 0. Let R be a subring of A such that $A^p \subseteq R$. Then:

(a) $\overline{R}^A = R_0 \cap A$,

(b) R is separably algebraically closed in A if and only if $R_0 \cap A = R$.

Proof. (a) Every element $a \in R_0 \cap A$, is a root of the irreducible polynomial $w(T) = T - a \in R_0[T] \setminus R_0[T^p]$, so $R_0 \cap A \subseteq \overline{R}^A$.

Now, let $a \in \overline{R}^A$. Then a, as an element of the field A_0 , is separably algebraic over R_0 . On the other hand, a is purely inseparable over R_0 , because $a^p \in R$. Then $a \in R_0$, by [ZS, II.5, Lemma 1]. Therefore, $\overline{R}^A \subseteq R_0 \cap A$, and finally, $\overline{R}^A = R_0 \cap A$.

(b) This follows directly from (a). \blacksquare

3. A characterization of rings of constants. Now we present a generalization of Nowicki's characterization ([N1, Theorem 4.1.4]; [N2, Theorem 5.4]) to the case of arbitrary characteristic. In the case of char K = p > 0, the equivalence $(1) \Leftrightarrow (2)$ below follows from Proposition 2.2(b) and [J1, Theorem 2.5], so it would be enough to note that in the case of char K = 0 the original proof is valid for K being a domain, not necessarily a field. However, it seems of interest to sketch the original proof in the case of arbitrary characteristic. We also present a characterization of rings of constants of derivations as maximal elements in some families of rings.

THEOREM 3.1 ([N1, 4.1.4]; [N2, 5.4]; [D, 1.4]). Let A be a finitely generated K-domain, where K is a domain (of arbitrary characteristic). Let R be a K-subalgebra of A. If char K = p > 0, assume additionally that $A^p \subseteq R$ and put $B = KA^p$. The following conditions are equivalent:

- (1) R is the ring of constants of some K-derivation of A,
- (2) R is separably algebraically closed in A,
- (3) R is a maximal element in one of the following families of rings:

$$\oint \Phi_m = \{R; K \subseteq R \subseteq A, \operatorname{tr} \operatorname{deg}_K R \le m\} \text{ if } \operatorname{char} A = 0,$$

 $\left\{ \Psi_m = \{R; B \subseteq R \subseteq A, (R_0:B_0) \le p^m \} \text{ if char } A = p > 0, \right.$

where m = 0, 1, 2, ...

Proof. (1) \Rightarrow (2). Assume that $R = A^d$ for some K-derivation d of A. Consider an element $a \in A$ such that w(a) = 0 for some irreducible polynomial $w(T) \in R_0[T] \setminus R_0[T^p]$, where in the case of p = 0 we put $T^p = 1$ and $R_0[T^p] = R_0$. We have w'(a)d(a) = d(w(a)) = 0. The polynomial w'(T) is nonzero and of smaller degree than w(T), so $w'(a) \neq 0$. Then d(a) = 0, that is, $a \in R$.

 $(2) \Rightarrow (1)$. Assume that $\overline{R}^A = R$. Put $M = \overline{R_0}^{A_0}$ and consider a K_0 -derivation $\delta \colon A_0 \to A_0$ such that $M = A_0^{\delta}$ ([N1, Theorem 3.3.2]; [N2, Theorem 4.2]; [G, Lemma 2]). Let f_1, \ldots, f_s be generators of A over K. Take

 $w \in A \setminus \{0\}$ such that $w\delta(f_i) \in A$ for every *i*. Put $\delta' = w\delta$; then $\delta'(A) \subseteq A$. Let $d: A \to A$ be the restriction of δ' to A. Then $A^d = A^{\delta'} \cap A = M \cap A$.

We will show that $M \cap A = R$. Obviously $R \subseteq M \cap A$. On the other hand, any element $a \in M \cap A$ is (as an element of A_0) separably algebraic over R_0 . In the sense of Definition 2.1 this means that a is (as an element of A) separably algebraic over R, hence it belongs to R. Finally, we see that $A^d = R$.

 $(2) \Rightarrow (3)$. Assume that $\overline{R}^A = R$. If char A = 0, put tr deg_K R = m, so $R \in \Phi_m$, and consider a ring $S \in \Phi_m$ such that $R \subseteq S$. Then $\overline{R}^A \subseteq \overline{S}^A$. Suppose that $\overline{R}^A \neq \overline{S}^A$ and consider an element $a \in \overline{S}^A \setminus \overline{R}^A$. Since $a \in A$ and $a \notin \overline{R}^A$, a is transcendental over R_0 , so tr deg_K S = tr deg_K $\overline{S}^A >$ tr deg_K R = m; a contradiction with the assumption that $S \in \Phi_m$.

If char A = p > 0, put $(R_0 : B_0) = p^m$, so $R \in \Psi_m$, and consider a ring $S \in \Psi_m$ such that $R \subseteq S$. Then $\overline{R}^A \subseteq \overline{S}^A$. Suppose that $\overline{R}^A \neq \overline{S}^A$ and consider an element $a \in \overline{S}^A \setminus \overline{R}^A$. Then, by Proposition 2.2, $a \in A$, $a \in S_0$ and $a \notin R_0$, so R_0 is properly included in S_0 and $(S_0 : B_0) > (R_0 : B_0) = p^m$; a contradiction with the assumption that $S \in \Psi_m$.

In both cases we obtain $\overline{R}^A = \overline{S}^A$. Hence

$$R \subseteq S \subseteq \overline{S}^A = \overline{R}^A = R,$$

so R = S, that is, R is a maximal element of the family Φ_m , resp. Ψ_m .

 $(3)\Rightarrow(2)$. If char A = 0, assume that R is a maximal element of Φ_m . Recall that $\overline{R}^A = \overline{R_0}^{A_0} \cap A$. Since the field extension $R_0 \subseteq \overline{R_0}^{A_0}$ is algebraic, we have tr deg_K \overline{R}^A = tr deg_K R, so \overline{R}^A is also an element of Φ_m .

If char A = p > 0, assume that R is a maximal element of Ψ_m . We have $\overline{R}^A = R_0 \cap A$ (Proposition 2.2). Therefore $\overline{R}^A \subseteq R_0$ and $(\overline{R}^A)_0 \subseteq R_0$. On the other hand, $R \subseteq \overline{R}^A$, so $R_0 \subseteq (\overline{R}^A)_0$. We see that $(\overline{R}^A)_0 = R_0$, so \overline{R}^A is also an element of Ψ_m .

In both cases, since $R \subseteq \overline{R}^A$, we have $R = \overline{R}^A$, by the maximality of R.

REFERENCES

- [D] D. Daigle, Locally nilpotent derivations, lecture notes for the September School of Algebraic Geometry, Łukęcin, 2003 (unpublished); aix1.uottawa.ca/~ddaigle/.
- [G] M. Gerstenhaber, On infinite inseparable extensions of exponent one, Bull. Amer. Math. Soc. 71 (1965), 878–881.
- [J1] P. Jędrzejewicz, Eigenvector p-bases of rings of constants of derivations, Comm. Algebra 36 (2008), 1500–1508.
- [J2] —, Positive characteristic analogs of closed polynomials, Cent. Eur. J. Math. 9 (2011), 50–56.
- [J3] —, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501–5511.

- [N1] A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus Univ., Toruń, 1994; www.mat.umk.pl/~anow/.
- [N2] —, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47–55.
- [NN] A. Nowicki and M. Nagata, Rings of constants for k-derivations in k[x1,...,xn],
 J. Math. Kyoto Univ. 28 (1988), 111–118.
- [ZS] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, D. Van Nostrand, New York, 1958.

Piotr Jędrzejewicz Faculty of Mathematics and Computer Science Nicolaus Copernicus University 87-100 Toruń, Poland E-mail: pjedrzej@mat.uni.torun.pl

> Received 6 August 2010; revised 5 November 2010 (5414)