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ON MULTIPLICATION IN SPACES OF CONTINUOUS FUNCTIONS

BY

MAREK BALCERZAK and ALEKSANDER MALISZEWSKI (Łódź)

Abstract. We introduce and examine the notion of dense weak openness. In particu-
lar we show that multiplication in C(X) is densely weakly open whenever X is an interval
in R.

Let X and Y be arbitrary topological spaces and f : X → Y . We say that
f is open (weakly open) [densely weakly open] if for every nonempty open
set U ⊆ X, the image f [U ] is open (respectively, int f [U ] 6= ∅) [respectively,
int f [U ] is dense in f [U ]]. Obviously every open mapping is densely weakly
open and every densely weakly open mapping is weakly open.

The notion of openness is standard. Weak openness was considered by
several authors (see, e.g., Burke [Bu]). We introduce dense weak openness to
improve some results on multiplication in function spaces.

We will mostly consider spaces C(X) of continuous real functions defined
on a topological space X, with the metric of uniform convergence, i.e.,

d(f, g) := min{1, sup{|f(x)− g(x)| : x ∈ X}}.
We will focus on the operation Φ : C(X)× C(X)→ C(X) of multiplication
given by Φ(f, g) := fg. For U, V ⊆ C(X) we write U ·V instead of Φ[U ×V ].
We use the symbol B(f, r) to denote the open ball centered at f with ra-
dius r. Recall (cf. [BWW]) that in the Banach space C[0, 1] of real-valued
functions which are continuous on [0, 1], multiplication is not an open map-
ping. Indeed, define f(x) := x − 1/2 for x ∈ [0, 1]. Then every element of
B(f, 1/2) ·B(f, 1/2) has a zero, while every neighborhood of f2 contains an
element that is never zero. (This example is due to Fremlin.)

The main result of [BWW] states that multiplication in C[0, 1] is weakly
open. This was generalized by Kowalczyk [K2] to other mappings from
C[0, 1] × C[0, 1] to C[0, 1] generated by continuous functions ϕ : [0, 1]2 →
[0, 1], and by Wachowicz [W] to the case of multiplication in C(n)[0, 1]
(in C(n)[0, 1], the space of all real-valued functions on [0, 1] whose nth deriva-
tive is continuous, we consider the standard norm making this space com-
plete); see also [Ko] for a discussion of openness of multiplication in C(K),
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where K is compact, and [K3] for some other generalizations. Recently,
Kowalczyk [K1] has proved that multiplication in C(0, 1) is weakly open.

Recall that a mapping f between topological spaces X and Y is quasi-
continuous [Ke] at a point x ∈ X if for all open sets U ⊆ X, V ⊆ Y with
x ∈ U , f(x) ∈ V , there is a nonempty open set W ⊆ U such that f [W ] ⊆ V .
We say that f is open at a point x ∈ X if f(x) ∈ int f [U ] whenever U is a
neighborhood of x. We will denote by Op(f) the set of all points x ∈ X at
which f is open. Clearly f is open iff Op(f) = X.

We start with the following proposition.

Proposition 1. Let f : X → Y be weakly open. If f is quasi-continuous
at every point x ∈ X \Op(f), then it is densely weakly open.

Proof. Let U ⊆ X be nonempty and open. Fix a y ∈ f [U ]. Then y = f(x)
for some x ∈ U . If x ∈ Op(f), then f(x) ∈ int f [U ], so every neighborhood
of f(x) intersects int f [U ].

If x /∈ Op(f), then f is quasi-continuous at x. Let V be an open neigh-
borhood of y. There is a nonempty open set W ⊆ U such that f [W ] ⊆ V .
Since f is weakly open, we conclude that

V ∩ int f [U ] ⊇ int f [W ] 6= ∅.
One can easily see that the quasi-continuity assumption is not redundant.

Example. Let f : R→ R be given by

f(x) :=
{
x if x 6= 0,
1 otherwise.

Then for each nonempty open set U ⊆ R, int f [U ] ⊇ U \ {0} 6= ∅, whence
f is weakly open. On the other hand, f is not densely weakly open since 1 is
an isolated point of f [(−1/2, 1/2)]. Evidently, f is not quasi-continuous at 0.

Corollary 2. Weakly open continuous functions are densely weakly
open.

From the above corollary, by [Ko] and [W], we can conclude that mul-
tiplication in C(K) (where K is compact and dimK = 1) and in C(n)[0, 1]
(for each n ∈ N) is a densely weakly open mapping.

It was observed by Kowalczyk [K1] that multiplication in C(0, 1) is not
continuous at (f0, g0), where f0(x) := 0 and g0(x) := 1/x for x ∈ (0, 1). We
can prove much more.

Proposition 3. For a topological space X, let Φ denote multiplication
in C(X), and let f0, g0 ∈ C(X). The following conditions are equivalent :

(i) Φ is continuous at (f0, g0),
(ii) Φ is quasi-continuous at (f0, g0),
(iii) the functions f0 and g0 are bounded.



MULTIPLICATION IN SPACES OF CONTINUOUS FUNCTIONS 249

Proof. The implication (i)⇒(ii) is obvious.
(ii)⇒(iii). Suppose that, e.g., g0 is unbounded. For each n ∈ N pick an

xn ∈ X such that |g0|(xn) ≥ n.
Let U := B(f0, 1) × B(g0, 1). Fix nonempty open sets V and W with

V ×W ⊆ U . We will show that V ·W 6⊆ B(f0g0, 1/2).
Let f1 ∈ V and g ∈W . Choose a δ > 0 such that B(f1, 2δ) ⊆ V and put

f2 := f1 + δ. Then f2 ∈ V as well.
From g ∈ B(g0, 1), we infer

lim inf
n→∞

|g|(xn) ≥ lim
n→∞

|g0|(xn)− 1 =∞.

Consequently,

d(f1g, f2g) ≥ min{1, δ lim
n→∞

|g|(xn)} = 1.

Hence d(f1g, f0g0) ≥ 1/2 or d(f2g, f0g0) ≥ 1/2.
(iii)⇒(i). Assume that f0 and g0 are bounded. Put

M := 3max{sup
x∈X
|f0|(x), sup

x∈X
|g0|(x)}+ 3.

Fix an ε ∈ (0, 1). If f ∈ B(f0, ε/M) and g ∈ B(g0, ε/M), then

d(fg, f0g0) ≤ sup
x∈X
|f(x)g(x)− f0(x)g0(x)|

≤ sup
x∈X
|f |(x) sup

x∈X
|g(x)− g0(x)|+ sup

x∈X
|g0|(x) sup

x∈X
|f(x)− f0(x)|

< (M/3 + 1)ε/M + (M/3) · ε/M ≤ ε.
This completes the proof.

Recall that a topological space K is pseudocompact if each real-valued
continuous function on K is bounded. By Corollary 2 and Proposition 3, if
K is pseudocompact, then multiplication in C(K) is densely weakly open
whenever it is open. We do not know of any exact characterization of pseu-
docompact spaces K for which multiplication in C(K) is open.

Example. Consider C(X) with X := (0, 1). For x ∈ (0, 1), define

f0(x) := x(x− 1/2), g0(x) :=
x− 1/2

x

Then the multiplication Φ is neither quasi-continuous nor open at (f0, g0).

Proof. Indeed, since g0 is unbounded, by Proposition 3, Φ is not quasi-
continuous at (f0, g0).

Towards a contradiction, suppose (f0, g0) ∈ Op(Φ). Then

f0g0 ∈ int(B(f0, r) ·B(g0, r)) for all r > 0.

Let r ≤ 1/2. There is a δ > 0 such that

B(f0g0, δ) ⊆ B(f0, r) ·B(g0, r).
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Notice that (f0g0 + δ/2)(x) > 0 for all x ∈ (0, 1). Since every function
in B(g0, r) has a zero in (0, 1), we obtain a contradiction with the above
inclusion.

The above example shows that we cannot extend Corollary 2 to the
case of C(0, 1) using just Proposition 1. Nevertheless, we will prove that
multiplication in C(0, 1) is densely weakly open.

Theorem 4. If X ⊆ R is an interval, then multiplication in C(X) is
densely weakly open.

Proof. Let U, V ⊆ C(X) be nonempty and open. To prove that int(U ·V )
is dense in U · V fix f0 ∈ U , g0 ∈ V , and ε ∈ (0, 1). Let τ ∈ (0,

√
ε/7) be

such that B(f0, 11τ) ⊆ U and B(g0, 26τ) ⊆ V .
For each x ∈ X with |f0|(x) > 4τ , there is a maximal interval Ix 3 x such

that |f0| ≥ 3τ on Ix. Let I0 be the collection of all such intervals Ix. Observe
that since f0 ∈ C(X), the set A0 :=

⋃
I∈I0

bd I has no accumulation point
in X.

For each x ∈
⋃
I0 with |g0|(x) > 3τ , there is a maximal interval I ′x 3 x

such that I ′x ⊆
⋃
I0 and |g0| ≥ 2τ on I ′x. Let I1 be the collection of all such

intervals I ′x. Observe that since g0 ∈ C(X), the set A1 :=
⋃

I∈I1
bd I has no

accumulation point in X.
For each x ∈ X \ int

⋃
I0 with |g0|(x) < 4τ , there is a maximal interval

I ′′x 3 x such that I ′′x ⊆ X \ int
⋃
I0 and |g0| ≤ 5τ on I ′′x . Let I2 be the

collection of all such intervals I ′′x . Observe that since g0 ∈ C(X), the set
A2 :=

⋃
I∈I2

bd I has no accumulation point in X.
We have constructed a discrete set A := A0∪A1∪A2 such that the family

of all components J ofX\A can be divided into four pairwise disjoint classes:

• J ∈ J1 if |f0| ≥ 3τ and |g0| ≥ 2τ on J ,
• J ∈ J2 if J /∈ J1 and |f0| ≥ 3τ ≥ |g0| on J ,
• J ∈ J3 if J /∈ J1 and |f0| ≤ 4τ ≤ |g0| on J ,
• J ∈ J4 if J /∈ J1 ∪ J2 ∪ J3 and |f0| ≤ 4τ and |g0| ≤ 5τ on J .

Now we define a function h0 : X → R. Fix an x ∈ X. If x ∈ X \
⋃
J4,

then we put h0(x) := (f0g0)(x). Extend h0 continuously to the whole X so
that for each J ∈ J4, we have

(1) inf h0[J ] = −20τ2, suph0[J ] = 20τ2,

and observe that

(2) |h0 − f0g0| ≤ 20τ2 + |f0| · |g0| ≤ 40τ2 < ε− τ2 on J .

We shall prove that B(h0, τ
2) ⊆ U · V . Since B(h0, τ

2) ⊆ B(f0g0, ε), this
will complete the proof.

Fix an h ∈ B(h0, τ
2). We need to define functions f ∈ U and g ∈ V such

that h = fg. We will define these functions in four steps.
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Step 1. Let J ∈ J1. For each x ∈ cl J , define

f(x) :=

√
|hf0|(x)
|g0|(x)

· sgn f0(x), g(x) :=

√
|hg0|(x)
|f0|(x)

· sgn g0(x).

Then clearly f and g are continuous and h = fg on cl J . (Notice that the
function sgn ◦h = sgn ◦h0 = sgn ◦ (f0g0) is constant on cl J .) Moreover

(3) |f−f0| =
∣∣∣∣
√
|hf0|
|g0|
−|f0|

∣∣∣∣ = |h−f0g0|·
|f0|√

|hf0|
|g0| + |f0|

· 1
|g0|
≤ τ2 ·1· 1

2τ
< τ,

and similarly |g − g0| < τ on cl J . Hence |f | > 2τ and |g| > τ on cl J .

Step 2. Let J ∈ J2. Let ψJ : cl J → (−τ, τ) be a linear function such
that

ψJ(x) =

√
|hf0|(x)
|g0|(x)

·sgn f0(x)−f0(x) if x ∈ bdJ ∩ bdJ ′ for some J ′ ∈ J1

(cf. (3)). For each x ∈ cl J , define

f(x) := (f0 + ψJ)(x), g(x) :=
h(x)
f(x)

.

Then clearly f and g are continuous, h = fg on cl J , and |f − f0| < τ on
cl J (whence |f | > 2τ on cl J). Moreover

|g − g0| =
∣∣∣∣ h

f0 + ψJ
− g0

∣∣∣∣ ≤ |h− f0g0|
|f0 + ψJ |

+ |ψJ | ·
|g0|

|f0 + ψJ |

<
τ2

3τ − τ
+ τ · 3τ

3τ − τ
= 2τ

on cl J .

Step 3. Let J ∈ J3. We proceed as in Step 2. Let ψJ : cl J → (−τ, τ)
be a linear function such that

ψJ(x) =

√
|hg0|(x)
|f0|(x)

·sgn g0(x)−g0(x) if x ∈ bdJ ∩ bdJ ′ for some J ′ ∈ J1,

and for each x ∈ cl J , define

g(x) := (g0 + ψJ)(x), f(x) :=
h(x)
g(x)

.

(Notice that bd J ∩ bd J ′ = ∅ whenever J ′ ∈ J2.) Then |f − f0| < 2τ and
|g − g0| < τ on cl J , whence |g| > 3τ on cl J .

Step 4. Finally let J ∈ J4. Put a := inf J and b := sup J . Notice that
we have already defined functions f and g on bdX J = A ∩ cl J , and recall
that |f | > τ or |g| > τ on bdX J . We consider four cases.
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Assume that none of a and b belongs to A; i.e., J = X. Define f := τ
and g := h/f on cl J . Then clearly h = fg,

|f − f0| ≤ τ + |f0| ≤ 5τ,

and

(4) |g − g0| ≤
|h|
τ

+ |g0| <
|h0|+ τ2

τ
+ 5τ ≤ 26τ

on cl J .
Now let a ∈ A and b /∈ A. If |f |(a) > τ , then we define f := f(a) and

g := h/f on cl J . Then clearly h = fg,

|f − f0| ≤ |f − f0|(a) + |f0|(a) + |f0| < 2τ + 4τ + 4τ = 10τ,

and
|g − g0| ≤

|h|
τ

+ |g0| < 26τ

on cl J (cf. (4)). In the opposite case a ∈ bdJ ′ for some J ′ ∈ J3. Define
g := g(a) and f := h/g on cl J . Then clearly h = fg,

|g − g0| ≤ |g − g0|(a) + |g0|(a) + |g0| < τ + 5τ + 5τ = 11τ,

and

|f − f0| ≤
|h|
|g|(a)

+ |f0| <
|h0|+ τ2

3τ
+ 4τ ≤ 11τ

on cl J .
The case where a /∈ A and b ∈ A is analogous.
Finally assume that a, b ∈ A. Notice that by (1), h(x0) = 0 for some

x0 ∈ J . Let, e.g., f(a) ≥ |g|(a) and −|f |(b) ≥ g(b). (The other cases are
analogous.) Then f(a) ≥

√
|h|(a) (recall that f(a)g(a) = h(a)) and similarly

g(b) ≤ −
√
|h|(b). Define

f(x) := max
{√
|h|(x), f(a) · x− x0

a− x0

}
, g(x) :=

h(x)
f(x)

if x ∈ [a, x0),

f(x0) := 0, g(x0) := 0,

g(x) := min
{
−
√
|h|(x), g(b) · x− x0

b− x0

}
, f(x) :=

h(x)
g(x)

if x ∈ (x0, b].

Since |f | ≤
√
|h| on (x0, b], f is continuous at x0. Similarly g is continuous

at x0. Clearly h = fg on cl J . Observe that:

• for each x ∈ [a, x0),

|f − f0|(x) ≤ max{
√
|h|(x), f(a)}+ |f0|(x)

≤ max{
√

21τ2, f0(a) + 2τ}+ 4τ ≤ 10τ,

|g − g0|(x) ≤
√
|h|(x) + |g0|(x) ≤

√
21τ2 + 5τ < 10τ,
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• for x = x0,
|f − f0|(x) = |f0|(x) ≤ 4τ,
|g − g0|(x) = |g0|(x) ≤ 5τ,

• for each x ∈ (x0, b],
|f − f0|(x) ≤

√
|h|(x) + |f0|(x) ≤

√
21τ2 + 4τ < 9τ,

|g − g0|(x) ≤ max{
√
|h|(x), |g|(b)}+ |g0|(x)

≤ max{
√

21τ2, |g0|(b) + 2τ}+ 5τ ≤ 12τ.

We constructed functions f, g : X → R such that h = fg. Since the
set A is discrete in X, the functions f and g are continuous. Moreover by
construction, f ∈ B(f0, 11τ) ⊆ U and g ∈ B(g0, 26τ) ⊆ V . So, h ∈ U · V .

We have proved that B(h0, τ
2) ⊆ U · V . By (2), B(h0, τ

2) ⊆ B(f0g0, ε).
This completes the proof.
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