on the lucas sequence equations

$$
V_{n}=k V_{m} A N D U_{n}=k U_{m}
$$

BY
REFİK KESKíN (Sakarya) and ZAFER şi̇AR (Bilecik)

Abstract

Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by $U_{0}=0, U_{1}=1$ and $U_{n+1}=P U_{n}-Q U_{n-1}$ for $n \geq 1$, and $V_{0}=2, V_{1}=P$ and $V_{n+1}=P V_{n}-Q V_{n-1}$ for $n \geq 1$, respectively. In this paper, we assume that $P \geq 1, Q$ is odd, $(P, Q)=1, V_{m} \neq 1$, and $V_{r} \neq 1$. We show that there is no integer x such that $V_{n}=V_{r} V_{m} x^{2}$ when $m \geq 1$ and r is an even integer. Also we completely solve the equation $V_{n}=V_{m} V_{r} x^{2}$ for $m \geq 1$ and $r \geq 1$ when $Q \equiv 7(\bmod 8)$ and x is an even integer. Then we show that when $P \equiv 3(\bmod 4)$ and $Q \equiv 1(\bmod 4)$, the equation $V_{n}=V_{m} V_{r} x^{2}$ has no solutions for $m \geq 1$ and $r \geq 1$. Moreover, we show that when $P>1$ and $Q= \pm 1$, there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$ for $m>1$ and $r>1$. Lastly, we show that there is no generalized Fibonacci number U_{n} such that $U_{n}=U_{m} U_{r}$ for $Q= \pm 1$ and $1<r<m$.

1. Introduction. Let P and Q be nonzero integers with $P^{2}-4 Q \neq 0$. The sequences of generalized Fibonacci and Lucas numbers, $\left(U_{n}(P, Q)\right)$ and $\left(V_{n}(P, Q)\right)$, are defined as follows:

$$
\begin{aligned}
U_{0}(P, Q) & =0, \quad U_{1}(P, Q)=1 \\
U_{n+1}(P, Q) & =P U_{n}(P, Q)-Q U_{n-1}(P, Q) \quad \text { for } n \geq 1
\end{aligned}
$$

and

$$
\begin{aligned}
V_{0}(P, Q) & =2, \quad V_{1}(P, Q)=P \\
V_{n+1}(P, Q) & =P V_{n}(P, Q)-Q V_{n-1}(P, Q) \quad \text { for } n \geq 1
\end{aligned}
$$

respectively. $U_{n}(P, Q)$ and $V_{n}(P, Q)$ are called nth generalized Fibonacci number and nth generalized Lucas number, respectively. Generalized Fibonacci and Lucas numbers for negative subscripts are defined to be

$$
\begin{equation*}
U_{-n}(P, Q)=\frac{-U_{n}(P, Q)}{Q^{n}} \quad \text { and } \quad V_{-n}(P, Q)=\frac{V_{n}(P, Q)}{Q^{n}} \tag{1.1}
\end{equation*}
$$

respectively.
Then it is well known that

$$
U_{n}(P, Q)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad V_{n}(P, Q)=\alpha^{n}+\beta^{n}
$$

[^0]where
$$
\alpha=\frac{P+\sqrt{P^{2}-4 Q}}{2} \quad \text { and } \quad \beta=\frac{P-\sqrt{P^{2}-4 Q}}{2} .
$$

The above formulas are known as Binet's formulas. Since

$$
U_{n}(-P, Q)=(-1)^{n-1} U_{n}(P, Q) \quad \text { and } \quad V_{n}(-P, Q)=(-1)^{n} V_{n}(P, Q)
$$

it will be assumed that $P \geq 1$. Moreover, we will assume that $P^{2}-4 Q>0$. Instead of $U_{n}(P, Q)$ and $V_{n}(P, Q)$, we will use U_{n} and V_{n}, respectively.

For $(P, Q)=(1,-1)$, we have the classical Fibonacci and Lucas number sequences, $\left(F_{n}\right)$ and $\left(L_{n}\right)$. For $(P, Q)=(2,-1)$, we have the Pell and PellLucas number sequences $\left(P_{n}\right)$ and $\left(Q_{n}\right)$, respectively. For more information about the sequences of generalized Fibonacci and Lucas numbers one can consult [5, 8, 9, 11].

In this paper, we assume that $P \geq 1, Q$ is odd, $(P, Q)=1, V_{m} \neq 1$, and $V_{r} \neq 1$. We will show that when m and r are natural numbers with r even, there is no integer x such that $V_{n}=V_{r} V_{m} x^{2}$. Also when $Q \equiv 7(\bmod 8)$ and x is an even integer, we completely solve the equation $V_{n}=V_{m} V_{r} x^{2}$ for $m \geq 1$ and $r \geq 1$. In addition, when $P \equiv 3(\bmod 4)$ and $Q \equiv 1(\bmod 4)$ we solve the equation $V_{n}=V_{m} V_{r} x^{2}$ for $m \geq 1$ and $r \geq 1$. Moreover, we show that when $P>1$ and $Q= \pm 1$, there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$ for $m>1$ and $r>1$. Lastly, we show that there is no generalized Fibonacci number U_{n} such that $U_{n}=U_{m} U_{r}$ for $Q= \pm 1$ and $1<r<m$.

In Section 2, we give the necessary identities and theorems. Then in Section 3, we present our main theorems.
2. Preliminaries. In this section, we give some theorems and some identities concerning generalized Fibonacci and Lucas numbers, which will be used later. Then we present our theorems in the third section. Throughout the paper, $\left(\frac{a}{m}\right)$ represents the Jacobi symbol.

The proofs of the following two theorems are given in [13].
Theorem 1. Let $n \in \mathbb{N} \cup\{0\}$, $m \in \mathbb{N}$, and $r \in \mathbb{Z}$ with $m n+r \geq 0$. Then

$$
\begin{align*}
U_{2 m n+r} & \equiv Q^{m n} U_{r}\left(\bmod U_{m}\right), \tag{2.1}\\
V_{2 m n+r} & \equiv Q^{m n} V_{r}\left(\bmod U_{m}\right) \tag{2.2}
\end{align*}
$$

Theorem 2. Let $n \in \mathbb{N} \cup\{0\}$, $m \in \mathbb{N}$, and $r \in \mathbb{Z}$ with $m n+r \geq 0$. Then

$$
\begin{align*}
U_{2 m n+r} & \equiv\left(-Q^{m}\right)^{n} U_{r}\left(\bmod V_{m}\right), \tag{2.3}\\
V_{2 m n+r} & \equiv\left(-Q^{m}\right)^{n} V_{r}\left(\bmod V_{m}\right) . \tag{2.4}
\end{align*}
$$

When P is odd, we see that $8 \mid U_{6}$. Thus, using (2.1) and 2.2 , we get

$$
\begin{align*}
U_{12 q+r} & \equiv U_{r}(\bmod 8) \tag{2.5}\\
V_{12 q+r} & \equiv V_{r}(\bmod 8) \tag{2.6}
\end{align*}
$$

for any nonnegative integers q and r. If $Q \equiv 7(\bmod 8)$, then

$$
\begin{equation*}
8 \nmid V_{n} \tag{2.7}
\end{equation*}
$$

for every natural number n, and if $Q \equiv 1,5(\bmod 8)$, then

$$
\begin{equation*}
4 \nmid V_{n} \tag{2.8}
\end{equation*}
$$

for every natural number n. Moreover, when P is odd and $Q \equiv 3,7(\bmod 8)$, we get

$$
\begin{equation*}
4 \mid V_{3} \tag{2.9}
\end{equation*}
$$

The following lemma can be found in [12].
Lemma 3. Let P and m be odd positive integers, and $r \geq 1$.
(a) If $3 \nmid m$, then

$$
V_{2^{r} m} \equiv \begin{cases}3(\bmod 8) & \text { if } r=1 \text { and } Q \equiv 3(\bmod 4) \\ 7(\bmod 8) & \text { otherwise } .\end{cases}
$$

(b) If $3 \mid m$, then $V_{2^{r} m} \equiv 2(\bmod 8)$.

The following lemma can be proved by induction.
Lemma 4. If n is a positive odd integer, then

$$
V_{n} \equiv n P(-Q)^{(n-1) / 2}\left(\bmod P^{2}\right)
$$

and if n is a positive even integer, then

$$
V_{n} \equiv 2(-Q)^{n / 2}\left(\bmod P^{2}\right)
$$

The following three theorems are given in [7, 10, 12].
Theorem 5. If $U_{m} \neq 1$, then $U_{m} \mid U_{n}$ if and only if $m \mid n$.
Theorem 6. If $V_{m} \neq 1$, then $V_{m} \mid V_{n}$ if and only if $m \mid n$ and n / m is odd.

ThEOREM 7. If $V_{m} \neq 1$, then $V_{m} \mid U_{n}$ if and only if $m \mid n$ and n / m is even.

Now we give some properties of generalized Fibonacci and Lucas numbers:

$$
\begin{align*}
U_{2 n} & =U_{n} V_{n} \tag{2.10}\\
V_{2 n} & =V_{n}^{2}-2 Q^{n} \tag{2.11}
\end{align*}
$$

if P is odd and $n \geq 1$, then $2\left|V_{n} \Leftrightarrow 2\right| U_{n} \Leftrightarrow 3 \mid n$,

$$
\begin{gather*}
\left(V_{n}, V_{2 n}\right)=1 \text { or } 2 \tag{2.13}\\
\left(U_{n}, U_{m}\right)=U_{(n, m)} \quad \text { for all natural numbers } m \text { and } n \tag{2.14}\\
V_{3 n}=V_{n}\left(V_{n}^{2}-3 Q^{n}\right) \tag{2.15}\\
\left(\frac{U_{3}}{V_{2^{k}}}\right)=1 \Leftrightarrow k>1, \text { or } k=1 \text { and } Q \equiv 1(\bmod 4)
\end{gather*}
$$

$$
\begin{equation*}
\text { if } n \geq 1, \text { then }\left(U_{n}, Q\right)=\left(V_{n}, Q\right)=1 \tag{2.16}
\end{equation*}
$$

if $3 \mid P$ and $(3, Q)=1$, then $3 \mid V_{n} \Leftrightarrow n$ is odd,
if $3 \nmid P$, then $3 \mid V_{n} \Leftrightarrow n \equiv 2(\bmod 4)$ and $Q \equiv-1(\bmod 3)$.
Moreover, when P is even, it can be easily seen that

$$
\begin{gathered}
U_{n} \text { is odd } \Leftrightarrow n \text { is an odd natural number, } \\
U_{n} \text { is even } \Leftrightarrow n \text { is an even natural number, } \\
V_{n} \text { is even for all natural numbers } n .
\end{gathered}
$$

The properties $(2.10)-(2.17)$ can be found in [10, 12,13 . The proofs of the others are easy and will be omitted.
3. Main theorems. Throughout, we will assume that n is a natural number.

In [6], the authors showed that there is no integer x such that $L_{n}=$ $L_{m} L_{r} x^{2}$ when m and r are natural numbers with r even. Now we solve the same problem for generalized Lucas numbers.

TheOrem 8. Let $m \geq 1, k \geq 1$ and r be an odd positive integer. Then there is no integer x such that $V_{n}=V_{2^{k} r} V_{m} x^{2}$.

Proof. Assume that $V_{n}=V_{2^{k} r} V_{m} x^{2}$.
Firstly, we assume that P is odd. Now we divide the proof into two cases.
CASE 1: $3 \nmid r, k=1, Q \equiv 3(\bmod 4)$. We have $V_{n}=V_{2 r} V_{m} x^{2}$. Since $V_{m} \mid V_{n}$ and $V_{2 r} \mid V_{n}$, there exist odd positive integers t and s such that $n=m t$ and $n=2 r s$ by Theorem 6. Thus $m=2 c$ for some odd positive integer c. By Lemma 3 , we get $V_{2 r} \equiv 3(\bmod 8)$ and

$$
V_{m}=V_{2 c} \equiv \begin{cases}3(\bmod 8) & \text { if } 3 \nmid c \\ 2(\bmod 8) & \text { if } 3 \mid c\end{cases}
$$

Thus

$$
V_{n}=V_{2 r} V_{m} x^{2} \equiv \begin{cases}9 x^{2}(\bmod 8) & \text { if } 3 \nmid c \\ 6 x^{2}(\bmod 8) & \text { if } 3 \mid c\end{cases}
$$

But

$$
V_{n}=V_{2 r s} \equiv \begin{cases}3(\bmod 8) & \text { if } 3 \nmid r s \\ 2(\bmod 8) & \text { if } 3 \mid r s\end{cases}
$$

a contradiction, since x^{2} and $6 x^{2}$ are not congruent to 3 or 2 respectively modulo 8.

CASE 2. Not all of $3 \nmid r, k=1, Q \equiv 3(\bmod 4)$ hold. Since $V_{m} \mid V_{n}$ and $V_{2^{k} r} \mid V_{n}$, there exist odd integers t and s such that $n=m t$ and $n=2^{k} r s$ by Theorem 6. Thus we have $m=2^{k} c$ for some odd positive integer c. Then $V_{n} \equiv 2,7(\bmod 8), V_{m} \equiv 2,7(\bmod 8)$ and $V_{2^{k} r} \equiv 2,7(\bmod 8)$ by Lemma 3 .

Assume that $V_{2^{k} r} \equiv 2(\bmod 8)$. Then it follows that $V_{n}=V_{2^{k} r} V_{m} x^{2} \equiv$ $2 V_{m} x^{2}(\bmod 8)$. Moreover, since $2 x^{2} \equiv 0,2(\bmod 8)$ and $V_{m} \equiv 2,7(\bmod 8)$, it is seen that $2 V_{m} x^{2} \equiv 0,4,6(\bmod 8)$. This contradicts the fact that $V_{n} \equiv 2,7$ $(\bmod 8)$.

Now assume that $V_{2^{k} r} \equiv 7(\bmod 8)$. Then $V_{n}=V_{2^{k_{r}}} V_{m} x^{2} \equiv 7 V_{m} x^{2}$ $(\bmod 8)$. Moreover, $7 x^{2} \equiv 0,4,7(\bmod 8)$ and $V_{m} \equiv 2,7(\bmod 8)$. This shows that $7 V_{m} x^{2} \equiv 0,1,4,6(\bmod 8)$, which contradicts the fact that $V_{n} \equiv 2,7$ $(\bmod 8)$.

Secondly, we assume that P is even. Then since n is even and Q is odd, it is seen that $V_{n} \equiv 2(\bmod 4)$ by Lemma 4 . Similarly, we see that $V_{m} \equiv 2$ $(\bmod 4)$ and $V_{2 r} \equiv 2(\bmod 4)$. This shows that $V_{n} \equiv 0(\bmod 4)$, which contradicts the fact that $V_{n} \equiv 2(\bmod 4)$. This completes the proof.

Now the following corollary follows easily.
Corollary 9. Let m and r be two natural numbers. If r is an even integer, then there is no integer x such that $V_{n}=V_{m} V_{r} x^{2}$.

In the next theorem we will use the following known lemma from number theory.

Lemma 10. Let $a, b, c, x \in \mathbb{Z}, \operatorname{gcd}(a, b)=1$ and $a b=c x^{2}$. Then $a=r u^{2}$ and $b=s v^{2}$ with $r s=c$ for some positive integers u and v.

In [6], the authors showed that for $m>1$ and $r>1$, there is no even integer x such that $L_{n}=L_{m} L_{r} x^{2}$. If $Q \equiv 1,5(\bmod 8)$ and x is even, then the equation $V_{n}=V_{m} V_{r} x^{2}$ has no solutions by (2.8). Now, we consider the same problem for $P \geq 1$ and $Q \equiv 7(\bmod 8)$.

Theorem 11. Let x be an even integer and $Q \equiv 7(\bmod 8)$. If m and r are positive integers and $V_{n}=V_{m} V_{r} x^{2}$, then $m=r=1, n=3$, and $P=3$.

Proof. If one of m and r is even, the assertion follows from Corollary 9 . Assume that m and r are odd.

Firstly, we assume that P is odd. Since x is even, it follows that $4 \mid V_{n}$ and therefore $3 \mid n$ by 2.12). If $3 \mid m$ or $3 \mid r$, we see that V_{m} or V_{r} is even by (2.12). Thus we get $8 \mid V_{n}$. This is impossible by (2.7). Therefore we have $3 \nmid m$ and $3 \nmid r$. Since $V_{m} \mid V_{n}$ and $V_{r} \mid V_{n}$, there exist odd positive integers t and s such that $n=m t$ and $n=r s$ by Theorem 6. Then n is odd. As a result, $n=m t, n=r s, 3 \mid n, 3 \nmid m$ and $3 \nmid r$. Therefore $t=3 a$ and $s=3 b$
for some odd positive integers a and b. This shows that $n=3 m a=3 r b$, i.e., $m a=r b$. Thus since n is odd, we get

$$
V_{m} V_{r} x^{2}=V_{n}=V_{3 m a}=V_{m a}\left(V_{m a}^{2}-3 Q^{m a}\right)
$$

by (2.15). This shows that

$$
\begin{equation*}
\frac{V_{m a}}{V_{m}}\left(V_{m a}^{2}-3 Q^{m a}\right)=V_{r} x^{2} . \tag{3.1}
\end{equation*}
$$

It can be seen that $\left(V_{m a} / V_{m}, V_{m a}^{2}-3 Q^{m a}\right)=1$ or 3 by 2.17). In both cases, by Lemma 10, we have either

$$
\begin{equation*}
\frac{V_{m a}}{V_{m}}=w u_{1}^{2} \quad \text { and } \quad V_{m a}^{2}-3 Q^{m a}=y u_{2}^{2} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{V_{m a}}{3 V_{m}}=w u_{1}^{2} \quad \text { and } \quad \frac{V_{m a}^{2}-3 Q^{m a}}{3}=y u_{2}^{2} \tag{3.3}
\end{equation*}
$$

with $w y=V_{r}$ for some positive integers w, y, u_{1}, and u_{2}. Using the fact that $m a=r b$ in (3.2) and (3.3), we get $V_{r b}^{2}-3 Q^{r b}=y u_{2}^{2}$ and $V_{r b}^{2}-3 Q^{r b}=3 y u_{2}^{2}$, respectively. Thus $y \mid V_{r b}^{2}-3 Q^{r b}$. Since $y \mid V_{r}$ and $V_{r} \mid V_{r b}$, it is seen that $y \mid 3 Q^{r b}$. Since $y \mid V_{r}$, we get $y \mid 3$ by (2.17). This shows that $y=1$ or $y=3$. As a result, $V_{r b}^{2}-3 Q^{r b}=v^{2}$ or $V_{r b}^{2}-3 Q^{r b}=3 v^{2}$ for some integer v.

Assume that $V_{r b}^{2}-3 Q^{r b}=v^{2}$. Since $V_{2 r b}=V_{r b}^{2}-2 Q^{r b}$ by 2.11, we obtain $V_{2 r b}=v^{2}+Q^{r b}$. Assume that $r b>1$. Then we can write $2 r b=$ $2(4 q \pm 1)=2\left(2^{k} z\right) \pm 2$ for some positive odd integer z with $k \geq 2$. Hence we get either

$$
V_{2 r b} \equiv-Q^{r b-1} V_{2}\left(\bmod V_{2^{k}}\right)
$$

or

$$
V_{2 r b} \equiv-Q^{r b+1} V_{-2}\left(\bmod V_{2^{k}}\right)
$$

by (2.4). It is seen that

$$
v^{2}+Q^{r b} \equiv-Q^{r b-1} V_{2}\left(\bmod V_{2^{k}}\right)
$$

by (1.1). That is,

$$
v^{2} \equiv-Q^{r b-1}\left(V_{2}+Q\right) \equiv-Q^{r b-1} U_{3}\left(\bmod V_{2^{k}}\right) .
$$

This shows that

$$
J=\left(\frac{-Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=1 .
$$

On the other hand, $\left(\frac{U_{3}}{V_{2^{k}}}\right)=1$ by 2.16 . Moreover, $V_{2^{k}} \equiv 7(\bmod 8)$ by Lemma 3 and therefore $\left(\frac{-1}{V_{2^{k}}}\right)=-1$. Also since $r b-1$ is even, it is seen
that $\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)=1$. Thus we get

$$
J=\left(\frac{-Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)\left(\frac{U_{3}}{V_{2^{k}}}\right)=-1,
$$

which contradicts the fact that $J=1$.
Assume now that $V_{r b}^{2}-3 Q^{r b}=3 v^{2}$. Then $3 \mid V_{r b}$. This shows that $3 \mid P$ by 2.18) since $r b$ is odd. Moreover, $V_{2 r b}=V_{r b}^{2}-2 Q^{r b}$ by 2.11. Thus we obtain $V_{2 r b}=3 v^{2}+Q^{r b}$.

Assume that $r b>1$. Then we can write $2 r b=2(4 q \pm 1)=2\left(2^{k} z\right) \pm 2$ for some positive odd integer z with $k \geq 2$. Hence we get either

$$
V_{2 r b} \equiv-Q^{r b-1} V_{2} \quad\left(\bmod V_{2^{k}}\right)
$$

or

$$
V_{2 r b} \equiv-Q^{r b+1} V_{-2}\left(\bmod V_{2^{k}}\right)
$$

by (2.4). It is seen that

$$
3 v^{2}+Q^{r b} \equiv-Q^{r b-1} V_{2}\left(\bmod V_{2^{k}}\right)
$$

by (1.1). That is,

$$
3 v^{2} \equiv-Q^{r b-1}\left(V_{2}+Q\right) \equiv-Q^{r b-1} U_{3}\left(\bmod V_{2^{k}}\right)
$$

This shows that

$$
J=\left(\frac{-3 Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=1 .
$$

Since $V_{2^{k}} \equiv 7(\bmod 8)$ by Lemma 3 and $\left(\frac{U_{3}}{V_{2^{k}}}\right)=1$ by 2.16, it is seen that $\left(\frac{-1}{V_{2^{k}}}\right)=-1$. Since $r b$ is odd, we get $\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)=1$. Also since $3 \mid P$ and $k \geq 2$, it can be easily seen that $V_{2^{k}} \equiv 2(-Q)^{2^{k} / 2} \equiv 2 Q^{2^{k} / 2}(\bmod 3)$ by Lemma 4 Therefore

$$
\left(\frac{3}{V_{2^{k}}}\right)=\left(\frac{V_{2^{k}}}{3}\right)(-1)^{\left(\frac{3-1}{2}\right)\left(\frac{V_{2^{k}-1}}{2}\right)}=-\left(\frac{2 Q^{2^{k} / 2}}{3}\right)=-\left(\frac{2}{3}\right)\left(\frac{Q^{2^{k} / 2}}{3}\right)=1 .
$$

Thus we get

$$
J=\left(\frac{-3 Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{3}{V_{2^{k}}}\right)\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)\left(\frac{U_{3}}{V_{2^{k}}}\right)=-1 .
$$

But this contradicts the fact that $J=1$.
Therefore $r b=1$, i.e., $r=b=1$. This shows that $m=r=1$ and $n=3$. Thus we obtain $V_{3}=V_{1} V_{1} x^{2}=(P x)^{2}$, i.e., $P\left(P^{2}-3 Q\right)=P^{2} x^{2}$. Hence $P \mid P^{2}-3 Q$ and therefore $P \mid 3 Q$. Since $(P, Q)=1$, it follows that $P \mid 3$. This shows that $P=3$ since $P=V_{1}=V_{m}>1$ by assumption.

Secondly, we assume that P is even. Since x is even, it is seen that $4 \mid V_{n}$ and therefore n is odd by Lemma 4. This shows that m and r are also odd. Hence we have $V_{n} \equiv n P(-Q)^{(n-1) / 2}\left(\bmod P^{2}\right), V_{m} \equiv m P(-Q)^{(m-1) / 2}$ $\left(\bmod P^{2}\right)$ and $V_{r} \equiv r P(-Q)^{(r-1) / 2}\left(\bmod P^{2}\right)$ by Lemma 4. This implies that

$$
n P(-Q)^{(n-1) / 2} \equiv m r P^{2}(-Q)^{\left(\frac{m+r-2}{2}\right)} x^{2}\left(\bmod P^{2}\right) .
$$

Thus it follows that

$$
n(-Q)^{(n-1) / 2} \equiv m r P(-Q)^{\left(\frac{m+r-2}{2}\right)} x^{2}(\bmod P),
$$

which is impossible since n and Q are odd integers. This completes the proof.

Theorem 12. Let $P \equiv 3(\bmod 4)$ and $Q \equiv 1(\bmod 4)$. If m and r are positive integers, then there is no integer x such that $V_{n}=V_{m} V_{r} x^{2}$.

Proof. Assume that $V_{n}=V_{m} V_{r} x^{2}$. When m or r is even, the assertion follows from Corollary 9. Now assume that m and r are odd. Then n is also odd.

Firstly, assume that P is odd. If $3 \mid m$ and $3 \mid r$, then V_{m} and V_{r} are even by (2.12). Thus it follows that $4 \mid V_{n}$. This is impossible by (2.8). Therefore $3 \nmid m$ or $3 \nmid r$. Since $4 \nmid V_{n}, x$ is odd integer.

Assume that $3 \nmid m$ and $3 \nmid r$. Thus $3 \nmid n$. Since n, m and r are odd, it is seen that $V_{n} \equiv P, 5 P(\bmod 8), V_{m} \equiv P, 5 P(\bmod 8)$ and $V_{r} \equiv P, 5 P(\bmod 8)$ by (2.6). Thus we get $V_{n}=V_{m} V_{r} x^{2} \equiv 1,5(\bmod 8)$. Then either $P \equiv 1,5$ $(\bmod 8)$ or $5 P \equiv 1,5(\bmod 8)$, which is impossible since $P \equiv 3(\bmod 4)$.

Assume that $3 \mid m$ and $3 \nmid r$. Then $3 \mid n$. If $Q \equiv 1(\bmod 8)$, then it follows that $V_{n} \equiv 6 P(\bmod 8), V_{m} \equiv 6 P(\bmod 8), V_{r} \equiv P(\bmod 8)$ by (2.6) and if $Q \equiv 5(\bmod 8)$, then $V_{n} \equiv 2 P(\bmod 8), V_{m} \equiv 2 P(\bmod 8), V_{r} \equiv P, 5 P$ $(\bmod 8)$ by (2.6). In both cases, from the equation $V_{n}=V_{m} V_{r} x^{2}$ we get $P \equiv 1(\bmod 4)$, which is impossible since $P \equiv 3(\bmod 4)$.

Secondly, assume that P is even. In this case, since the proof is identical to that for P even in Theorem 11, we omit the details.

The following theorem was proved by Keskin and Demirtürk in [6] when $(P, Q)=(1,-1)$.

Theorem 13. Let m and r be positive integers, $P>1$ and $Q=-1$. Then there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$.

Proof. Assume that $V_{n}=V_{m} V_{r}$. If one of m and r is even, then the statement follows from Corollary 9. Now assume that m and r are odd.

Firstly, we assume that P is odd. Since $V_{m} \mid V_{n}$ and $V_{r} \mid V_{n}$, there exist odd integers t and s such that $n=m t$ and $n=r s$ by Theorem 6. It is obvious that $t>1$ and $s>1$. Hence $t=4 q \pm 1$ for some $q \geq 1$. Therefore
$n=m t=4 m q \pm m=2(2 m q) \pm m$. Then it follows that

$$
\begin{equation*}
V_{m} V_{r}=V_{n} \equiv \pm V_{m}\left(\bmod V_{2 m}\right) \tag{3.4}
\end{equation*}
$$

by (2.4). Similarly, it can be seen that

$$
\begin{equation*}
V_{m} V_{r} \equiv \pm V_{r}\left(\bmod V_{2 r}\right) \tag{3.5}
\end{equation*}
$$

If $3 \mid m$ and $3 \mid r$, then, since m and r are odd, we get $V_{3} \mid V_{m}$ and $V_{3} \mid V_{r}$ by Theorem 6. It follows that $8 \mid V_{n}$ by (2.9), which is impossible by (2.7). Therefore $3 \nmid m$ or $3 \nmid r$. Assume that $3 \nmid m$ and $3 \nmid r$. Then $\left(V_{m}, V_{2 m}\right)=$ $\left(V_{r}, V_{2 r}\right)=1$ by (2.12) and (2.13). Hence we get

$$
\begin{equation*}
V_{r} \equiv \pm 1\left(\bmod V_{2 m}\right) \tag{3.6}
\end{equation*}
$$

by (3.4) and

$$
\begin{equation*}
V_{m} \equiv \pm 1\left(\bmod V_{2 r}\right) \tag{3.7}
\end{equation*}
$$

by (3.5). Thus we obtain

$$
V_{2 m} \leq V_{r} \pm 1 \leq V_{r}+1 \quad \text { and } \quad V_{2 r} \leq V_{m} \pm 1 \leq V_{m}+1
$$

by (3.6) and (3.7), respectively. It follows that

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+V_{r}+2 . \tag{3.8}
\end{equation*}
$$

Using (2.11) and (3.8), we get $V_{m}^{2}+V_{r}^{2}+2 \leq V_{m}+V_{r}$, which is impossible.
Assume that $3 \mid m$ and $3 \nmid r$. Then $\left(V_{m}, V_{2 m}\right)=2$ and $\left(V_{r}, V_{2 r}\right)=1$ by (2.12) and (2.13). Hence

$$
\begin{align*}
V_{r} & \equiv \pm 1\left(\bmod V_{2 m} / 2\right), \tag{3.9}\\
V_{m} & \equiv \pm 1\left(\bmod V_{2 r}\right), \tag{3.10}
\end{align*}
$$

by (3.4) and (3.5), respectively. By (3.9) and (3.10), it can be seen that

$$
\begin{align*}
V_{2 m} & \leq 2 V_{r}+2, \tag{3.11}\\
V_{2 r} & \leq V_{m}+1 . \tag{3.12}
\end{align*}
$$

Thus we get

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+2 V_{r}+3 \tag{3.13}
\end{equation*}
$$

by (3.11) and (3.12). Using (2.11) in (3.13), we obtain $V_{m}^{2}-V_{m}+V_{r}^{2}-2 V_{r} \leq$ -1 . This shows that $V_{m}\left(V_{m}-1\right)+V_{r}\left(V_{r}-2\right) \leq-1$, which is impossible since $V_{m} \geq 2$ and $V_{r} \geq 2$.

Secondly, we assume that P is even. Since n, m, and r are odd, $V_{n} \equiv n P$ $\left(\bmod P^{2}\right), V_{m} \equiv m P\left(\bmod P^{2}\right)$, and $V_{r} \equiv r P\left(\bmod P^{2}\right)$ by Lemma 4. This shows that $n P \equiv m r P^{2}\left(\bmod P^{2}\right)$. Hence $n \equiv m r P(\bmod P)$, which is impossible since n is odd. This completes the proof.

Now we prove the same statement for $Q=1$.
Theorem 14. Let m and r be positive integers, $P>1$ and $Q=1$. Then there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$.

Proof. Assume that $V_{n}=V_{m} V_{r}$. If one of m and r is even, then the conclusion follows from Corollary 9. Now assume that m and r are odd.

Firstly, we assume that P is odd. Then since $V_{m} \mid V_{n}$ and $V_{r} \mid V_{n}$, there exist odd integers t and s such that $n=m t$ and $n=r s$ by Theorem6. It is obvious that $t>1$ and $s>1$. Hence $t=4 q \pm 1$ for some $q \geq 1$. Therefore $n=m t=4 m q \pm m=2(2 m q) \pm m$. Then it follows that

$$
\begin{equation*}
V_{m} V_{r}=V_{n} \equiv \pm V_{m}\left(\bmod V_{2 m}\right) \tag{3.14}
\end{equation*}
$$

by (2.4) and (1.1). Similarly, it can be seen that

$$
\begin{equation*}
V_{m} V_{r} \equiv \pm V_{r}\left(\bmod V_{2 r}\right) \tag{3.15}
\end{equation*}
$$

If $3 \mid m$ and $3 \mid r$, then V_{m} and V_{r} are even by 2.12 . This shows that $4 \mid V_{n}$, which is impossible by (2.8). Therefore $3 \nmid m$ or $3 \nmid r$. Assume that $3 \nmid m$ and $3 \nmid r$. Then $\left(V_{m}, V_{2 m}\right)=\left(V_{r}, V_{2 r}\right)=1$ by 2.12 and (2.13). Hence

$$
\begin{equation*}
V_{r} \equiv \pm 1\left(\bmod V_{2 m}\right) \tag{3.16}
\end{equation*}
$$

by (3.14) and

$$
\begin{equation*}
V_{m} \equiv \pm 1\left(\bmod V_{2 r}\right) \tag{3.17}
\end{equation*}
$$

by (3.15). Thus we obtain

$$
V_{2 m} \leq V_{r} \pm 1 \leq V_{r}+1
$$

and

$$
V_{2 r} \leq V_{m} \pm 1 \leq V_{m}+1
$$

by (3.16) and (3.17), respectively. Then it follows that

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+V_{r}+2 \tag{3.18}
\end{equation*}
$$

Using (2.11) and (3.18), we get $V_{m}\left(V_{m}-1\right)+V_{r}\left(V_{r}-1\right) \leq 6$, which is impossible since $V_{m} \geq P \geq 3$ and $V_{r} \geq P \geq 3$.

Assume now that $3 \mid m$ and $3 \nmid r$. Then $\left(V_{m}, V_{2 m}\right)=2$ and $\left(V_{r}, V_{2 r}\right)=1$ by (2.12) and 2.13). Hence

$$
\begin{align*}
V_{r} & \equiv \pm 1\left(\bmod V_{2 m} / 2\right) \tag{3.19}\\
V_{m} & \equiv \pm 1\left(\bmod V_{2 r}\right) \tag{3.20}
\end{align*}
$$

by (3.14) and (3.15), respectively. It can be seen that

$$
\begin{align*}
V_{2 m} & \leq 2 V_{r}+2 \tag{3.21}\\
V_{2 r} & \leq V_{m}+1 \tag{3.22}
\end{align*}
$$

by (3.19) and (3.20). Thus we get

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+2 V_{r}+3 \tag{3.23}
\end{equation*}
$$

by (3.21) and (3.22). Using 2.11) in (3.23), we obtain $V_{m}^{2}-V_{m}+V_{r}^{2}-2 V_{r} \leq 7$. This shows that $V_{m}\left(V_{m}-1\right)+V_{r}\left(V_{r}-2\right) \leq 7$, which is impossible since $V_{m} \geq P \geq 3$ and $V_{r} \geq P \geq 3$.

Secondly, we assume that P is even. Since n, m, and r are odd, $V_{n} \equiv \pm n P$ $\left(\bmod P^{2}\right), V_{m} \equiv \pm m P\left(\bmod P^{2}\right)$ and $V_{r} \equiv \pm r P\left(\bmod P^{2}\right)$ by Lemma 4 . This shows that $n P \equiv \pm m r P^{2}\left(\bmod P^{2}\right)$, implying $n \equiv \pm m r P(\bmod P)$, which is impossible since n is odd. This completes the proof.

Since the proof of the following lemma is easy, we omit it.
Lemma 15. If $Q= \pm 1$ and $0<r<n$, then $V_{n}>2 U_{r}$.
In [4, Farrokhi showed that the equation $F_{n}=F_{m} F_{r}$ has no solutions for $m>2$ and $r>2$. Now we give a similar result for generalized Fibonacci numbers when $P>1$ and $Q= \pm 1$.

Theorem 16. Let $P>1, Q= \pm 1$ and $m>r>1$. Then there is no generalized Fibonacci number U_{n} such that $U_{n}=U_{m} U_{r}$.

Proof. Assume that $U_{n}=U_{m} U_{r}, Q= \pm 1$ and $m>r>1$. Then since $U_{m} \mid U_{n}$ and $U_{r} \mid U_{n}$, it follows that $n=m t$ and $n=r s$ for some positive integers t and s by Theorem 5 .

Firstly, we assume that t is even, i.e., $t=2 a$ for some positive integer a. Then $n=m t=2 m a$. Hence $U_{m} U_{r}=U_{n}=U_{2 m a}=U_{m a} V_{m a}$ by 2.10). This shows that $\left(U_{m a} / U_{m}\right) V_{m a}=U_{r}$ by Theorem 5 . Therefore $V_{m a} \mid U_{r}$. By Theorem7, we obtain $r=2 m a c=n c$ for some natural number c. This shows that $n \mid r$. Since $r \mid n$, we get $n=r$. Therefore $U_{m}=1$, which is impossible since $m>1$ and $P>1$.

Secondly, we assume that t is odd. It is obvious that $t>1$. Then we can write $t=4 q \pm 1$ with $q \geq 1$. Therefore we get $n=m t=2(2 m q) \pm m$. Then

$$
U_{n}=U_{2(2 m q) \pm m} \equiv U_{ \pm m}\left(\bmod U_{2 m}\right),
$$

by (2.1). Thus we get

$$
\begin{equation*}
U_{m} U_{r} \equiv \pm U_{m}\left(\bmod U_{2 m}\right) \tag{3.24}
\end{equation*}
$$

by (1.1). Since $U_{2 m}=U_{m} V_{m}$ by (2.10, we obtain

$$
U_{r} \equiv \pm 1\left(\bmod V_{m}\right) .
$$

Hence $V_{m} \leq U_{r} \pm 1 \leq U_{r}+1$. Moreover, since $m>r>1$, we have $V_{m}>2 U_{r}$ by Lemma 15. Thus it is seen that $U_{r}+1 \geq V_{m}>2 U_{r}$, which is impossible. This completes the proof.

It is well known that the greatest common divisor of U_{m} and U_{n} is again a generalized Fibonacci number by (2.14). But the least common multiple of U_{m} and U_{n} may not be a generalized Fibonacci number. This follows from the following theorem. Since the proof is similar to that of Theorem 16, we omit it.

Theorem 17. Let $Q= \pm 1,1<m<n$, and $P>1$. Then $\left[U_{m}, U_{n}\right]$, the least common multiple of U_{m} and U_{n}, is a generalized Fibonacci number if and only if $U_{m} \mid U_{n}$.

Acknowledgements. The authors would like to thank the anonymous referee for suggestions that improved the presentation of this paper.

REFERENCES

[1] J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
[2] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
[3] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. 16 (1996), 153-166.
[4] M. Farrokhi D. G., Some remarks on the equation $F_{n}=k F_{m}$ in Fibonacci numbers, J. Integer Sequences 10 (2007), no. 5.
[5] D. Kalman and R. Mena, The Fibonacci numbers-exposed, Math. Mag. 76 (2003), 167-181.
[6] R. Keskin and B. Demirtürk, Fibonacci and Lucas congruences and their applications, Acta Math. Sinica (English Ser.) 27 (2011), 725-736.
[7] W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, Fibonacci Quart. 29 (1991), 24-30.
[8] J. B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods, Math. Comp. 61 (1993), 365-372.
[9] S. Rabinowitz, Algorithmic manipulation of Fibonacci identities, Appl. Fibonacci Numbers 6 (1996), 389-408.
[10] P. Ribenboim and W. L. McDaniel, Squares in Lucas sequences having an even first parameter, Colloq. Math. 78 (1998), 29-34.
[11] P. Ribenboim, My Numbers, My Friends, Springer, New York, 2000.
[12] P. Ribenboim and W. L. McDaniel, On Lucas sequence terms of the form $k x^{2}$, in: Number Theory (Turku, 1999) in memory of Kustaa Inkeri, de Gruyter, Berlin, 2001, 293-303.
[13] Z. Şiar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe J. Math. Statist., to appear.

Refik Keskin
Department of Mathematics
Sakarya University
TR54187 Sakarya, Turkey
E-mail: rkeskin@sakarya.edu.tr

Zafer Şiar
Department of Mathematics
Bilecik Şeyh Edebali University
TR11030 Bilecik, Turkey
E-mail: zafer.siar@bilecik.edu.tr

Received 20 January 2012;
revised 12 December 2012

[^0]: 2010 Mathematics Subject Classification: Primary 11B37; Secondary 11B39.
 Key words and phrases: Lucas sequence, congruence.

