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SOME CRITICAL ALMOST KÄHLER STRUCTURES

BY

TAKASHI OGURO (Saitama) and KOUEI SEKIGAWA (Niigata)

Abstract. We consider the set of all almost Kähler structures (g, J) on a 2n-dimen-
sional compact orientable manifold M and study a critical point of the functional Fλ,µ(J, g)
=
T

M
(λτ +µτ∗) dMg with respect to the scalar curvature τ and the ∗-scalar curvature τ∗.

We show that an almost Kähler structure (J, g) is a critical point of F−1,1 if and only if
(J, g) is a Kähler structure on M .

1. Introduction. Let M be a compact orientable manifold of dimen-
sion m. We denote by M(M) the set of all Riemannian metrics on M and
by R(M) the set of all Riemannian metrics of a fixed volume form. It is
well-known that a Riemannian metric g ∈ R(M) is a critical point of the
functional A on R(M) defined by

(1.1) A (g) =
\

M

τ dMg

if and only if g is an Einstein metric, where τ is the scalar curvature of g
and dMg is the volume form of g.

Now, let M be a compact manifold of dimension m = 2n admitting
an almost complex structure. We denote by AH(M) the set of all almost
Hermitian structures and by AH(M, Ω) the set of all almost Hermitian
structures with the same Kähler form Ω. An almost Hermitian manifold
M = (M, J, g) with the closed Kähler form Ω (dΩ = 0) is called an almost

Kähler manifold.

Let M = (M, J, g) be a compact almost Kähler manifold and Ω the
corresponding Kähler form. Then we may note that any almost Hermitian
structure (J, g) ∈ AH(M, Ω) is an almost Kähler structure on M . In this
case, we denote AH(M, Ω) by AK(M, Ω). In [1], Blair and Ianus studied
critical points of the functional F on AK(M, Ω) defined by

(1.2) F (J, g) =
\

M

(τ∗ − τ) dMg,

where τ∗ is the ∗-scalar curvature of (M, J, g). They proved that (J, g) is
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a critical point of F on AK(M, Ω) if and only if the Ricci tensor ̺ is
J-invariant.

We denote by AK(M, [Ω]) the set of all almost Kähler structures on M
with the same Kähler class [Ω] in the de Rham cohomology group. It is well-
known that AK(M, Ω) is a contractible Fréchet space. However, the space
AK(M, [Ω]) might be disconnected in general. In [4, 5], Koda studied critical
points of the functional Fλ,µ on AH(M, Ω) and AK(M, [Ω]) defined by

(1.3) Fλ,µ(J, g) =
\
M

(λτ + µτ∗) dMg, (λ, µ) ∈ R
2 \ (0, 0).

and gave a necessary condition for (J, g) ∈ AK(M, [Ω]) to be a critical
point of Fλ,µ. Since the functional Fλ,µ is invariant under the action of the
diffeomorphism group Diff(M) of M , by applying Moser’s stability theorem
([6]), we may easily show that critical points of the functional Fλ,µ on
AK(M, [Ω]) coincide with the ones of Fλ,µ on AK(M, Ω) corresponding to
the Kähler form Ω of (J, g). Therefore, (J, g) ∈ AK(M, [Ω]) is a critical
point of Fλ,µ if and only if (µ − λ)̺ is J-invariant [7].

In the present paper, we may regard (1.3) as a functional on AK(M),
the set of all almost Kähler structures on M , and we give a necessary and
sufficient condition for (J, g) ∈ AK(M) to be a critical point of Fλ,µ.

2. Preliminaries. Let M = (M, J, g) be a 2n-dimensional compact
almost Kähler manifold with almost Hermitian structure (J, g), and Ω be
the Kähler form of M defined by Ω(X, Y ) = g(X, JY ) for X, Y ∈ X(M).
We assume that M is oriented by the volume form dMg = ((−1)n/n!)Ωn.
We denote by ∇, R, ̺ and τ the Riemannian connection, the curvature
tensor, the Ricci tensor and the scalar curvature of M , respectively. The
curvature tensor R is defined by R(X, Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z for
X, Y, Z ∈ X(M). A tensor field ̺∗ on M of type (0, 2) defined by

(2.1) ̺∗(x, y) = trace(z 7→ R(x, Jz)Jy) =
1

2
trace(z 7→ R(x, Jy)Jz)

is called the Ricci ∗-tensor, where x, y, z ∈ Tp(M) (the tangent space of M
at p ∈ M). We denote by τ∗ the ∗-scalar curvature of M , which is the trace
of the linear endomorphism Q∗ defined by g(Q∗x, y) = ̺∗(x, y). We remark
that ̺∗ satisfies

(2.2) ̺∗(JX, JY ) = ̺∗(Y, X)

for any X, Y ∈ X(M). Thus ̺∗ is symmetric if and only if ̺∗ is J-invariant.

In this paper, for any orthonormal basis (resp. any local orthonormal
frame field) {ei}i=1,...,2n at any point p ∈ M (resp. on a neighborhood of p),
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we shall adopt the following notational convention:

(2.3)

Rijkl = g(R(ei, ej)ek, el), Rīj̄k̄l̄ = g(R(Jei, Jej)Jek, Jel),

̺ij = ̺(ei, ej), ¯̺ij̄ = ̺(Jei, Jej),

̺∗ij = ̺∗(ei, ej), ̺∗
īj̄

= ̺∗(Jei, Jej),

Jij = g(Jei, ej), ∇iJjk = g((∇ei
J)ej, ek),

and so on, where the Latin indices run over the range 1, . . . , 2n. Then we
have

(2.4) Jij = −Jji, ∇iJjk = −∇iJkj, ∇iJj̄k̄ = −∇iJjk.

The condition dΩ = 0 is equivalent to

(2.5) S
i,j,k

∇iJjk = ∇iJjk + ∇jJki + ∇kJij = 0.

Further, since M is a quasi-Kähler manifold and a semi-Kähler manifold,
we have

(2.6) ∇iJjk + ∇īJj̄k = 0,
∑

a

∇aJai = 0.

The following curvature identity is due to Gray ([3]):

2
∑

a

(∇aJij)∇aJkl = Rijkl − Rijk̄l̄ − Rīj̄kl + Rīj̄k̄l̄(2.7)

+ Rījk̄l + Rījkl̄ + Rij̄k̄l + Rij̄kl̄.

From this equality, we have

(2.8) ̺∗ij + ̺∗ji − ̺ij − ¯̺ij̄ =
∑

a,b

(∇aJib)∇aJjb,

and further

(2.9) ‖∇J‖2 = 2(τ∗ − τ).

Therefore, M is a Kähler manifold if and only if τ∗ = τ .

3. Critical points of Fλ,µ. Let M be a 2n-dimensional compact ori-
entable manifold and AK(M) the set of all almost Kähler structures on M .
For a point (J, g) ∈ AK(M), consider a curve (J(t), g(t)) in AK(M) with
(J(0), g(0)) = (J, g). We denote by Ω and Ω(t) the Kähler forms of (J, g)
and (J(t), g(t)), respectively. Then α(t) = Ω(t)−Ω is a 1-parameter family
of closed 2-forms and α(0) = 0.

We denote by ∇(t), R(t), ̺(t), ̺∗(t), τ(t) and τ∗(t) the Riemannian
connection, the curvature tensor, the Ricci tensor, the Ricci ∗-tensor, the
scalar curvature and the ∗-scalar curvature of (M, J(t), g(t)), respectively.
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Let (U ; x1, . . . , x2n) be a local coordinate system on a coordinate neighbor-
hood U of M . With respect to the natural frame {∂i = ∂/∂xi}i=1,...,2n, we
put

g(t)(∂i, ∂j) = g(t)ij, J(t)(∂i) = J(t)i
j∂j ,

(∇
(t)
∂i

J(t))∂j = (∇
(t)
i J(t)j

k)∂k, R(t)(∂i, ∂j)∂k = R(t)ijk
l∂l,

̺(t)(∂i, ∂j) = ̺(t)ij, ̺∗(t)(∂i, ∂j) = ̺∗(t)ij,

α(t)(∂i, ∂j) = α(t)ij,

and (g(t)ij) = (g(t)ij)
−1. In particular, we have g(0)ij = gij , J(0)i

j = Ji
j ,

∇
(0)
i J(0)j

k =∇iJj
k, R(0)ijk

l = Rijk
l, ̺(0)ij = ̺ij , ̺∗(0)ij = ̺∗ij and α(0)ij =0.

Now, put

(3.1)
d

dt

∣

∣

∣

∣

t=0

g(t)ij = hij ,
d

dt

∣

∣

∣

∣

t=0

J(t)i
j = Ki

j ,
d

dt

∣

∣

∣

∣

t=0

α(t)ij = Aij .

Then A = (Aij) is a closed 2-form, h = (hij) is a symmetric (0, 2)-tensor
on M and

(3.2)
d

dt

∣

∣

∣

∣

t=0

g(t)ij = −hij ,

where we may use the standard notational convention of tensor analysis;
thus hij means hij = giagjbhab. We denote by dMg(t) the volume form of M
with respect to g(t). Then

(3.3)
d

dt

∣

∣

∣

∣

t=0

dMg(t) =
1

2
(gijhij) dMg.

By (3.2), the connection coefficients Γ (t)k
ij of ∇(t) satisfy

d

dt

∣

∣

∣

∣

t=0

Γ (t)k
ij =

1

2
gka(∇ihaj + ∇jhia −∇ahij).

Therefore, the derivatives of R(t)ijk
l, ̺(t)ij and τ(t) at t = 0 are ([9])

d

dt

∣

∣

∣

∣

t=0

R(t)ijk
l =

1

2
(−Rijk

aha
l + Rija

lhk
a(3.4)

+ ∇i∇khj
l −∇j∇khi

l −∇i∇
lhjk + ∇j∇

lhik),

d

dt

∣

∣

∣

∣

t=0

̺(t)ij =
1

2
(−Raij

bhb
a + ̺iahj

a(3.5)

+ ∇a∇jhi
a −∇i∇jha

a −∇a∇ahij + ∇i∇ahj
a),

d

dt

∣

∣

∣

∣

t=0

τ(t) = − ̺ijh
ij + ∇i∇jhij −∇i∇ih,(3.6)
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where h = ha
a. Further, since (J(t), g(t)) ∈ AK(M), we have

Ka
iJj

a + Ja
iKj

a = 0,(3.7)

hij = habJi
aJj

b + KiaJj
a + JiaKj

a,(3.8)

Kj
i = −ha

iJj
a − Aj

i,(3.9)

hij = −habJi
aJj

b + Ji
aAaj + Jj

aAai.(3.10)

Conversely, let (h, A) be the pair of a symmetric (0, 2)-tensor h and a closed
2-form A satisfying (3.10) and define a (1, 1)-tensor K by (3.9); then the
equalities (3.7) and (3.8) hold. This means that for a given point (J, g) ∈
AK(M) and the pair (h, A) satisfying (3.10), we obtain a curve (J(t), g(t)) ∈
AK(M) whose tangent vector at t = 0 is (K, h).

By (3.9) and (3.10), we have

(3.11) Kj
i = (hcdJa

cJ id +AicJac +Aa
cJ i

c)Jj
a−Aj

i = hj
aJa

i−Ab
aJa

iJj
b.

By (3.9)–(3.11), we have

d

dt

∣

∣

∣

∣

t=0

J(t)ij =
d

dt

∣

∣

∣

∣

t=0

(g(t)iaJ(t)a
j)(3.12)

= − hiaJa
j + giaKa

j = AabJ
iaJjb,

d

dt

∣

∣

∣

∣

t=0

̺∗(t)ij =
1

2

d

dt

∣

∣

∣

∣

t=0

(J(t)j
uR(t)iua

bJ(t)b
a)(3.13)

= ̺∗iahj
a −

1

2
Riua

bJj
uJachbc

−
1

2
JabJj

c∇i∇ahbc +
1

2
JabJj

c∇c∇ahbi

+
1

2
(2Jj

q̺∗i
p − Jj

uJpaJqbRiuab)Apq,

d

dt

∣

∣

∣

∣

t=0

τ∗(t) = ̺∗abh
ab − J iaJjb∇a∇bhij − 2J ip̺∗iqAp

q,(3.14)

d

dt

∣

∣

∣

∣

t=0

∇
(t)
i J(t)j

k = ∇iKj
k + Jj

a d

dt

∣

∣

∣

∣

t=0

Γ (t)k
ia − Ja

k d

dt

∣

∣

∣

∣

t=0

Γ (t)a
ij(3.15)

= − ha
k∇iJj

a +
1

2
Jj

a(∇ahi
k −∇iha

k −∇khia)

−
1

2
Ja

k(∇ihj
a + ∇jhi

a −∇ahij) −∇iAj
k.

We are ready to compute the first variation of (1.3) on AK(M). We shall
use the notational convention (2.3) with respect to a (local) orthonormal
frame field {ei}i=1,...,2n. By (3.3), (3.6) and (3.14), we have
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(3.16)
d

dt

∣

∣

∣

∣

t=0

Fλ,µ(J(t), g(t))

=
d

dt

∣

∣

∣

∣

t=0

\
M

(λτ(t) + µτ∗(t)) dMg(t)

=
\
M

∑

i,j

(

−λ̺ij + µ̺∗ij +
1

2
(λτ + µτ∗)δij

)

hij dMg

− µ
\
M

∑

i,j,a,b

JiaJjb∇a∇bhij dMg + 2µ
\
M

∑

i,j

̺∗
īj
Aij dMg

=
\
M

∑

i,j

(

−λ̺ij + µ̺∗ij − µ
∑

a,b

∇a∇b(JiaJjb) +
1

2
(λτ + µτ∗)δij

)

hij dMg

+ 2µ
\
M

∑

i,j

̺∗
īj
Aij dMg

Here, we have

(3.17)
∑

a,b

∇a∇b(JiaJjb) =
∑

a,b

(∇a∇bJia)Jjb +
∑

a,b

(∇bJia)∇aJjb.

The first term of (3.17) becomes
∑

a,b

(∇a∇bJia)Jjb = −
∑

a,b,s

(RabisJsa + RabasJis)Jjb

= −
1

2

∑

a,b,s

(Rabis − Rsbia)JsaJib + ¯̺ij̄ = −̺∗ij + ¯̺ij̄ .

Further, by (2.8), the second term of (3.17) becomes
∑

a,b

(∇bJia)∇aJjb = −
∑

a,b

(∇iJab + ∇aJbi)∇aJjb

= −
1

2

∑

a,b

∇iJab(∇aJjb −∇bJja) +
∑

a,b

(∇aJib)∇aJjb

= −
1

2

∑

a,b

(∇iJab)∇jJab + ̺∗ij + ̺∗ji − ̺ij − ¯̺ij̄ .

Therefore, by (3.16), we obtain

(3.18)
d

dt

∣

∣

∣

∣

t=0

Fλ,µ(J(t), g(t)) =
\
M

∑

i,j

(Tijhij + 2µ̺∗
īj
Aij) dMg,

where

(3.19) Tij = (µ − λ)̺ij +
1

2
(λτ + µτ∗)δij +

µ

2

∑

a,b

(∇iJab)∇jJab.
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We note that Tij defines a symmetric (0, 2)-tensor fields T on M . Summing
up the above argument, we obtain

Theorem 1. Let M be a 2n-dimensional compact orientable manifold.

Then (J, g) ∈ AK(M) is a critical point of the functional Fλ,µ if and only if

(3.20)
\

M

∑

i,j

(

Tijhij + 2µ ̺∗
īj
Aij

)

dMg = 0

for any pair (h, A) of a symmetric (0, 2)-tensor h and a closed 2-form A =
(Aij) satisfying (3.10), where T = (Tij) is a symmetric (0, 2)-tensor field

given by (3.19).

We recall the following fact due to Blair and Ianus:

Lemma 2 ([1]). Let B be a symmetric (0, 2)-tensor on M . Then\
M

∑

i,j

BijDij dMg = 0

for all symmetric (0, 2)-tensors D satisfying DJ + JD = 0 if and only if B
is J-invariant.

Let M be a 2n-dimensional compact orientable manifold and suppose
that (J, g) ∈ AK(M) is a critical point of the functional Fλ,µ. Then, by
Theorem 1, if A = 0, we have

T
M

∑

i,j Tijhij dMg = 0 for any symmetric
(0, 2)-tensor h satisfying hJ + Jh = 0. Thus, by virtue of Lemma 2, we
conclude that T = (Tij) is J-invariant. By (3.19), we observe that the J-
invariance of T and (µ − λ)̺ are equivalent. On the one hand, consider the
pair (hij , Aij) = (δij , Ωij) which satisfies (3.10). Then, by (3.19),

∑

i,j

(Tijhij + 2µ ̺∗
īj
Aij) = (n − 1)(λτ + µτ∗).

Therefore, we have

Corollary 3. Let M be a 2n (≥ 4)-dimensional compact orientable

manifold. If (J, g) ∈ AK(M) is a critical point of the functional Fλ,µ, then

(µ − λ)̺ is J-invariant and Fλ,µ(J, g) = 0.

In particular, for (λ, µ) = (−1, 1), taking account of (2.9), we obtain

Corollary 4. Let M be a 2n (≥ 4)-dimensional compact orientable

manifold. Then (J, g) ∈ AK(M) is a critical point of the functional F−1,1

if and only if (J, g) is a Kähler structure on M .

We remark that if we restrict the functional F−1,1 to the space AK(M,Ω),
then (J, g) is a critical point of F−1,1 if and only if the Ricci tensor ̺
is J-invariant ([1]). Thus, in particular, if a compact manifold M admits
an almost Kähler Einstein structure (J, g), then it is a critical point of the
functional F−1,1 on the space AK(M, Ω), where Ω is the Kähler form corre-
sponding to the almost Kähler structure (J, g). In [3], Goldberg conjectured
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that a compact almost Kähler Einstein manifold is integrable. This con-
jecture is true in the case where the scalar curvature is non-negative ([8]).
However, it is still open in the remaining case. It is evident that any critical
point (J, g) of the functional F−1,1 on the space AK(M) is necessarily a crit-
ical point of the same functional F−1,1 restricted to the subspace AK(M, Ω)
if (J, g) ∈ AK(M, Ω). However, it does not seem clear in general whether the
converse is also valid or not. So, we cannot confirm the Goldberg conjecture
using only the result of Corollary 4. The present paper is mainly motivated
by the conjecture. The arguments and the results obtained here suggest that
it might be effective to discuss the variational problem for suitable function-
als F on the space AK(M) in the study of the Goldberg conjecture.
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Tôhoku Math. J. 28 (1976), 601–612.

[4] T. Koda, Critical almost Hermitian structures, Indian J. Pure Appl. Math. 26 (1995),
679–690.

[5] —, Almost Kähler structures with a fixed Kähler class, Math. J. Toyama Univ. 27
(2004), 125–131.

[6] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965),
286–294.

[7] T. Oguro, K. Sekigawa and A. Yamada, Some critical almost Kähler structures with

a fixed Kähler class, in: Proc. 8th Internat. Workshop on Complex Structures and
Vector Fields, K. Sekigawa and S. Dimiev (eds.), World Sci., to appear.

[8] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc.
Japan 39 (1987), 677–684.

[9] S. Tanno, Deformations of Riemannian metrics on 3-dimensional manifolds, Tôhoku
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