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ON BAILEY PAIRS AND CERTAIN q-SERIES RELATED TO
QUADRATIC AND TERNARY QUADRATIC FORMS

BY

ALEXANDER E. PATKOWSKI (Regina)

Abstract. We provide a new approach to establishing certain q-series identities that
were proved by Andrews, and show how to prove further identities using conjugate Bailey
pairs. Some relations between some q-series and ternary quadratic forms are established.

1. Introduction and main results. In an effort to expand on the
theory of Bailey chains, and the umbral methods that L. J. Rogers employed
in proving the Rogers–Ramanujan identities (the second proof offered by
Rogers) [14], Andrews [4] provided a new method for establishing certain
new q-series identities using an umbral calculus approach. A particularly
nice example that was established in [4], and bears a close resemblance to
Euler’s Pentagonal Number Theorem [10], is given by

(1.1)
∞∑

n=0

q2n2

(q)2n
=

∑
n,m∈Z(−1)n+mqn(3n−1)/2+m(3m−1)/2+nm

(q)2∞
,

where
(a; q)n = (1− a)(1− aq) · · · (1− aqn−1)

(see [10]); for convenience we also put (a)n = (a; q)n. The q-series in (1.1)
is, in fact, of the Rogers–Ramanujan type, and has the equivalent form

∞∑
n=0

q2n2

(q)2n
=

1
(q2, q3, q4, q5, q11, q12, q13, q14; q16)∞

,

which follows from the limiting case ρ1, ρ2 → ∞ of Bailey’s lemma (see
(2.3) below), with the Bailey pair [17, A(5)] with a = 1. Further, it should
be mentioned that the q-series in (1.1) is indeed related to the Virasoro
character [9, p. 20, (A.4), A(5), k = 1] (see also [18, Theorem 4.1, (p, p′) =
(1, 3), r = 0, s = 1]).
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The motivation of this study is two-fold. We establish another approach
to proving identities like (1.1), and go a step further by finding identities
that are related to certain ternary quadratic forms. The ternary quadratic
form expansions we find in this study are of the form

(1.2)
∑

(i,j,k)∈E

(−1)L(i,j,k)qA(i,j,k)+B(i,j,k)

for some set E ⊂ Z×Z×Z, where A(i, j, k) is some quadratic form, B(i, j, k)
is some indefinite quadratic form, and L(i, j, k) is a linear form.

2. A proof of the identity (1.1). The purpose of this section is to
provide a proof of (1.1), which will put the new identities we establish in
the next section into some more meaningful perspective. And because our
proofs rely on new Bailey pairs, we believe our proofs can be viewed as
novel. However, we should mention that the methods used in this section
are in fact closely related to those in [4], the difference being that we are
not relying on the s-fold extension (our interest here would be the 2-fold
extension) of Bailey’s lemma [4, Theorem 1], but instead using new Bai-
ley pairs. We mention that Berkovich [7] has found an interesting proof
for identities contained in [4], relying on certain q-polynomial identities,
and which should also be compared with the methods in this paper as
well as [4].

For more material on Bailey’s lemma, and related material, we recom-
mend the papers [1, 5, 6, 9, 11, 15, 17].

Recall that (αn, βn) is said to be a Bailey pair relative to a if

(2.1) βn =
n∑

r=0

αr

(aq)n+r(q)n−r
,

or (see [1])

(2.2) αn =
(1− aq2n)(a)n(−1)nqn(n−1)/2

(1− a)(q)n

n∑
j=0

(q−n)j(aqn)jq
jβj .

Equation (2.2) will prove to be the most useful in this study. Now we
know from [6] or [17, eq. (1.3)] that given a Bailey pair relative to a, we
have

(2.3)
∞∑

n=0

(ρ1)n(ρ2)n(aq/ρ1ρ2)nβn

=
(aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/ρ1ρ2)∞

∞∑
n=0

(ρ1)n(ρ2)n(aq/ρ1ρ2)nαn

(aq/ρ1)n(aq/ρ2)n
.
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We define a pair of sequences (An, Bn) to be a Bailey pair in its sym-
metric form if

(2.4) Bn =
n∑

r=−n

Ar

(aq)n+r(q)n−r
.

Then letting ρ1, ρ2 →∞ in (2.3) with a = 1 gives

(2.5)
∞∑

n=0

qn2
Bn =

1
(q)∞

∞∑
n=−∞

qn2
An.

With the above tools, we are now ready to prove (1.1).

Proposition 2.1. Identity (1.1) is valid.

Proof. Recall [3, 5] that relative to a = 1, we have the pair of sequences
(An, Bn) where

An = (−z)nqn(n+1)/2,(2.6)

Bn =
(zq; z−1)n

(q)2n
.(2.7)

The variable z in this pair turns out to be a key part of our proof, because
inserting the pair (2.6)–(2.7) into (2.5), and setting z = qN , gives

(2.8)
N∑

n=0

(qN+1; q−N )nq
n2

(q)2n
=

1
(q)∞

∑
n∈Z

(−1)nqn(3n+1)/2+Nn.

Comparing equation (2.8) with (2.2) (multiplying through by (1−q)−1(−1)N

(1 − q2N+1)qN(N−1)/2), it is not hard to see that we have the Bailey pair
(αN , βN ) with respect to a = q, where

βN =
qN(N−1)

(q)2N
,(2.9)

αN = (q)−1
∞ (1− q)−1(−1)N (1− q2N+1)qN(N−1)/2(2.10)

×
∑
n∈Z

(−1)nqn(3n+1)/2+Nn.

Inserting this new Bailey pair into (2.3) and letting ρ1, ρ2 →∞ and a = q,
we find that equation (1.1) follows after making the observation that∑

n∈Z(−1)nqn(3n+1)/2+Nn is unchanged by replacing N by −N − 1.

We mention a few more identities, somewhat less elegant than (1.1).
Rogers [14, p. 341] (see also Slater [17, eq. (46)]) established that the left
hand side of (2.11) is indeed related to an infinite product with modulus 10.
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The series on the left side of equation (2.12) is in Slaters’ list (see [17,
eq. (100)]). See also [12] for a good list of identities of these types.

Theorem 2.2. We have
∞∑

n=0

qn(3n−1)/2

(q; q2)n(q)n
=

(−q)∞
(q)2∞

∑
n,m∈Z

(−1)n+mqn2+m(3m+1)/2+nm,(2.11)

∞∑
n=0

q3n2

(q; q2)n(q4; q4)n
=

(−q; q2)∞
(q2; q2)2∞

(2.12)

×
∑

n,m∈Z
(−1)n+mqn(3n+1)+m(2m+1)+2nm.

Proof. In the case of (2.11), we take the Bailey pair (2.9)–(2.10) and
insert it in (2.3) with ρ1 = −q, and ρ2 →∞. For (2.12), we take the Bailey
pair (2.6)–(2.7) and insert it into the ρ1 = −q, ρ2 → ∞ (with q replaced
by q2) case of (2.3) to get

(2.13)
∞∑

n=0

qn2
(zq2; q2)n(z−1; q2)n

(q; q2)n(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

∑
n∈Z

qn(2n+1)(−z)n.

Now proceeding as before, with z = q2N , we get the Bailey pair (relative to
a = q2)

βN =
qN2−2N

(q; q2)N (q4; q4)N
,(2.14)

αN =
(−q; q2)∞
(q2; q2)∞

(1− q2)−1(−1)N (1− q4N+2)qN(N−1)(2.15)

×
∑
n∈Z

(−1)nqn(2n+1)+2Nn.

Now insert the pair (2.14)–(2.15) into (2.3), let ρ1 → ∞ and ρ2 → ∞, and
use the fact that

∑
n∈Z(−1)nqn(2n+1)+2Nn is unchanged when N is replaced

by −N − 1.

3. Ternary quadratic forms. We first recall some information about
conjugate Bailey pairs. The pair (γN , δN ) is said to be a conjugate Bailey
pair with respect to a if the two sequences satisfy (see [6])

γN =
∞∑

j=N

δj
(q)j−N (aq)j+N

.



BAILEY PAIRS AND CERTAIN q-SERIES 269

Andrews and Warnaar [5] have taken a very interesting approach to con-
structing conjugate Bailey pairs, which, upon obtaining the desired conju-
gate pair, leads to an easy method toward obtaining new q-series by inserting
known Bailey pairs. Rowell [15] has also built on this topic, and gave some
more identities and applications of conjugate Bailey pairs. This will make
our task of finding new q-series identities related to ternary quadratic forms
considerably easier: we will simply find applications of some of the conjugate
Bailey pairs found in [5, 15]. Therefore, we need the following proposition,
which contains equivalent forms of conjugate Bailey pairs proved by An-
drews and Warnaar [5, Theorem 2], as well as two conjugate pairs proved
by Rowell [15, p. 375, eq. (13), and p. 374, eq. (9)]. However, no previous
knowledge of the material contained in [5, 15] will be required to under-
stand our results. Lastly, we mention that, in these expansions, one must
be careful in the order of summation with the ternary quadratic forms to
ensure the sum over N ∈ Z does not sum to 0 by the Jacobi triple product
identity. Therefore, it will be taken that the sum over N ∈ Z is to be done
last.

Proposition 3.1. If (An, Bn) is a Bailey pair relative to a = 1 (in the
symmetric transform [5] or [14]), that is, the pair of sequences satisfy

Bn =
n∑

r=−n

Ar

(q)n+r(q)n−r
,

(with q replaced by q2 for (3.1) and (3.2)) then
∞∑

n=0

(−q)2nq
nBn =

(−q)∞
(q)∞

∞∑
n=0

(−1)nqn(n+1)/2
∑

2|j|≤n

Ajq
−2j2

,(3.1)

∞∑
n=0

(q)2nq
nBn =

∞∑
n=0

qn(n+1)/2
∑

2|j|≤n

Ajq
−2j2

.(3.2)

Moreover,

(3.3)
∞∑

n=0

(q)nBn(−1)nqn(n+1)/2

=
∞∑

n=0

(−1)nqn(3n+1)/2(1− q2n+1)
∑
|j|≤n

Ajq
−j2

.

From (3.1)–(3.3) we can obtain the following new Bailey pairs.

Lemma 3.2. Relative to a = q2, the pair of sequences (AN , BN ) is a
Bailey pair where (with q replaced by q2 in (2.4))
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BN =
q−N

(q)2N
,

(3.4)
AN =

(−q)∞
(q)∞

(1− q2)−1(−1)NqN(N−1)

×
∞∑

n=0

(−1)nqn(n+1)/2
∑

2|j|≤n

(−1)jq−j(j−1)+2Nj ,

and also

BN =
q−N

(−q)2N
,

(3.5)
AN = (1− q2)−1(−1)NqN(N−1)

×
∞∑

n=0

qn(n+1)/2
∑

2|j|≤n

(−1)jq−j(j−1)+2Nj .

Further, we also have, relative to a = q, the Bailey pair

BN =
(q)N (−1)NqN(N−1)/2

(q)2N
,

(3.6)

AN =
(−1)NqN(N−1)/2

1− q

×
∞∑

n=0

(−1)nqn(3n+1)/2(1− q2n+1)
∑
|j|≤n

(−1)jq−(j2−j)/2+Nj .

Proof. In each case we are inserting the Bailey pair (2.6)–(2.7) into (3.1),
(3.2), and (3.3) to obtain the pairs (3.4), (3.5), and (3.6) respectively. We
only give the details for (3.5), and leave (3.4) and (3.6) to the reader.
In the case of (3.5), inserting (2.6)–(2.7) into (3.2) and setting z = q2N

gives

(3.7)
N∑

n=0

(q)2n(q2N+2, q−2N ; q2)nq
n

(q2; q2)2n

=
∞∑

n=0

qn(n+1)/2
∑

2|j|≤n

(−1)jq−j(j−1)+2Nj .

TheAN in (3.5) follows after multiplying both sides of (3.7) by (−1)NqN(N−1)

× (1− q4N+2), and observing that
∞∑

n=0

qn(n+1)/2
∑

2|j|≤n

(−1)jq−j(j−1)+2Nj

is unchanged by replacing N by −N − 1, coupled with (2.2).
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It is a direct consequence of (2.3) that these Bailey pairs lead us to the
following identities.

Theorem 3.3. We have

(3.8)
∞∑

n=0

(−1)nqn(3n+1)/2

(qn+1)n

=
1

(q)∞

∑
N∈Z
n≥0
|j|≤n

(−1)N+n+jqN(3N+1)/2+n(3n+1)/2−j(j−1)/2+Nj(1− q2n+1),

(3.9)
∞∑

n=0

qn(2n+1)

(−q)2n

=
1

(q2; q2)∞

∑
N∈Z
n≥0

2|j|≤n

(−1)N+jqN(3N+1)+n(n+1)/2−j(j−1)+2Nj .

Proof. The proof of (3.8) is simply (3.6) inserted into (2.3) with ρ1, ρ2

→∞ and a = q, and (3.9) is also this special case of (2.3), but with (3.5).

The q-series in (3.8) and (3.9) are indeed related to indefinite quadratic
forms. However, even though a Hecke-type series for (3.9) has been given
in [13], one for (3.8) has not been offered in the literature.

Next we consider a lemma that is equivalent to a special case (namely
r = q) of a conjugate Bailey pair due to Bressoud [8] and Singh [16]:

δn = qn, γn =
qn

(q)2∞

∞∑
i=0

(−1)iq(
i+1
2 )+2ni.

Lemma 3.4. Assuming the hypothesis of Proposition 3.1, we have

(3.10)
∞∑

n=0

Bnq
n =

1
(q)2∞

∞∑
n=0

(−1)nqn(n+1)/2
∑

2|j|≤n

Ajq
−2j2

.

Lemma 3.5. Relative to a = q, the pair of sequences (AN , BN ) is a
Bailey pair where

BN =
1

(q)2N
,

(3.11)
AN = (q)−2

∞ (1− q)−1(−1)NqN(N−1)/2

×
∞∑

n=0

(−1)nqn(n+1)/2
∑

2|j|≤n

(−1)jq−j(3j−1)/2+Nj .
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Proof. The proof is identical to previous proofs, using the Bailey pair
(2.6)–(2.7) and Lemma 3.4. The details are omitted.

We can now obtain a new expansion for (q)3∞ from the above tools.

Theorem 3.6. We have, provided the sum over N ∈ Z is to be done last
in the order of summation, the identity

(3.12) (q)3∞ =
∑
N∈Z
n≥0

2|j|≤n

(−1)N+n+jqN(N−1)/2+n(n+1)/2−j(3j−1)/2+Nj .

Proof. Insert the pair in Lemma 3.5 into (2.4) with a = q and let
n→∞.

4. Conclusions. The emphasis here has been placed on converting con-
jugate Bailey pairs into Bailey pairs. We have shown how we take a known
general Bailey pair, apply it to some conjugate Bailey pairs, and obtain some
new Bailey pairs, and the implication of this seems to be something new.
With an infinite number of conjugate Bailey pairs and Bailey pairs, it is
clear that there are plenty of interesting results like those in Section 3 that
are within reach. Moreover, it would be nice to find some way of producing
results for the (s + 1)-fold extension from the s-fold extension of Bailey’s
lemma, and vice versa.
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