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WITH ZERO MULTIPLICATION
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JAN KREMPA (Warszawa)

Abstract. Let F be a commutative ring with unit. In this paper, for an associative
F -algebra A we study some properties forced by finite length or DCC condition on F -
submodules of A that are subalgebras with zero multiplication. Such conditions were
considered earlier when F was either a field or the ring of rational integers.

In the final section, we consider algebras with maximal commutative subalgebras of
finite length as F -modules and obtain some results parallel to those known for ACC
condition or finite generation.

1. Motivation. In this note F stands for a commutative ring with
1 6= 0. Associative F -algebras, not necessarily with 1, will be named algebras
for short. If A is an algebra and 1 6∈ A, then by A1 we denote the standard
extension of A to a unital algebra with the help of F . If 1 ∈ A, then let simply
A1 = A. In both cases any algebra ideal of A is an ideal of A1. An algebra
is called reduced if it has no nontrivial nilpotent elements. Subalgebras with
zero multiplication will be named zero subalgebras.

In [8, 9], among other results, T. J. Laffey proved the following one:

Theorem 1.1. Let A be an algebra over a field F . If every zero subal-
gebra of A is finite-dimensional over F , then either all nilpotent elements
of A are contained in a finite-dimensional ideal of A, or A has an infinite-
dimensional ideal J such that J3 = 0 and J contains an infinite-dimensional
commutative ideal.

Applying this theorem to semiprime algebras it is not difficult to obtain
the following consequence, reproved in [11]:

Theorem 1.2. Let A be a semiprime algebra over a field F . Then every
zero subalgebra of A is finite-dimensional over F if and only if A is a direct
sum of a finite-dimensional algebra and a reduced algebra.

Let Z denote the ring of rational integers. Then a theorem from [7] can
be formulated in the following way.
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Theorem 1.3. Let F = Z and let A be a semiprime F -algebra. Then
every zero subalgebra of A is an F -module of finite length if and only if A
is a direct sum of an ideal of finite length as an F -module and a reduced
algebra.

In this note, we are going to extend the above results. We also show
that to have only zero subalgebras of finite length or only with DCC on
submodules over F is a very strong condition, not only in the semiprime
case and not only over a field. Our investigation was motivated by papers
[11, 7], but our approach will rather follow [5, 6, 8, 9]. In particular, we are
not going to use generalized polynomial identities.

In the final section we apply the results obtained to study connections
between the module structure of an algebra and its commutative subalge-
bras, in the spirit of [10] and [1].

2. On finiteness conditions. In what follows, F -modules will be
named modules, for short. By F we denote the class of all modules of fi-
nite length and by D the class of all modules with the DCC condition on
submodules. Algebras will often be identified with their underlying modules.
For example, if A is an algebra with DCC on submodules, then we will often
write A ∈ D.

It is evident that F ⊆ D and, if F ∈ D, then F ∈ F . In this case we have
F = D (see [2]). Our further notation and terminology are rather standard,
as for example in [5].

In this section we adapt some classical results on rings with finiteness
conditions presented for example in [2, 5] to algebras with analogous condi-
tions for submodules.

Lemma 2.1. Let A ∈ D be an algebra and I be the annihilator of A
in F . If A is prime, then F/I is a field and A is a simple algebra finite-
dimensional over F/I. In particular A ∈ F and it is unital.

Proof. Since A is prime, F/I is a domain and A is torsion free as an
F/I-module. Moreover, if 0 6= a ∈ A, then the modules F/I and (F/I)a
are isomorphic. Hence, by assumption, F/I ∈ D and F/I is a field, being
a domain. This means that A is a finite-dimensional algebra over F/I and
the result follows by the primeness of A.

Lemma 2.2. Let A ∈ D be a semiprime algebra. Then A is a unital
algebra with DCC on left and right ideals. Thus A is a finite direct sum of
simple algebras and A ∈ F . Hence, for every a ∈ A the modules Aa and
aA have the same length.

Proof. Let I be a minimal annihilator of a central idempotent, say f ,
in A. Then I = (1 − f)A ∈ D and I is a semiprime algebra. Assume that
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I 6= 0. If J is a minimal algebra ideal of I, then it is easy to check that
J is a prime algebra. Hence, by the previous lemma, J has a unit, say e.
Thus 0 6= e is a central idempotent in I and also in A. We have J = eI
and (1 − e)I is an annihilator of e in I. It can be checked that e + f is a
central idempotent in A and (1−e)I = (1−e)(1−f)A = (1−(e+f))A is an
annihilator in A of e+f , properly containing I, a contradiction. Thus f is the
unit element of A, and DCC on submodules forces DCC on one-sided ideals.
Hence A is a finite direct sum of simple algebras with DCC on submodules,
and Lemma 2.1 yields A ∈ F .

The last statement can be proved as an application of Lemma 2.1, in
fact by reduction to matrices over fields and over finite-dimensional division
algebras.

As another analogue of a classical result on Artin rings (see [5]) we have

Corollary 2.3. Let A ∈ D be an algebra with a one-sided unit. Then
A ∈ F .

Proof. Let e ∈ A be a left unit. Then all left ideals of A are algebra
ideals, and since A ∈ D, our algebra satisfies DCC on left ideals. Hence it is
of finite length as a left A-module by the Hopkins–Levitski theorem.

If I ⊂ J are left ideals of A such that M = J/I is a simple A-module,
then eM = M and, by Lemma 2.1, M is of finite length over F . Hence
A ∈ F .

The case when A has a right unit can be proved analogously.

In what follows, if A is an algebra, then we denote by N(A) the largest
nil-ideal of A and by P (A) the smallest semiprime ideal (the prime radical)
of A. Clearly P (A) ⊆ N(A) and both are algebra ideals of A.

Now, with the help of Lemma 2.2, we can obtain another analogue of a
classical result on Artin rings.

Corollary 2.4. Let A ∈ D be an algebra. Then there exists an idempo-
tent e ∈ A such that eA,Ae ∈ F , while (1− e)A and A(1− e) are nilpotent
algebras.

Proof. Assume first P (A) = A. Evidently, for any n ≥ 1 the ring An is
an algebra ideal of A. Hence, by DCC on submodules, there exists n ≥ 1
such that

An = An+1 = · · · = A2n = AnAn.

Assume that An 6= 0. Then by DCC there exists a minimal left algebra ideal
J ⊆ A such that AnJ 6= 0. Hence J = AnJ , and there exists x ∈ J such
that J = Anx and 0 6= x = ax for some a ∈ An. Hence, x = ax = a2x = · · · .
But An is a nil-algebra, a contradiction. Thus necessarily An = 0. In this
case it is enough to put e = 0.
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Now let P (A) 6= A. Then, by Lemma 2.2, A/P (A) is a nontrivial unital
algebra. Thus it is enough to lift the unit of this algebra to an idempotent
e ∈ A and to apply Corollary 2.3.

As a consequence we can prove the following result for algebras with no
finiteness conditions.

Proposition 2.5. Let I ∈ D be a one-sided ideal of an algebra A. Then
I ∈ F in any of the following cases:

• A is semiprime;
• I is a finitely generated one-sided ideal of A;
• I is a finitely generated two-sided ideal of A.

Proof. Let A be semiprime and I ∈ D be a left ideal. Then, by Corol-
lary 2.4, I = Ie⊕ I(1− e), where Ie ∈ F , while I(1− e) is a nilpotent left
ideal of A. By the semiprimeness of A, this means that I = Ie ∈ F . The
case when I is a right ideal can be checked analogously.

Now let A be an arbitrary algebra, I ∈ D be a finitely generated left
ideal of A and let I = A1b1 + · · ·+ A1bn, where bi ∈ I. Let Ji, i = 1, . . . , n,
be the annihilators of bi in F . Then F/Ji ' Fbi ∈ D. If J is the intersection
of all Ji, then F/J ∈ F , because F/J ⊆⊕n

i=1 F/Ji ∈ D. Now I is a module
over F/J . Hence I ∈ F , because I ∈ D.

The case when I is a finitely generated right ideal, or finitely generated
two-sided ideal, can be checked in an analogous way.

Let M,N ∈ F be modules. Then it is well known (see [2]) that the
module HomF (M,N) also belongs to F . However, this is not true for D in
place of F .

Example 2.6. Let F = Z and p be a prime number. Let M = N be
the Prüfer p-group C∞p . Then it is known (see [4]) that HomF (M,N) =
EndF (M) is the ring Op of p-adic integers, which does not belong to D.

Now let M = N = C∞p ⊕C∞p . Then the ring EndF (M) is isomorphic to
the matrix ring M2(Op). This ring contains as a zero subring the additive
group of Op, isomorphic to the upper right corner of M2(Op).

Having in mind the above example one can only prove the following
result.

Lemma 2.7. Let B ∈ F be a left (resp. right) ideal of an algebra A, and
C be the left (resp. right) annihilator of B in A. Then C is an ideal of A
and the algebra A/C belongs to F .

In connection with the class F we have the following observation (see [9]
for a special case).
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Lemma 2.8. Let B ⊆ A be algebras and I be the largest ideal of A
contained in B. If the module A/B is in F , then A/I ∈ F .

Proof. Since A/B ∈ F , it is finitely generated. Thus we can find in A1

elements x1 = 1, x2, . . . , xn such that the module A1/B is generated by the
cosets xi + B. For any pair 1 ≤ i, j ≤ n let Vij = {b ∈ B : xibxj ∈ B}. It
can be checked that

I =
⋂

1≤i,j≤n
Vij and B/I ⊆

∏

1≤i,j≤n
A/B.

Thus, by assumption, B/I ∈ F , hence A/I ∈ F as well.

Again, the above lemma does not extend to the case of D. Indeed, let
1 < n ∈ N, A = Z[1/n] and F = B = Z. Then A/B ∈ D and A/(0) ' A 6∈ D,
but clearly the only ideal of A contained in B is (0).

3. A useful ideal. Let A be an algebra. Adapting an idea from [9] we
introduce the ideal ∆(A) equal to the sum of all the ideals I of A such that
I ∈ F . If F is a field, then ∆(A) = y(A), where y(A) is defined as in [9]. In
his paper Laffey refers to the analogy with the FC-center of a group, often
denoted by ∆, and we will follow this analogy in our notation. We have the
following characterizations of the elements of ∆(A).

Lemma 3.1. Let A be an algebra and a ∈ A. Then the following condi-
tions are equivalent :

(i) a ∈ ∆(A).
(ii) A1aA1 ∈ D.

(iii) A1a+ aA1 ∈ D.
(iv) A1a+ aA1 ∈ F .
(v) A1aA1 ∈ F .

Proof. Clearly (v)⇒(i)⇒(ii)⇒(iii). The implication (iii)⇒(iv) follows by
Proposition 2.5.

(iv)⇒(v). Suppose A1a + aA1 ∈ F . Then, in particular, aA1 is finitely
generated as a module. If aA1 = Fax1 + · · ·+Faxn, where xi ∈ A1, then it
is easy to check that A1aA1 = A1ax1 + · · ·+ A1axn. Hence A1aA1 ∈ F .

Below we collect general properties of the ideal just defined.

Lemma 3.2. Let A be an algebra. Then:

(i) ∆(∆(A)) = ∆(A).
(ii) If B ⊆ A is a subalgebra, then B ∩∆(A) ⊆ ∆(B).

(iii) If B ⊆ A is a subalgebra with A/B ∈ D, then B ∩∆(A) = ∆(B).
(iv) If I is an ideal of A, then (∆(A) + I)/I ⊆ ∆(A/I).
(v) If ∆(A) ∈ D, then ∆(A/∆(A)) = 0.
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Proof. Claims (i) and (ii) are evident. Let B ⊆ A be an algebra with
A/B ∈ D and let b ∈ ∆(B). Assume, for simplicity, that A = A1 and
1 ∈ B. Then, by the above lemma, bB ∈ D. If U is the right annihilator of
b in A, then B ∩U is the right annihilator of b in B and bB ' B/(B ∩U) '
(B+U)/U ∈ D. On the other hand, by assumption, A/B ∈ D, so A/(B+U)
∈ D. Hence bA ' A/U ∈ D. In a similar way one can see that Ab ∈ D. Hence
A1b+ bA1 ∈ D, because 1 ∈ A.

If 1 6∈ A or B is not a unital subalgebra of A, then similar considerations
can be applied after going to A1 and B′ = B+F1. In this way, by Lemma 3.1,
b ∈ ∆(A), ∆(B) ⊆ ∆(A) and claim (ii) finishes the argument.

Now let ∆(A) = D ∈ D and a ∈ A be such that a+D ∈ ∆(A/D). This
means that A1aA1/(D ∩ A1aA1) ' (A1aA1 + D)/D ∈ D. By assumption
D∩A1aA1 ∈ D. Hence A1aA1 ∈ D. In this way, by the above lemma we have
shown that a ∈ ∆(A) = D and, as a consequence, that ∆(A/∆(A)) = 0.

The last conclusion of the above lemma does not extend to the case when
∆(A) 6∈ D. Indeed, let F be a field and A be the direct sum of infinitely
many copies of F considered as an algebra with pointwise multiplication. It
is easy to check that ∆(A1) = A but ∆(A1/A) = A1/A 6= 0.

It turns out that the condition A = ∆(A) is a very strong finiteness
condition on the algebra A.

Lemma 3.3. Let N be a nil-algebra and I be a maximal zero ideal of N .
Put

J = {x ∈ N | xI = Ix = 0} and Nk = {x ∈ N | xNk = Nkx = 0}
for any k ≥ 1. If N = ∆(N), then:

(i) N = P (N), because N is the union of the nilpotent ideals Nk.
(ii) If I ∈ D, then N is nilpotent.

(iii) If I ∈ F , then N/J ∈ F .

Proof. If x ∈ N , then, by assumption, xN ∈ F . Thus, there exists
m ≥ 1 with xNm = xNm+1. Hence, xNm = 0, because N is a nil-algebra.
In a similar way one can check that N lx = 0 for some l ≥ 1. In this way
we have proved that x ∈ Nk, where k = max(m, l), and N =

⋃∞
k=1Nk. This

means that N = P (N), because Nk+1
k = 0.

By our definition, I ⊆ J and J is an ideal of N . Suppose that J3 6= 0.
Then there are elements a, b, c ∈ J such that abc 6= 0. Let K be the ideal
of N generated by a, b and c. Then, as we already know, K ⊆ N = ∆(N)
and K3 6= 0. However, by Lemma 3.1 and Corollary 2.4, Km = 0 for some
m > 3. We can assume that m is minimal with this property. Let L = Km−2.
Then clearly

L2 = K2m−4 = 0 = IL = LI, thus (I + L)2 = 0.
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By the maximality of I, we then have L ⊆ I. Hence

Km−1 = LK ⊆ IK ⊆ IJ = 0.

This contradicts the choice of m, and so the assumption J3 6= 0. Hence
J3 = 0.

Now assume that I ∈ D. Then, by Theorem 1.5 of [3] and the definition
of J , one can see that N/J is nilpotent and N k ⊆ J for some k ≥ 1. It
follows that N is nilpotent, because J3 = 0.

Now assume that I ∈ F . Then, by Lemma 2.7 and the definition of J ,
one can see that N/J ∈ F .

The above result cannot be essentially generalized. Indeed, let F be a
field. For any m ≥ 1 the algebra Am = F [t]/(tm) is in F and its prime
radical is nilpotent of index m. Hence A =

⊕∞
m=1Am is equal to ∆(A) and

N(A) = ∆(N(A)) is not nilpotent.
One might expect that in the above lemma, if I ∈ F , then N(A) belongs

at least to D. One might also expect that in the above lemma the condition
J3 = 0 can be replaced by J2 = 0. However, this is not true in general.
Indeed, as a special case of Example 3.11 of [9] we have

Proposition 3.4. Let F be a linearly ordered field. Then there exists an
infinite-dimensional F -algebra A with ∆(A) = A and A3 = 0, containing an
ideal I of dimension one which is the only nontrivial zero subalgebra of A.

In a semiprime algebra A any element of ∆(A) can be characterized
with the help of only one one-sided ideal. The result below extends also
Theorem 2.2 of [12] and Theorems 2.12, 2.13 of [11].

Theorem 3.5. Let A be a semiprime algebra and let a ∈ A be such that
either aA ∈ D or Aa ∈ D. Then a ∈ ∆(A). Moreover , both modules aA and
Aa have the same length.

Proof. Let aA ∈ D. Then, by Proposition 2.5, we have aA ∈ F and
aA = eA, where e is an idempotent.

Now let B be the right annihilator of aA and C be the left annihilator
of B in A. Then B is an ideal of A and by Lemma 2.7, A/B ∈ F . Clearly
A1aA1 ⊆ C, because e ∈ aA ⊆ C and C is an ideal of A. By the semiprime-
ness of A we have B ∩ C = 0. Hence A1aA1 ⊆ C ∈ F and a ∈ ∆(A).

The second conclusion follows from Lemma 2.2, becauseA1aA1 is a direct
summand of A and we can restrict ourselves to this ideal.

In the above theorem, the assumption of the semiprimeness of A is es-
sential. Indeed, suppose F fails DCC on ideals, M is a maximal ideal of F ,
I = t3F [t]+Mt2 is an ideal of the polynomial algebra F [t], A = tF [t]/I and
a = t + I. Then Aa = Fa2 ' F/M is a simple module, while A = A1a =
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A1aA1 ' F ⊕F/M as a module, so A does not satisfy DCC on submodules
and a 6∈ ∆(A).

Let F be a field, and A = F [a1, a2, . . .] be an algebra with relations
aiaj = 0 for all i ≥ j. Then Aa1 ' F ∈ F , while a1A is infinite-dimensional.
In this case also a1 6∈ ∆(A).

In any semiprime algebra A the ideal ∆(A) is closely related to the socle
soc(A). As a consequence of Lemmas 2.1, 2.2 and Theorem 3.5 we have the
following extension of some results of [11] and [12].

Theorem 3.6. Let A be a semiprime algebra with soc(A) =
⊕

s∈S Is,
where Is are homogeneous components. Then ∆(A) is the direct sum of all
ideals Is belonging to F . In particular :

• If A is prime and ∆(A) 6= 0, then A = ∆(A) ∈ F and A is a simple
unital algebra.
• If ∆(A) ∈ D, then A = ∆(A)⊕B, where ∆(B) = 0.

Proof. It is well known (see Theorem 4.3.1 in [6]) that in our notation
any Is is a simple algebra. If Is ∈ F , then, by definition, Is ⊆ ∆(A). On
the other hand, if a ∈ ∆(A), then, by Lemma 3.1, A1aA1 ∈ F and, by
assumption, it is a semiprime algebra. Hence, by Lemma 2.2, a belongs to
a finite direct sum of ideals Is belonging to F . Now the final conclusions
follow easily.

4. DZS-algebras. Adopting the terminology from [11, 7], we say that
an algebra A is an FZS-algebra if every zero subalgebra of A belongs to F ,
and A is a DZS-algebra if every zero subalgebra of A belongs to D. FZS-
algebras are certainly DZS-algebras. However, by considering modules as
zero algebras it can be observed that in general these two classes are differ-
ent. Here we rather concentrate on DZS-algebras.

Reduced algebras and algebras with DCC condition on submodules are
certainly DZS-algebras. One can also easily deduce the following observation.

Proposition 4.1. Let A be an algebra.

• If A is a DZS-algebra (resp. an FZS-algebra) and B ⊆ A is a subal-
gebra, then B is a DZS-algebra (resp. an FZS-algebra).
• If I ⊆ A is an algebra ideal such that I and A/I are DZS-algebras

(resp. FZS-algebras), then A is a DZS-algebra (resp. an FZS-algebra).

If F is a domain and A is a free nonunital algebra with infinitely many
free generators, then A is a domain, thus it is an FZS-algebra. Now the
algebra A/A2 is a free module of infinite rank with zero multiplication.
Hence it is not even a DZS-algebra. Thus the classes of DZS-algebras and
FZS-algebras are not closed under homomorphic images. Even if A = ∆(A)
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and A2 is very small, then, by Proposition 3.4, the algebra A2 need not be
a DZS-algebra.

Some properties of DZS-algebras are similar to those of semiprime alge-
bras. For example, as an analogue of a part of Theorem 3.5, some additional
characterizations of elements from ∆(A) for an arbitrary DZS-algebra A can
be given.

Lemma 4.2. Let A be a DZS-algebra and a ∈ A. If Aa or aA belongs
to D, then a ∈ ∆(A).

Proof. Suppose a ∈ A and Aa ∈ D. Let I be the annihilator of a in
F and J be the annihilator of a2 in F . By definition a2 ∈ Aa, hence, by
assumption, F/J ' Fa2 ∈ D. Moreover, (Ja)2 ⊆ Ja2 = 0. Thus, by the DZS
property, Ja ' J/I ∈ D. Hence F/I ' Fa ∈ D and A1a = Aa+ Fa ∈ D.

Now let V = {x ∈ A1 : xa = 0}. Then the module A1/V ' A1a belongs
to D. Furthermore, aV ⊆ A and (aV )2 = 0. If W = {x ∈ V : ax = 0}, then,
by DZS we have V/W ' aV ∈ D and consequently, A1/W ∈ D. Clearly
aA1 as a module is a homomorphic image of A1/W , hence aA1 ∈ D and
A1a+ aA1 ∈ D. By Lemma 3.1, this means that a ∈ ∆(A).

If aA ∈ D, the proof is analogous.

The following generalization of Lemma 3.5 of [9] is very useful for our
further considerations.

Lemma 4.3. Let A be a DZS-algebra. Then the algebra A/∆(A) is re-
duced. In particular , ∆(A) contains all nilpotent elements of A. Hence every
nil-subalgebra of A is nilpotent.

Proof. Let a2 ∈ ∆(A) and V = {x ∈ A1 : a2x = 0}. Then, by assump-
tion, A1/V ' a2A1 ∈ D. Also, by the definition of V , we have (aV a)2 = 0.
If W = {x ∈ V : axa = 0}, then, by the DZS property, V/W ∈ D. Hence,
A1/W ∈ D. If X is the left annihilator of a in W , then Wa ' W/X and
(Wa)2 = 0. Thus W/X, and hence A/X, belongs to D. Now A1a as a mod-
ule is a homomorphic image of A1/X and also belongs to D. By the lemma
above we then have a ∈ ∆(A).

Let B ⊆ A be a nil-subalgebra. Then, by the first part of the proof,
B ⊆ ∆(A). Hence, by Lemma 3.2, B = ∆(B). Now it is enough to apply
Lemma 3.3.

Now we turn to results connected with direct decompositions of DZS-
algebras and FZS-algebras.

Theorem 4.4. Let A be a semiprime DZS-algebra, B be the ideal of A
generated by all nilpotent elements, and C the annihilator of B in A. Then
A = B ⊕ C, B ∈ F and C is a reduced algebra.
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Proof. By Lemma 4.3 and Theorem 3.6 we have B ⊆ ∆(A) ⊆ soc(A).
Hence we can write B =

⊕
s∈S Bs, where every Bs is a simple unital algebra

belonging to the class F and contains a nonzero nilpotent element. By the
DZS property the above sum is finite. Thus B ∈ F and it is a unital algebra.
Hence A = B ⊕ C and C is reduced, by the definition of B.

Under some assumption not including semiprimeness, a similar direct
decomposition can also be obtained. Following an idea from [9] we can prove

Lemma 4.5. Let A be a DZS-algebra with ∆(A) = I and A/I = B. If
I ∈ F and B is a unital algebra having no ideals J with B/J ∈ F , then
A = I ⊕ C, where C is an ideal , unital and reduced as algebra.

Proof. Let H be the intersection of the left and the right annihilator
of I in A. Clearly H is an ideal of A and, by Lemma 2.7, A/H ∈ F , and
A/(I+H) ∈ F . Hence, by the assumption, I+H = A. Thus, for L = I ∩H,
we have H/L ' (H + I)/I = A/I = B. In this way, by assumption, H/L is
a unital algebra. By definition L2 = 0, and we can take e ∈ H as a lifting of
the unit of H/L. Then, by Peirce decomposition, we have

H = eHe⊕ eH(1− e)⊕ (1− e)He⊕ (1− e)H(1− e)
and by the choice of e and L ⊆ I ∈ F we deduce that the module H/(eHe)
belongs to F . Hence also A/(eAe) ∈ F . This means, by Lemma 2.8, that
for any a ∈ A the one-sided ideals (a− ea)A and A(a− ae) belong to ∆(A)
and consequently, A = I + eAe. Let C be a maximal ideal of A contained
in eAe. By Lemma 2.8, A/C ∈ F so, by assumption, A = I + C.

On the other hand, I ∩ C = 0, because e acts on C as the unit and
annihilates I, by definition. In this way we have A = I ⊕ C.

For further use let us say that, if A is an algebra and a ∈ A, then a is
algebraic (over F ) if the subalgebra F (a) generated by a belongs to F . One
can check that any element of ∆(A) is algebraic. The following observation
is rather easy.

Proposition 4.6. Let A be a reduced agebraic algebra with no infinite
set of orthogonal idempotents. Then A is a unital algebra and a direct sum
of finitely many division algebras.

Now we have almost proved some generalizations of theorems formulated
in Section 1 and some results of [9]. It is enough to add the following one.

Theorem 4.7. Let A be a DZS-algebra, algebraic over F . If ∆(A) ∈ F
and A has no infinite set of orthogonal idempotents, then A = ∆(A) ⊕ C,
where C is a finite direct sum of division rings algebraic over F .

Proof. Let I,H and L have the same meaning as in the proof of Lem-
ma 4.5. In this case, by assumption, H/L is an algebraic algebra with no
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infinite set of orthogonal idempotents, because L2 = 0. By Lemma 3.2,
∆(A/I) = 0 and A/I is an algebraic algebra. Hence, by the above proposi-
tion, A/I has no ideals J with factor algebra of finite length. Hence A/I is
also a unital algebra. Now it is enough to apply the previous two results.

In general, even for FZS-algebras, the assumption ∆(A) ∈ F does not
imply a possibility to decompose the algebra as above. Indeed, if F is a field
and we take matrices of the form

R =

[
F F [t]

0 F [t]

]
, I =

[
0 tF [t]

0 0

]
and A = R/I,

then ∆(A) ∈ F , A is not reduced and has no central idempotents. Hence A
is not a direct sum of nonzero ideals.

One could try to introduce the class A of all F -modules, then the ideal
∆A(A) and AZS-algebras, and try to extend the results of Section 1 to
AZS-algebras. But this is impossible.

Example 4.8. Let K be a field and F = K[t] be the ring of polynomials
of one variable t. Put A = tK[[t]]⊕M2(tK[t]). Then the algebras A and A1

are semiprime AZS-algebras, but A1 is not a direct sum of a reduced algebra
and an algebra with ACC as an F -module.

5. Commutative subalgebras. Some results on DZS-algebras can
be used in investigation of commutative subalgebras. As an application of
Lemma 3.3 and Theorem 3.6, we can prove the following result.

Proposition 5.1. Let A be an algebra such that ∆(A) 6∈ F . Then ∆(A)
contains either an infinite sequence of orthogonal idempotents, or a commu-
tative subalgebra B with B3 = 0, but B 6∈ F .

Proof. Set ∆(A) = D and N(D) = N . By assumption D 6∈ F and, by
Lemma 3.2, ∆(D/N) = D/N .

If D/N 6∈ F , then, by Theorem 3.6, D/N contains an infinite sequence
of orthogonal idempotents. It is well known ([6]) that this sequence can be
lifted to a sequence of orthogonal idempotents in D, because N is a nil-ideal.

Suppose D/N ∈ F . Then, by assumption, N 6∈ F . If N is not an FZS-
algebra, then it contains a zero subalgebra, say B, not in F and we are done.
Hence, we can assume that N is an FZS-algebra. Applying Lemma 3.3 we
can take an ideal J ⊆ N with J 6∈ F , but J3 = 0.

Let B1 = J2. Then clearly B2
1 = 0 and B1 ∈ F , by the FZS property.

Thus B1 is a commutative ideal of J and B1 6= 0, because J 6∈ F . In
particular, the length of B1 is at least one.
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Now assume that we have constructed a commutative ideal Bn of J
containing B1, with Bn ∈ F and of length at least n. Let

Vn = {x ∈ J : xBn = Bnx = 0}.
Then clearly Vn is an ideal of J and, by Lemma 2.7, the module J/Vn is of
finite length. Thus, Vn 6∈ F , by the assumption on J . Hence we can find an
element xn+1 ∈ Vn \ Bn. Put Bn+1 = Bn + Fxn+1. Then it can be checked
that Bn+1 is a commutative ideal of J , belongs to F , and its length is at
least n+ 1. Thus the ideal B =

∑∞
n=1Bn satisfies our requirements.

As a consequence we have an extension of a theorem from [9], parallel
to the main results of [10] and [1].

Theorem 5.2. Let A be an algebra. If A 6∈ F , then A contains a com-
mutative subalgebra also not belonging to F .

Proof. If A is not an FZS-algebra, then, by definition, A contains a zero
subalgebra B 6∈ F . Of course, B is commutative. If a ∈ A is not algebraic
over F , then, by definition, F (a) is a commutative subalgebra and F (a) 6∈ F .
If A contains an infinite sequence of orthogonal idempotents, then, as is
easy to check, this sequence generates a commutative subalgebra also not
belonging to F . If ∆(A) 6∈ F , then we can apply Proposition 5.1.

In this way we can restrict ourselves to an algebra A satisfying all as-
sumptions of Theorem 4.7. In this case, at least one direct summand of A
is a division algebra not in F and its maximal subfield is a commutative
subalgebra not belonging to F .

Question 1. Can an analogue of the above theorem be proved for alge-
bras not belonging to D?

In the case of unital algebras the answer is “yes”. Even a stronger state-
ment follows from the above theorem, because maximal commutative sub-
algebras of unital algebras are unital. We can also use Corollary 2.3.

Corollary 5.3. Let A be an algebra with a one-sided unit. If A 6∈ D
(or A 6∈ F), then A contains a commutative subalgebra not belonging to D.
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