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Abstract. In [5], we characterized the uniform convexity with respect to the Lux-
emburg norm of the Besicovitch—Orlicz space of almost periodic functions. Here we give
an analogous result when this space is endowed with the Orlicz norm.

1. Introduction. The Besicovitch-Orlicz space B?-a.p. of almost pe-
riodic functions was introduced and studied in [4]. That paper contains an
extensive investigation of the structural and topological properties of this
space endowed with the Luxemburg norm.

In [5]-[7], using this norm, we characterized the uniform and strict con-
vexity of this space.

In this paper, we introduce the Orlicz norm in this space and state its
different useful reformulations. Finally, we give a characterization of the
uniform convexity of B®-a.p. with the Orlicz norm.

Our main result is similar to that obtained in the classical Orlicz space
(see [3]), but the method of proof is different.

2. Preliminaries

2.1. Orlicz functions. The notation ¢ will be used for an Orlicz function,
i.e., a function ¢ : R — R which is even, convex and satisfies ¢(0) = 0,
d(u) > 0 iff u # 0, and limy, o ¢(u)/u = 0, limy o0 P(u)/u = co.

An Orlicz function ¢ is said to be of As-type if there exist K > 2 and
up > 0 such that ¢(2u) < K¢(u) for all u > wg. It is uniformly conver when,
for each a € ]0, 1[, there exist d(a) € ]0,1[ and ug > 0 such that

¢<“+2““> < (1-6(a) Mv Vu 2 uo.
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In [3], it is shown that if ¢ is uniformly convex for some ug > 0, then, for
any € > 0 and each interval [a, b] C ]0, 1[, there exists p(¢) > 0 for which

(2.1)  p(Au+(1—Av)
< (1 pley) LAY

where E = {(u,v) € R? : |u — v| > emax(|ul, [v]) > cup}.
The function ¥ (y) = sup{z|y| — ¢(x) : > 0} is called conjugate to ¢. It
is an Orlicz function when ¢ is. The pair (¢, 1)) satisfies the Young inequality

zy < ¢(x) +¢(y), zeR, yek,
with equality iff x = ¢/(y) or y = ¢'(z).
Let us mention that if ¢ is uniformly convex, then its conjugate v is of
As-type. In this case we say that ¢ is of Va-type.
An Orlicz function admits a derivative ¢’ except possibly on a denu-

merable set of points. Moreover, ¢'(0) = 0, ¢'(Ju]) > 0 if u > 0, and
limy o0 @' (Jul) = 00, so that ¢ is strictly increasing from zero to infinity

(cf. [3], [8])-

The derivative ¢’ satisfies the following useful inequality:

ug'(u) < ¢p(2u) < 2u¢’(2u), Vu > 0.

VA € [a,b], Y(u,v) € E,

2.2. The Besicovitch-Orlicz space of almost periodic functions. Let
M (R) be the set of all real Lebesgue measurable functions. The functional

T
ope - M(R) = [0,00],  opo(f) :T@o o= | o)) dt,

is a pseudomodular (cf. [4], [5], [6]). The associated modular space
BY(R) = {f € M(R) : lim ops(af) = 0}
={f e MMR): ops(\f) < oo, for some A > 0}
is called the Besicovitch—Orlicz space. It is endowed with the pseudonorm
(cf. [4]-[6])
Ifllpe = inf{k > 0: 0ps(f/k) <1},  f € B*(R),

called the Luxemburg norm.
Let now P be the linear set of generalized trigonometric polynomials,
ie.
n
P = {P(t) = Zaj exp(iAjt) : \j € R, a; € C,n € N}.
j=1
The Besicovitch—Orlicz space B®-a.p. (resp. §¢—a.p.) of almost periodic func-
tions is the closure of P in B?(R) with respect to the pseudonorm || - || gs
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(resp. to the modular convergence), more exactly:
B%a.p.={f € B’(R) : 3(p,)5, in P such that 7}1_)1{.10Hf — Pnllge = 0}
= {f € B’(R) : 3(p,,)>, in P such that
VEk >0, lim ogs(k(f —pn)) = 0},
B%-a.p. = {f € B°(R) : 3(p,)%, in P such that
3k >0, lim opo(k(f —pn)) = 0}.

Clearly B%-a.p. C B%-a.p. and equality holds whenever ¢ € Ay (cf. [4]).

Some structural and topological properties of these spaces are considered
in [4]-[6].

From [4], [5], we know that ¢(|f|) € B'-a.p. when f € B?-a.p. Hence,
by a classical result (cf. [2]), the upper limit in the expression of pge(f) is
a limit, i.e.

L 7
m o7 )

opelf) = Jim o= | o(f ()t f € BP-ap.

This fact is very useful in our computations.

Let us denote by {u.a.p.} the classical algebra of Bohr almost periodic
functions, or what is the same, the uniform closure of the linear set P. It is
known that ¢(|f|) € {u.a.p.} when f € {u.a.p.} (cf. [2]).

Also, from [2], we know that if f € {u.a.p.} and f # 0, then M (|f]) > 0,

where

From now on, B?-a.p. will denote the quotient space obtained by iden-
tifying functions whose difference belongs to the subspace {f € B®-a.p. :
£l e = 03

To every f € B?-a.p., we may associate a formal Fourier series. More pre-
cisely, define the Bohr transform of f € B%-a.p. by a(), f) = M (f exp(i\t))
for A € R. There is at most a denumerable set {1, \a,...} of scalars for
which a(), f) # 0 (these are called the Fourier—Bohr exponents). The asso-
ciated coefficients {a(\;, f)}i>1 are the Fourier—Bohr coefficients.

Questions concerning the convergence of the formal Fourier series

S(f)(x) = Z a()‘na f) exp(i)\n:c)
n>1

are nontrivial and only partial results are available. The Bochner approxi-
mation result will be of importance here:
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If f € B%-a.p. and
Su(f)(@) = a(Ak, f) exp(idez)
k=1

are the partial sums of its Fourier series, then there exists a sequence of
Bochner—Fejér polynomaials

Tm(F)(@) =D pima( A, f) exp(idz),
k=1

with the convergence factors pi,,, depending only on the sequence {Ax},
satisfying 0 < pm, < 1, such that (cf. [4]):

(D) flom(Hlipe < 1fllge, m =1,2,... (and epe(om(f)) < 0pe(f))-
(2) llom(f) = .§||B¢ — 0as m — oo (Ya >0, ggs(a(om(f) — f)) — 0

To end this section, we define the Orlicz pseudonorm in the B®-a.p.
space by setting, as usual,

I £l ge = sup{M(|fg|) : g € BY-a.p.,0ps(g) < 1},

where 1 denotes the conjugate function to ¢.

3. Convergence results in the B?-a.p. space. A sequence {feti>1
in B?(R) is said to be modular convergent to some f € B?(R) if
limy—o 00 (fi = f) = 0.

Let P(R) be the family of subsets of R and X(R) the X-algebra of
Lebesgue measurable sets. We define the set function

_ — 1 — 1
() = Tim — | xa(t)dt = Tm o p(AN[-T.T)).

Clearly, 1 is null on sets with u-finite measure and 7 is not o-additive.
As usual, a sequence of Y-measurable functions {fx}r>1 will be called 7i-
convergent to f if, for all € > 0,

Jim a{t € R [fi(t) — f(t)] 2 e} = 0.
Let now {A;}i>1 with A; € X for alli € N be such that A;,NA; = 0ifi # j
and Ui21 A; C [0,0],a < 1. Put f = Zi21 a;x4, with Ei21 o(a;)u(A;)

< oo and let fbe the periodic extension of f to the whole R (with period 1).
Then there exist P, € P, m > 1, such that

(3.1) om0 <f_4pm> S0 asm—oo  (cf [5]).
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We now state some fundamental convergence results that will be used
below (cf. [5]-[7]).
LEMMA 3.1. Let {fi}r>1 C B®(R).

(1) If there exists f € B®(R) such that limy_.o 0ge(fx—f) = 0 and there
exists g € B®-a.p. satisfying max(|fx|, | f]) < g, then limy_o0 054 (fr)
= ops(f)-

(2) If f € B®-a.p. and {P,} is the sequence of Bochner—Fejér polyno-
mials associated to f, then lim, o 05s(Pn) = 0pe(f)-

(3) If f € B®-a.p. and lim, o0 05s(fn — f) =0, then

(a) im,. ., 0pe(fk) = o(f)-
(b) {fk}r>1 is m-convergent to f.

4. Auxiliary results

LEMMA 4.1. Let f € B®-a.p. f # 0 and let {fn}n>1 be modular conver-
gent to f. Then there exist constants aq, 31,01 with 61 € ]0,1[, 0 < oy < Sy,
and ng € N such that i(Gy) > 01 for all n > ng, where G, ={t e R: a1 <
[fn(t)] < Br}-

Proof. 1t is known from [5] that there exist «, 3,0 with 6 € 0, 1] and
0 < a < f§ such that i(G) > 0, where G = {t e R: a < |f(t)| < (}. Take
a1 = af2, f1 = a/2 + [ and 0; = /2. Then, since {f,}n>1 is modular
convergent to f, it is also f-convergent to f (cf. Lemma 3.1(3)(b)) and so

a{t e R:|fu(t) — f(t)] > a/2} < 0/2  for n > ng.
Putting G, = {t € R : |fu(t) — f(t)] > «/2}, we have G\ G}, C G,, for all
n > ng. Indeed, if t € G\ G, then a < |f(t)| < B and |fn(t) — f(t)] < a/2,
from which it follows that ay < |f,(t)| < 1 for all n > ng, and so t € G,
for all n > ny.

Finally, u(G,) > w(G\G)) > w(G) — a(Gl) > 6 —0/2 = 6, for all

n>ng. =
LEMMA 4.2. Let f € B®-a.p. and E € X. Then the function
F:]0,00[ =R, F(A) = 0s(fxE/A),
is continuous on |0, col.

Proof. Let A\g > 0 and let A\,, — Ay as n — oco. We have
1 1
oo (3, = 30) ) <[5 %
It follows that {(1/A,)fxE} is modular convergent to (1/Ao) fxz. Moreover,

1 1
max< |fIxE, ~— ’f’XE) < A|f| € B®-a.p.
| Anl Aol

ops(fxe) =0 asn— oc.
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for some constant A > 0. From Lemma 3.1, it follows directly that

Jim o fxe\ _ 0 IXE
oo B¢ )\n B¢ )\0 9

which means that F' is continuous at Ag. =

LEMMA 4.3. If f € B®-a.p., then:
(1) Ifllpe = inf {£(1 + 0pe(kf)) : k > 0} and the set

K0 = {05 Wl = 1 (14 200

15 not empty.
(2) epo(f/Nflps) <1 if [l fllps # 0.
(3) IIfllgs < I£llps < 20 flIpo for any f € B®-a.p.

Proof. Note that by arguments similar to those used in the Orlicz space
case, we may show that

(4.1) Iz < 2011l 5o
(1) From the Young inequality we have

M(\fo) = 7 M(kSgl) < +lope(kf) + opo(g)] Tor all k>0,

and therefore
. 1

(4.2 11 < {3 1+ 050 (6)
>0 k

For the opposite inequality, we proceed in several steps:
(a) We suppose first that the derivative ¢’ is continuous, and prove that
if P € P then there exists kg € ]0, oo[ such that

1
1Pl 5e = o (1+ ops(koP)).

Define
F:[0,00[ = [0,00[, F(k) = opu[¢'(k|P])].
Then limg_.o F'(k) = oo. Indeed, if P # 0, then from Lemma 4.1, there

exist a, 3,0 with 5 > o > 0 and 6 € (0,1) such that ©(G) > 6, where
G={teR:a<|P(t)| < pB}. It follows that

op 0P > Tm o | (@ BP@)D) do > 006! (ko).
[-T,TING

Now, since an Orlicz function increases to infinity with its derivative (cf. [2],
[7]), we get limg_oo F(k) = 0.

Let us show that F' is continuous. Let k,, — ko € ]0, oo[. Trigonometric
polynomials being uniformly bounded, we put ||P|lcc = M. Let € > 0 be
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arbitrary. Since ¢’ is uniformly continuous on [koM /2, 3kgM /2], there exists
ng such that

n>ng = |¢'(kn|P|) — ¢'(kolP)| < ¢~ (e).
Hence

(4.3) ope[¢' (kn|P]) — ¢/ (ko| P|)] < €.

Set fn, = ¢/(kn|P|) and f = ¢'(ko|P]|). Then f,, f € {u.a.p.}. Since ¢’ is
increasing, we have moreover f, < ¢'(2ko|P|). Now, (4.3) implies
lim,, o0 0+ (fr — f) = 0. Finally, in view of Lemma 3.1(1),

lim opu(fn) = 0pe(f)

and thus F' is continuous at k.

Consequently, since F/(0) = 0 and limy_. F'(k) = oo, there exists ko €
10, 00| for which ggv[¢' (ko|P|)] = 1. Considering the case of equality in the
Young inequality, we get

1
I1PN5e = 7= M{lko P - ¢'(kolP|))

> kio (050 (koP) + 05301/ (ko P])])

— (ope(koP) +1)
0

and finally, combining this with (4.2), it follows that

v

IPIss = jut{ 4 (ee(6P) + D} = - (ep(iaP) + 1,

We now show that this result remains true for f € B®-a.p. For, let {P,}
be the sequence of Bochner—Fejér polynomials that converge to f. We have
seen that for each n > 1 there exists k,, € |0, 0o such that

(44 1Pl = { - (1 2 () -

From (4.1) and the Bochner—Fejér approximation property (see (1) of 2.2),
we get

Vkn < |[[Pallge < 2[[Prllps < 2[1 £ s

and thus k, > 1/2||f||ge = c1 > 0. Let us show that k,, < ¢y for alln > 1, for
some constant co. Indeed, if this is not the case, there exists a subsequence,
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denoted again by {k,}, increasing to infinity and such that
T

1= oo [ (knlPa)] > T o | (0 Ol Pa)) d

— 1
> Tlgrgo ﬁGS (¢ (knay)) dt > 019[¢ (knay)] — 0o as n — oo,

where Gy, 01, a1 are defined in Lemma 4.1. A contradiction.

Now, the sequence {k,} being bounded, there exists a subsequence de-
noted again by {k,} that converges to some ko with 0 < kg < oo. Let us
show that

Jim ops (knPr) = ope(kof).
Indeed, by (1) of 2.2 we have
0ps(knPp —kof) < %QB¢(2(kn — ko) P) + %QBﬂﬁ(QkO(Pn - f))
< |kn — kologe (f) + 3054 (2ko(Pn — f))

and so lim,, .o 0ge(knPp — kof) = 0. Now, in view of Lemma 3.1(3)(a),
lim QB¢(knPn) > QB¢(k0f)-
n—oo

On the other hand, from the inequality ops(knPp) < 0ps(knf), we have
i opo(knPn) < T ogo(knf) = m ogo(knf) = ops(kof)

and thus
nlg{.lo ops(knPpn) < ops(kof) < lm ope(knFr),

n—oo
ie. lim, o0 0po (knpn) = QB(P(kOf)'
Finally, letting n — oo in (4.4) we get

(4.5) 1l e = kiowmwof) ).

(b) Consider now the case of ¢’ discontinuous. From [3], we know that
for each € > 0 there exists an equivalent Orlicz function ¢. with continuous
derivative, more precisely

(4.6) (1-¢e)¢(z) < ¢e(z) < P(x), =20
We also have B?-a.p. = B%-a.p. as sets and one sees easily that
(4.7) (1—e)ope(f) < opec (f) < 0ps(f),  f € B%ap.

The same inequality holds for the corresponding norms.
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Now, since (4.5) is true for ¢, using (4.7) we get

48)  intd f o)+ 0} < {3 (2 ape (i) +1) )

k>0

1 1
i ;;;g{g (e (k) + (1= €) |
< L flgee < 2 1l

—1-
Fmally, e > 0 being arbitrary and recalling (4.2), this proves that | f| gs =

inf{2(ogs(kf)+1):k>0}.
(c) It remains to show that if f € B?-a.p. then

1
Il e = (Qm(kiof) +1) for some ko > 0.

For € > 0, let ¢ be the associated smooth function satisfying (4.6). We have

inf{% (0on (k) + (1 - e))}

— € k>0

1
= intd e (kD) + 1)}
1 1
et
o (eme (k) 1)

i {1 (ape(or) + 1) <

k>0

IN

1
(0pes (kef) +1)

On the other hand,

int{ £ (emeh) + 0} 2 i {3 (0 (k) + 1)}

> = (e () + 1)
> % (epe(hef) + D).
Consequently,
49 (=9 o) +1) < ut{ 3 (ese(kn) 4 1)}
< L (opelha) )
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We claim that the sequence {k.} is bounded. Indeed, otherwise a subse-
quence, denoted also by {k.}, increases to infinity, and then

1= opelipe(hel ] > T o J el o) do

> 01¢0[pe(ker)] — 00 as ke — o0,

where G, 01, a1 are defined in Lemma 4.1. A contradiction.

We can show easily that k. > ¢; > 0 for some ¢; > 0.

Now, the sequence {k.} being bounded, there exists a subsequence de-
noted again by {k.} that converges to some 0 < kg < oc. Finally, letting
e — 0 in (4.9) and using Lemma 4.2, we get

. 1 1
I/l s = inf§ - (epe(kf) +1) ¢ = 1= (epe(kof) +1).
k>0 | k ko
(2) Suppose first that ¢’ is continuous. Let f € {w.a.p.}, f # 0 and
g € BY-a.p. Then

(a) if opu(g) <1, we have M(|fg|) < |Ifl 5+,
(b) if pgs(g) > 1, we have

g 1 _
oB <93w (g)) : o5 (g9) 2B o) =1

and so M(|fg/ops(9)]) < I/l ps-
It follows that in all cases we have,

M(|fgl) < max(1, 0pe(9)) - 1 £l 5o

Defining now g = ¢'(f/||fllg¢), we have g € {u.a.p.} and using the case
of equality in the Young inequality and the fact that in this case the limit
exists, we have

A A f -
M(‘ 17 5o QD = 0p¢ (|||f”|3¢>) + 0pv(9) < max(1, 054 (g))
so that ops (f/[Ifllzs) < 1.

To consider the general case of f € B®-a.p., let {P,}°°; be the sequence
of Bochner—Fejér polynomials approximating f. Then

P, )
ops | ior— ] <1, Va>1.
b (”|Pn|”B¢

But, using Lemma 4.3(1) and (1) of 2.2, we can write

[Pl = jut{ 3 (1 2o b < urd 21+ g o) | = 1l
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o\ — ) S 0Be\ 7o — ) =1
N (IHfHIm P\ 1Pl go

and thus ogs (f/||fllge) <1 by Lemma 3.1(2).
In the general case of a discontinuous ¢’, we use the inequalities (4.6) to
obtain

1) <ev () = e () < 1
@B“*(wfwm =05\ e ) S 1= \[flpe ) S 1<

and since ¢ is arbitrary, we get ogeo(f/|fllge) < 1, which is the desired
result.
(3) We have opa(f/||fllps) <1 and so |[f[[ge <[ f]lpe- Finally, in view

of (4.1), we get [[fllpe < Ifllpe <2[flps- =

LEMMA 4.4. Let f € E?([0,1]), where E®([0,1]) is the Orlicz class of
functions, i.e.

E?([0,1]) = {f measurable : 04(\f) < 00, YA > 0},
0¢ being the usual Orlicz modular. Then:

(i) If f is the periodic extension of f to the whole R (with period 1),
then fe B?-a.p. B
(ii) The injection i : E?([0,1]) — B®-a.p., i(f) = f, is an isometry with
respect to the modulars and also for the respective Orlicz norms.
Proof. Let f =31 aixa,, AiNA;j =0ifi+# jand J; A C [0,q],
0 < a < 1andlet m e N* Then ) ;" ¢(ma;)u(4;) < oo and using (3.1)
we assert that there exists P, € P (the set of generalized trigonometric
polynomials) for which

so that

QB¢<% (f~_ Pm)) < %7

where fis the 1-periodic extension of f to the whole R.
Let A > 0 be arbitrary. If mg € N* is such that A < mg/4 then

5 NF = ) < g (T =Po)) < o i e

This means that limy, s ||f — Pnllge = 0, i.c. f € B¢-a.p.

Consider now the general case of f € E?([0,1]). It is known (see [3])
that the step functions are dense in £?([0, 1]) and hence, given ¢ > 0, there
is go = Y.i,aixa, for which ||g: — f|l4 < e/4. Here || - || is the usual
Luxemburg norm in E%([0, 1]).

Since f is absolutely continuous, choose § > 0 such that

p(A) <6 = |[fxalle <e/4
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Take o > 0 such that 1 —a < §, put AY = 4, N[0,a],i=1,...,n, and let
92 =311 aixae. Then g2 € E®([0,1]).

Let f and g2 be the 1-periodic extensions of f and ¢g¢ respectively. We
have

If =92 llBs = IIf = 9Zlle < I(f — 98)x0,alle + I(f = 98)X (a1l
< = gellg + 1 Xaille < €/4+e/d=¢/2.
Now, since g¢ € B?-a.p., there exists P. € P for which ||g® — P||ge < /2.
Finally,
If = Pellge < If —g€llge + 198 — Pellpe <€/2+¢/2=¢,

i.e. fE B?-a.p.
It is clear that i : E2(][0,1]) — B?-a.p. is a modular isometry. It is also
immediate that it is an isometry for the Orlicz norms. Indeed,

178 = {3 1+ 0ok b = utd & (14 2ok ) = 1o o
LEMMA 4.5. (1) Let ¢ be of Aa-type. Then
inf{k € K(f):||fllge =1, f € B®-a.p.} =d > 1.
(2) If 9, the conjugate to ¢, is of Aa-type, then for each a,b > 0, the set
Q={keK(f):a<|fllps <b, f € B%ap}
s bounded.

Proof. The arguments are exactly as those used in the Orlicz space case
(see [3], [9]) so we omit the proof. m

5. Uniform convexity of B?-a.p. We now state the main result of
this paper.

THEOREM 5.1. The space (B®-a.p., || fllgs) is uniformly conver if and
only if ¢ is uniformly convex and it is of Asg-type.

Proof. Sufficiency. The proof of the sufficiency follows by the arguments
developed in the Orlicz space case. We sketch it here for completeness. Recall
that a Banach space (X, | - ||) is uniformly convex iff

Waad v} € B, lim o+ 3l =2 = Tim [l — gl = 0
(see [3]), B(X) being the unit ball of X.
Let {fn}n>1,{9n}n>1 be two sequences in the unit sphere of

(B®-a.p., |- llgo). Let {kn}n>1, {hn}n>1 be the sequences of scalars defined
by (see Lemma 4.3)

1 1
Ifalls = = L+ epo(knfn))s  lNonllge = 7= (1 + 0ps(hngn)), 721
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For given o > 0 and 0 < £ < 1/2, we define, for each n > 1, the sets

Gn = {t € R: max(|knfn(t)], [hngn(t)]) < o},
Ep ={t € R: [knfu(t) = hngn(t)| < e max([knfn ()], [hngn(t)])},
Fop = {t € R: [knfn(t) = hngn(t)| = e max([kn fu(t)], [hngn(t)]) = ea}.

We have the following estimates:

(5'1) QB¢((knfn - hngn)XGn) < 0po <2aXGn) < ¢(2O‘>

and

05s ((knfn — hngn)XE,) < 0ge(e([knfnl + |hngnl)XE,)

k h
< 2e0ps (—’ nul _g g XEn>

< e(ops(knfnXxE,) + 0Bs (hngnXE,))-
Now, since
ops(knfn) + 0o (hngn) = kn + hn — 2,
we get (see Lemma 4.5)
(5.2)  ope((knfn — hngn)XE,) < e(kn + hy — 2) < e(2d — 2) < 2ed.

Put

a = inf Fon fin n>1 b =su P fin n>1
T\ En + B Fon B I DSl S e

Then from Lemma 4.5, [a,b] C ]0,1][.
Now, using condition (2.1), it is easily seen that for ¢ € F,,, we have

653 o n () + 0n(0)
< (1= )| 2 Gl o) + 1 6 0)

and hence

(1+ 0p¢(hngn))

)

§|H

L (14 opo(knfa)) +

2 - an"‘gnt¢ k:
k + hy,
o h 1+ 056
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- knhn, °B (k? + hy, ¢( nfn) m ¢(hngn)
knhn
- ¢<kn Ty U +g")>>
> k:;ln OBt ( |:kn T h ¢< nfn) K + h ¢(hngn)

knhy
kn + hn b, kn
> k:;zn ot <5<m ¢(knfn) + m¢(hn9n)>XFn>

> o0 ( (1 0lEnfu) + - 1) i, )

n

1
> 5QBl< (¢( nfn) + (b( ngn))XFn>
20 knfn — hngn 20k
> g 0p¢ (% XEn) > T QB¢((knfn - hngn)XEn)a

k being the constant from the As-condition on ¢.
On the other hand, using (5.1) and (5.2), we obtain

o0B¢ (knfn - hngn) < QB¢((k7nfn - hngn)XGn) + QBé((knfn - hngn)XEn)
+ QB¢((knfn - hngn)XFn)

d
< (92—
< 6(20) + 224+ 5= (2= L+ gull o)

Suppose now that || fr, + gnl|ge — 2 as n — co. We have
n@o 0o (knfn — hngn) < ¢(2a0) + 2ed.
But, since a and ¢ are arbitrarily small, it follows that

lim ||knfn — hagnll ge = 0.
n—oo

We now show that in fact we have lim, .o || fn — gnllge = 0. Indeed, this
comes from the inequalities

Ifn = gnllBe < lknfn — kngnllpe < lknfn — hngnllgs + 1Pngn — kngnll ge
< NEknfa = hagnllgs + [hn — kn|
< NEknfn = hagnllgs + | lknfrll 3o — IBngnll 5ol
< 2|lknfn = kngnll ge-
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Necessity. Suppose the Banach space (B?-a.p., || f|| g¢) is uniformly con-
vex. Then by a classical result it is reflexive. But we know that the Ao-
condition on ¢ is necessary for the reflexivity of E?([0,1]) (cf. [1]); using
Lemma 4.4, we deduce that it is also necessary for the reflexivity of B?-a.p.

Now, since ¢ is of As-type, the mapping

i (L2([0,2]), 1 - lg) — (B®-ap., [l - 1 34)
is a modular isometry for the respective norms (see Lemma 4.4). Then from

the uniform convexity of L?([0,1]) it follows that ¢ must be uniformly con-
vex. m
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