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ON SETS WHICH CONTAIN A ¢qTH POWER RESIDUE FOR
ALMOST ALL PRIME MODULES

BY

MARIUSZ SKAEBA (Warszawa)

Abstract. A classical theorem of M. Fried [2] asserts that if non-zero integers
081, ..., 0 have the property that for each prime number p there exists a quadratic residue
B; mod p then a certain product of an odd number of them is a square. We provide gen-
eralizations for power residues of degree n in two cases: 1) n is a prime, 2) n is a power of
an odd prime. The proofs involve some combinatorial properties of finite Abelian groups
and arithmetic results of [3].

Our starting point is the following theorem of M. Fried [2] (rediscovered
much later by other writers [1], [3]).

THEOREM. Let f31,...,03; be rational integers. The following two condi-
tions are equivalent:

(L)  for each sufficiently large prime number p there exists j such that the
congruence
2% = B; (modp)
18 solvable,

(G)  there exists J C {1,...,1l} of odd cardinality such that

H B = 2 for some v € Z.
jed
The generalization of the above theorem to power residues of degree n,

where n is any fixed exponent, is provided in [3]. But the counterpart of the
above condition (G) has a quite complex combinatorial structure (condition
(ii) of Lemma 3). The aim of this paper is to replace it by a condition which
resembles the above condition (G) for n = 2. We succeed in two special
cases: n = ¢ is a prime (Theorem 1) and n = ¢, ¢ # 2 (Theorem 2).

THEOREM 1. Let K be an algebraic number field, 31,...,0, € K* and
q a rational prime. The following two conditions are equivalent:
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(L)  for almost all prime ideals p of K at least one of the congruences
z? = f; (modp)
s solvable,

(G)  for each sequence of integers (c;),j =1,...,1, there exists a sequence
of integers (f;), j =1,...,1, satisfying

l l
ij #0 (modgq) and Hﬁ;jfj =1
j=1 j=1
with some v € K*.
For the case of ¢""th power residues, but only for ¢ # 2, we have

THEOREM 2. Let K be an algebraic number field, Bi,...,0, € K*,
n = q" where q is an odd prime. The following two conditions are equiv-
alent:

(L)  for almost all prime ideals p of K at least one of the congruences

z" = f; (modp)

18 solvable,

(G)  for each sequence of integers (c;), j =1,...,1, there exist two subsets
A,B of {1,...,1} satisfying
Cj Cj
A % |B| (modq) and [ 59 =" [ 67
jEA jeB
with some v € K*.
LEMMA 1. Let q be a natural number and consider a system of ¢ — 1
integers ¢, e , =Y If for each non-empty subset C' C {1,...,q—1} we
have Y ¢ £ 0 (modq) then there exists an integer ¢ such that

M =c?=...= 7Y = ¢ (modg).
Proof. Without any claim for priority we prove the lemma for complete-
ness of presentation. For any permutation 7 of {1,...,q — 1} the sequence

dT) D) o(r@) W)y (r(a-D)

gives all non-zero residue classes mod ¢ . This observation implies

q—2 93
T0)) = Z (TG 4 7@ (mod g),
7j=1 7=1

hence ¢(7(4-2) = (7(¢=1) (mod ¢), which finishes the proof.

LEMMA 2. Let G be a finite Abelian group, G its group of characters
and g; € G (1 < j <1). The following conditions are equivalent:
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(C1)  for each x € G there eists J such that x(g;) =1,

(C2)  there exists an involution o of the family F of all subsets of {1,...,1}
such that for each A € F,

o(A)] # Al (mod2) and ] g5 =] 9
jea(A) jeA

If we assume additionally that G is a q-group, where q is a prime, then both
conditions are equivalent to

(C3)  for each sequence of integers (cj), j = 1,...,1, there exist subsets
A, B € F satisfying
(1) |Al # |B| (modq) and []g7 =[] 97
jeEA jE€B

If additionally G is an elementary q-group then these conditions are equiv-
alent to

(C4)  for each sequence of integers (c;), j = 1,...,1, there exists a sequence
of integers (f;), 3 =1,...,1, satisfying

! !
ij #0 (modq) and ngc-jfj =1.
=1 j=1

Proof. The equivalence of (C1) and (C2) is proved in [3]. We will show
first that (Cl) and (C2) imply (C3). Let ci,...,¢; be arbitrary integers.
Obviously the system (g]c-j ) of elements of G satisfies (C1), hence (C2) as
well. Therefore there exists an involution o of the family F such that for
each A € F,

lo(A)| =]A|+1 (mod2) and H gjc-j = ngj.
jea(A) JEA
Now let ¢, = exp(2mi/q) € C. Then
(-G = S DA = T gl - gy
AeF AeF, |A‘ even
and since the left hand side is not 0 there must exist A € F such that
lo(A)| # |A] (mod g).
So we can put B = o(A).
We owe to A. Schinzel the proof that (C3) implies (C1). Assume to the
contrary that there exists y € G such that for each 1 < j <[ we have
x(g5) # 1.

Denoting by e the exponent of the group G we can write

X(g;) = ¢&,  where d; # 0 (mode).
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Now we define the sequence cq, ..., ¢; by the conditions
cjd; =e/q (mode), j=1,...,1L
By (C3) there exist A, B € F such that (1) is satisfied. Hence we obtain

1T xn)7 =T x(95)*

JEA jEB
and further H o dje; H é 4 o)
jeA JjEB
which gives (YD = ¢{/DIBl and finally (e/q)|A| = (e/q)|B| (mode),
hence |A| = |B| (modq), a contradiction. Hence for each x € G there exists

1 < j <l such that x(g;) = 1 and we have shown (C1).

Now we show that (C3) implies (C4). By (C3) for each sequence of
integers (¢;j), j = 1,...,1, there exist disjoint subsets A, B € F satisfying (1).
Weput fj=1forjc A, fj=—1forje B,and f; =0for j € AUB.

Now we will close the circle of implications by showing that (C4) im-
plies (C1). It is obvious that it is sufficient to prove (C1) for the following
system of elements:

(2) g1,---,91,92y---,92,---Gly-- -5 91 -
—_— —_—
q—1 times g—1 times q—1 times

We will now verify that the system (2) satisfies (C3). Take an arbitrary
sequence of integers

(1) (¢-1) (1) (g—1) (1) (q=1)

N TS S e
Two cases can occur.
(1) There exists j € {1,...,1} and a non-empty subset C C {1,...,q—1}
such that 3 ;ccc; =0 (mod ¢). Then we put simply A = C and B = ().
(2) For each ] € {1,...,l} and each non-empty subset C C {1,...,q—1}
we have Zzec ;é 0 (modq) By Lemma 1, for each j € {1,...,l} there

exists ¢; such that

RO () R —
¢ ¢ = =0

By (C4) there exist integers f1, ..., f; such that
!

(3) H fy =1

and we can assumethatOSf] Sq—lforjzl,...,l. We put
1

A=UJWG-D-1),G-Dg-D+fl, B=0.
j=1
By (3) condition (C3) holds for the system (2) and the exponents (¢ gz)).

(=1) = ¢j (modgq).
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LEMMA 3. Let w,(K) be the number of nth roots of unity contained in
a number field K and assume that
(4) (wn(K),Lem.[K () : K]) =1,
where the least common multiple is over all prime divisors q of n and addi-
tionally g = 4 if 4|n. Let [i1,...,0 € K*. Then the following two condi-
tions are equivalent:

(i) for almost all prime ideals p of K there exists 1 < j <l such that
the congruence
2" = f; (modp)

is solvable in K,
(ii) there exists an involution o of the family of all subsets of {1,...,1}
such that for each A C {1,...,1},

lo(A)| =|A| +1 (mod?2)
and
(5) 11 s =118
jeo(A) jEA
where y4 € K*.
Proof. This is a special case of Corollary 1 of [3], for k = 0.

Proof of Theorems 1 and 2. The equivalence of both conditions (L) and
(G) follows immediately from Lemmas 3 and 2.
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