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STRONG NO-LOOP CONJECTURE FOR ALGEBRAS
WITH TWO SIMPLES AND RADICAL CUBE ZERO

BY

BERNT T. JENSEN (Leeds)

Abstract. Let A be an artinian ring and let v denote its Jacobson radical. We show
that a simple module of finite projective dimension has no self-extensions when A is
graded by its radical, with at most two simple modules and t* = 0, in particular, when A
is a finite-dimensional algebra over an algebraically closed field with at most two simple
modules and 3 = 0.

1. Introduction. Let A be an artinian ring. Many important prob-
lems remain to be solved in connection with the homological properties
of A-modules. We mention the finitistic dimension conjecture (see [7], [3])
and the Cartan determinant conjecture (see [2]). Both these problems deal
with studying homological dimensions of A-modules. In this paper we will
consider the so called no-loop conjectures (see [5], [4]). The (weak) no-loop
conjecture says that if Ext}l(S, S) # 0 for a simple A-module S, then the
global dimension of A is infinite. The strong no-loop conjecture says that if
Ext! (S, 5) # 0 then the projective dimension of S is infinite.

The weak no-loop conjecture was proven in [5] for a large class of finite-
dimensional algebras over a field k, including all finite-dimensional algebras,
if k is algebraically closed. The strong no-loop conjecture seems to be more
difficult, in fact it has only been established for very special classes of alge-
bras.

For a A-module U, let pd U denote the projective dimension of U.
Let gldim A denote the global dimension of A. Let t denote the Jacob-
son radical of A. The strong no-loop conjecture holds if v = 0. For in
this case if Ext!(S,S) # 0 then S is a summand of its own syzygy and so
pd S = oo. If A has only one simple module up to isomorphism then all
non-projective modules have infinite projective dimension. So in this case
pd S = oo if Ext}(S,S) # 0. For algebras with two simple modules up to
isomorphism and for radical cube zero algebras the situation is much more
complicated.
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The artinian ring A is a filtered ring using its radical filtration. Let
gr A = @, (gr A); denote the corresponding graded ring of A. We say that A
is graded by its radical if the canonical isomorphisms t¢/t'™! — (gr A); lift
to an isomorphism of rings A 2 gr A. The following is our main result.

THEOREM. Let A be an artinian ring graded by its radical with v* = 0
and with at most two simple modules up to isomorphism. If S is a simple
module of finite projective dimension then Ext!(S,S) = 0.

Now we only have to note that any basic finite-dimensional algebra over
an algebraically closed field with radical cube zero is graded by its radical
and we obtain the following

COROLLARY. Let A be a finite-dimensional k-algebra over an algebraic-
ally closed field with v3 = 0 and with at most two simple modules up to
isomorphism. If S is a simple module of finite projective dimension then
Ext! (S, 9) = 0.

The paper is organized as follows. In Section 2 we recall some nota-
tion and prove some basic lemmas needed to establish our main result. In
Section 3 we prove our main result.

2. Definitions and some basic results. Let A be an artinian ring
graded by its radical. That is, A is a graded artinian ring

L
A= @Ai
=0

where Ag is semisimple and A;4; = A;4; for 4,5 € {0,..., L} withi+j < L.
Unless otherwise stated, from now on, all modules will be graded left A-
modules of finite length and all homomorphisms between A-modules will be
graded of degree 0. For a A-module M = @, M; we denote by M]j] the
shifted A-module given by M[j]; := M;_;.

Note that the finiteness of the projective dimension of a simple A-module
S is independent of whether we use graded projective resolutions or not.
Moreover the extension group Exth(S,T[1]) of two simple A-modules S
and T generated in the same degree may be identified with the group of
extensions of S by T we get by forgetting the grading. So for the questions
we are interested in we have not lost any generality by considering graded
modules over a graded ring.

Let S1,...,S5, be a complete set of representatives of simple A-modules
generated in degree 0. Let Pi,..., P, be a corresponding set of represen-
tatives of indecomposable projective A-modules. That is, P;/tP; = S; for
1=1,...,n.
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Let [S;] denote the element of Z[t]" given by [S;]; = J;; where d;; denotes
the Kronecker delta. To every P; we associate the element [P;] in Z[t]"
given by

L n

B]=3% ¢Sl

r=0 j=1
where Ci(;) is the largest integer m such that v"P;/v" 1P, = S;[r]™ & U. Let

C = C(A) be the graded Cartan matrix of A (see [6]). That is, C is an n by
n matrix with coefficients in Z[t] given by

L
c=3 ¢t
r=0

where C") is a matrix with coefficients in Z and where C(T)

ij
above. In other words, the ith column of C is [P;]. Note that C(©) is the
identity matrix.

was defined

ExaMPLE 1. Let A be the algebra with quiver
B
G122
v

and relations 37, a® — 43, Bay. Then A is graded by its radical. A basis of
the projective P; at vertex 1 is ey, a, 3, Ba, o?, o. Thus

1+t+t2 483
[P1] = )
t+1
A basis of the projective P at vertex 2 is es, 7y, ay. Thus

[P2] = <t +1t2>

Hence the graded Cartan matrix of A is given by
C_(H¢+#+ﬁt+#>
B t+ 2 1
If N and M are two n by n matrices of integers we write M > N if all
entries of M — N are non-negative.
LEMMA 2. The matrices C\") satisfy the following inequalities:

(i) ¢ >0 foralli=0,..., L,
(ii) ¢Ocm > ct+m) for all I, m € {0,...,L} with I +m < L.
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Proof. Part (i) is obvious. By the Wedderburn—Artin theorem we have
an isomorphism

Ao = Q) M, (Ds)
=1

where My, (D;) is the full matrix ring over a division ring D;. We view this
isomorphism as an identification and let e; denote the identity matrix of
the matrix ring M, (D;). Let I,m € {0,...,L} with [ +m < L. We have
Ay = A, and so we get a surjective Ag-Ap-homomorphism e;A,, ® 4,
Aje; — e Aryme; induced by multiplication. Now

n
ej/lm XA Aje; = @ ejAmeT ®MHT(D7') erAje;.

r=1
The number of indecomposable left summands of e;A,,e, OM,, (D) erAje;

is CZ-(pCﬁ?)m. The number of indecomposable left summands of e;A;,e; is

Ci(]l-er)ni. Therefore CZ-(jl-er) < (cWclm)),;. This concludes the proof of the
lemma. m

The following lemma is well known; see for example [1, Chapter III].
LEMMA 3. We have Ci(jl) > 0 if and only if Ext}(S;, S;[1]) # 0.

Let @ = Q(A) be the quiver given by the matrix CW. That is, Q is
0
vertex j. Thus, by the previous lemma, Ext!(S;, S;[1]) is non-zero for some
simple S; if and only if @) has a loop at vertex 1.

Let A = Z;ga A;t' =: det C denote the graded Cartan determinant of A.
Let M;; be the ijth cofactor of the matrix C. That is, M;; is (—1)"*/ times
the determinant of the matrix obtained by removing the 7th column and the
jth row from C. Then

an oriented graph with vertices 1,...,n and C;;” arrows from vertex ¢ to

_ 1
cl= Z(Mj')ij

is a matrix over the field of rational functions Q(¢). For non-zero polynomials
ai,...,an € Z[t] let ged(ay, . . ., ay) denote their greatest common factor. We
let the coefficient of the lowest degree term of ged(ay, ..., a,) be positive.

LEMMA 4. Let A, C and Q be as above. Then
(i) Ag = 1.
(ii) Ajp is the number of loops of Q.
(iii) ged(Muj, ..., Myj)|A forallj=1,...,n.
(iv) If gldim A < oo then A = 1.
(v) If pdsSj < oo then A = ged(Myj, ..., My;).
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Proof. We have Ag = detC(?). Now C© is the identity matrix and so
(i) follows. The constant terms in the polynomials off the diagonal of C
are all zero. Hence A; is the trace of C™"). This proves (ii). We have A =
Z?:l CijMij7 which proves (111)

Let pd,S; < co. We have a graded projective resolution

0—=Qmn—"—0Q1—Q— S5 —0

of S;. Thus [S;] = Y1 o(—1)%[Qi] = X, fi;(1)[P] for polynomials f;;(t) €
Z[t]. Here
M.
Jij = f
fori=1,...,n and so A = ged(Mj, ..., My;) by (iii). This proves (v).

If gldim A < oo, then again by the graded projective resolution of the

simples we see that C~! is a matrix with entries in Z[t] and consequently
A is a unit in Z[t]. Hence A =1 by (i). This proves (iv). =

ExAMPLE 5. Let A be as in Example 1. Then

1 1 1 —t — 2
c—lz—Mm-:—< >
A( J)Z] A _t_tQ 1+t+t2+t3

Moreover ged(Miy, Ma1) = ged(l,—t — t2) = 1 and ged(Mig, Mag) =
ged(—t — 21+t +t2+13) = 1+t Wesee that A = 1+t — 3 — ¢4
Consequently pd,S1 = oo and pd,S2 = oo by Lemma 4(v).

3. Proof of the Theorem. Let A be an artinian ring graded by its
radical with at most two simple modules up to isomorphism such that t* = 0.
That is, A = EB:E:O A; where Ag is semisimple and A;A; = A;4; for 4,5 €
{0,...,3} with i + j < 3. We may also assume that Ay # 0 and that A
has exactly two simple modules S1, .S9 up to isomorphism. We assume that
Ext! (S1,51[1]) # 0 and that pd,S; < co. We will obtain a contradiction,
which proves the theorem.

Let
3 a b
c=) c= ( )
; c d
be the graded Cartan matrix of A. We have A = ad — bc and

1/d —=b

o4
A\—-c a

where A is the graded Cartan determinant of A. Thus by Lemma 4(v) we
have ged(M;i1, Ma1) = ged(d, —¢) = ad — be. So there exist polynomials A
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and p such that d = A\A, ¢ = pA and aX — by = 1. Let a = Y, a;t* and
similarly for b, ¢ and d. Then ag = 1 = dg and bg = 0 = ¢g. If by = 0
then b = 0 by Lemma 2(ii). Similarly if ¢; = 0 then ¢ = 0. In either case
pd 4S1 = oo (see [3]) so we may assume that by, c; > 0. By Lemma 3 we see
that a; > 0. Since pd,S; < oo at least one of the projectives has radical
length less than 4. Hence we have two cases to consider, either c3 = 0 = a3
or d3 =0= b3.

We consider first the case d3 = 0 = b3. We see that deg A < 2, where
deg A denotes the degree of the polynomial A. If deg A = 2 then d = A,
which is a contradiction since the linear term of A is a1 +dq and a; > 0. Thus
deg A = 1and A = 1+(a1+d;)t. Consequently, A = 1—ayt since aA—bu = 1.
Thus d = AA = 1 + dit + (—a? — a1dp)t?. But this is a contradiction since
dy > 0. This concludes the proof in the case where d3 = 0 = bs.

We now consider the case c3 = 0 = ag. As before, A = 1+ (a1 + d)t.
Thus pu =cit and A =1 — a1t + Aot? for some integer \o. Since d = A\A we
get do = Ao — a% —aidy and d3 = (a1 + dl))\Q. Similarly,

Co = cl(al + dl).
Since a\ — bu = 1 we see that Ao = bicy + a% — ag. Thus
dy =bici —ag —aydy, dz = arbicy +a’ — ajag + bicrdy + atdy — agd;.

Moreover, again by a\ — by = 1, we get

2 2

3
aj — 2a1a2 ajaz — aj

by = a1by + ——, bz =azb1 +
c1 C1
By Lemma 2(ii) we have MW@ > 6 and so ds3 < ¢1by + dids. Thus we
get ajas + a%dl + ald% < 0 and so az = 0 and d; = 0. Again by Lemma 2(ii)
we have C@¢cM) > ¢6B) and so d3s < coby + dadq. But then azf < 0, which is
a contradiction since a; > 0. This completes the proof of the theorem.
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