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ON THE LUCAS SEQUENCE EQUATIONS
Vn = kVm AND Un = kUm

BY

REFİK KESKİN (Sakarya) and ZAFER ŞİAR (Bilecik)

Abstract. Let P and Q be nonzero integers. The sequences of generalized Fibonacci
and Lucas numbers are defined by U0 = 0, U1 = 1 and Un+1 = PUn −QUn−1 for n ≥ 1,
and V0 = 2, V1 = P and Vn+1 = PVn − QVn−1 for n ≥ 1, respectively. In this paper,
we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vm 6= 1, and Vr 6= 1. We show that there
is no integer x such that Vn = VrVmx2 when m ≥ 1 and r is an even integer. Also we
completely solve the equation Vn = VmVrx

2 for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8)
and x is an even integer. Then we show that when P ≡ 3 (mod 4) and Q ≡ 1 (mod 4), the
equation Vn = VmVrx

2 has no solutions for m ≥ 1 and r ≥ 1. Moreover, we show that
when P > 1 and Q = ±1, there is no generalized Lucas number Vn such that Vn = VmVr

for m > 1 and r > 1. Lastly, we show that there is no generalized Fibonacci number Un

such that Un = UmUr for Q = ±1 and 1 < r < m.

1. Introduction. Let P and Q be nonzero integers with P 2 − 4Q 6= 0.
The sequences of generalized Fibonacci and Lucas numbers, (Un(P,Q)) and
(Vn(P,Q)), are defined as follows:

U0(P,Q) = 0, U1(P,Q) = 1,

Un+1(P,Q) = PUn(P,Q)−QUn−1(P,Q) for n ≥ 1

and

V0(P,Q) = 2, V1(P,Q) = P,

Vn+1(P,Q) = PVn(P,Q)−QVn−1(P,Q) for n ≥ 1,

respectively. Un(P,Q) and Vn(P,Q) are called nth generalized Fibonacci
number and nth generalized Lucas number, respectively. Generalized Fi-
bonacci and Lucas numbers for negative subscripts are defined to be

(1.1) U−n(P,Q) =
−Un(P,Q)

Qn
and V−n(P,Q) =

Vn(P,Q)

Qn
,

respectively.
Then it is well known that

Un(P,Q) =
αn − βn

α− β
and Vn(P,Q) = αn + βn,
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where

α =
P +

√
P 2 − 4Q

2
and β =

P −
√
P 2 − 4Q

2
.

The above formulas are known as Binet’s formulas. Since

Un(−P,Q) = (−1)n−1Un(P,Q) and Vn(−P,Q) = (−1)nVn(P,Q),

it will be assumed that P ≥ 1. Moreover, we will assume that P 2− 4Q > 0.
Instead of Un(P,Q) and Vn(P,Q), we will use Un and Vn, respectively.

For (P,Q) = (1,−1), we have the classical Fibonacci and Lucas number
sequences, (Fn) and (Ln). For (P,Q) = (2,−1), we have the Pell and Pell–
Lucas number sequences (Pn) and (Qn), respectively. For more information
about the sequences of generalized Fibonacci and Lucas numbers one can
consult [5, 8, 9, 11].

In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vm 6= 1, and
Vr 6= 1. We will show that when m and r are natural numbers with r even,
there is no integer x such that Vn = VrVmx

2. Also when Q ≡ 7 (mod 8)
and x is an even integer, we completely solve the equation Vn = VmVrx

2 for
m ≥ 1 and r ≥ 1. In addition, when P ≡ 3 (mod 4) and Q ≡ 1 (mod 4) we
solve the equation Vn = VmVrx

2 for m ≥ 1 and r ≥ 1. Moreover, we show
that when P > 1 and Q = ±1, there is no generalized Lucas number Vn
such that Vn = VmVr for m > 1 and r > 1. Lastly, we show that there is
no generalized Fibonacci number Un such that Un = UmUr for Q = ±1 and
1 < r < m.

In Section 2, we give the necessary identities and theorems. Then in
Section 3, we present our main theorems.

2. Preliminaries. In this section, we give some theorems and some
identities concerning generalized Fibonacci and Lucas numbers, which will
be used later. Then we present our theorems in the third section. Throughout
the paper,

(
a
m

)
represents the Jacobi symbol.

The proofs of the following two theorems are given in [13].

Theorem 1. Let n ∈ N∪{0}, m ∈ N, and r ∈ Z with mn+r ≥ 0. Then

U2mn+r ≡ QmnUr (mod Um),(2.1)

V2mn+r ≡ QmnVr (mod Um).(2.2)

Theorem 2. Let n ∈ N∪{0}, m ∈ N, and r ∈ Z with mn+r ≥ 0. Then

U2mn+r ≡ (−Qm)nUr (mod Vm),(2.3)

V2mn+r ≡ (−Qm)nVr (mod Vm).(2.4)
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When P is odd, we see that 8 |U6. Thus, using (2.1) and (2.2), we get

U12q+r ≡ Ur (mod 8),(2.5)

V12q+r ≡ Vr (mod 8),(2.6)

for any nonnegative integers q and r. If Q ≡ 7 (mod 8), then

(2.7) 8 - Vn
for every natural number n, and if Q ≡ 1, 5 (mod 8), then

(2.8) 4 - Vn
for every natural number n. Moreover, when P is odd and Q ≡ 3, 7 (mod 8),
we get

(2.9) 4 |V3.

The following lemma can be found in [12].

Lemma 3. Let P and m be odd positive integers, and r ≥ 1.

(a) If 3 - m, then

V2rm ≡
{

3 (mod 8) if r = 1 and Q ≡ 3 (mod 4),

7 (mod 8) otherwise.

(b) If 3 |m, then V2rm ≡ 2 (mod 8).

The following lemma can be proved by induction.

Lemma 4. If n is a positive odd integer, then

Vn ≡ nP (−Q)(n−1)/2 (mod P 2),

and if n is a positive even integer, then

Vn ≡ 2(−Q)n/2 (mod P 2).

The following three theorems are given in [7, 10, 12].

Theorem 5. If Um 6= 1, then Um |Un if and only if m |n.

Theorem 6. If Vm 6= 1, then Vm |Vn if and only if m |n and n/m is
odd.

Theorem 7. If Vm 6= 1, then Vm |Un if and only if m |n and n/m is
even.

Now we give some properties of generalized Fibonacci and Lucas num-
bers:

U2n = UnVn,(2.10)

V2n = V 2
n − 2Qn,(2.11)
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if P is odd and n ≥ 1, then 2 |Vn ⇔ 2 |Un ⇔ 3 |n,(2.12)

(Vn, V2n) = 1 or 2,(2.13)

(Un, Um) = U(n,m) for all natural numbers m and n,(2.14)

V3n = Vn(V 2
n − 3Qn),(2.15) (

U3

V2k

)
= 1 ⇔ k > 1, or k = 1 and Q ≡ 1 (mod 4),(2.16)

if n ≥ 1, then (Un, Q) = (Vn, Q) = 1,(2.17)

if 3 |P and (3, Q) = 1, then 3 |Vn ⇔ n is odd,(2.18)

if 3 - P, then 3 |Vn ⇔ n ≡ 2 (mod 4) and Q ≡ −1 (mod 3).(2.19)

Moreover, when P is even, it can be easily seen that

Un is odd ⇔ n is an odd natural number,

Un is even ⇔ n is an even natural number,

Vn is even for all natural numbers n.

The properties (2.10)–(2.17) can be found in [10, 12, 13]. The proofs of the
others are easy and will be omitted.

3. Main theorems. Throughout, we will assume that n is a natural
number.

In [6], the authors showed that there is no integer x such that Ln =
LmLrx

2 when m and r are natural numbers with r even. Now we solve the
same problem for generalized Lucas numbers.

Theorem 8. Let m ≥ 1, k ≥ 1 and r be an odd positive integer. Then
there is no integer x such that Vn = V2krVmx

2.

Proof. Assume that Vn = V2krVmx
2.

Firstly, we assume that P is odd. Now we divide the proof into two cases.

Case 1: 3 - r, k = 1, Q ≡ 3 (mod 4). We have Vn = V2rVmx
2. Since

Vm |Vn and V2r |Vn, there exist odd positive integers t and s such that
n = mt and n = 2rs by Theorem 6. Thus m = 2c for some odd positive
integer c. By Lemma 3, we get V2r ≡ 3 (mod 8) and

Vm = V2c ≡
{

3 (mod 8) if 3 - c,
2 (mod 8) if 3 | c.

Thus

Vn = V2rVmx
2 ≡

{
9x2 (mod 8) if 3 - c,
6x2 (mod 8) if 3 | c.

But

Vn = V2rs ≡
{

3 (mod 8) if 3 - rs,
2 (mod 8) if 3 | rs,
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a contradiction, since x2 and 6x2 are not congruent to 3 or 2 respectively
modulo 8.

Case 2. Not all of 3 - r, k = 1, Q ≡ 3 (mod 4) hold. Since Vm |Vn and
V2kr |Vn, there exist odd integers t and s such that n = mt and n = 2krs by
Theorem 6. Thus we have m = 2kc for some odd positive integer c. Then
Vn ≡ 2, 7 (mod 8), Vm ≡ 2, 7 (mod 8) and V2kr ≡ 2, 7 (mod 8) by Lemma 3.

Assume that V2kr ≡ 2 (mod 8). Then it follows that Vn = V2krVmx
2 ≡

2Vmx
2 (mod 8). Moreover, since 2x2 ≡ 0, 2 (mod 8) and Vm ≡ 2, 7 (mod 8), it

is seen that 2Vmx
2 ≡ 0, 4, 6 (mod 8). This contradicts the fact that Vn ≡ 2, 7

(mod 8).
Now assume that V2kr ≡ 7 (mod 8). Then Vn = V2krVmx

2 ≡ 7Vmx
2

(mod 8). Moreover, 7x2 ≡ 0, 4, 7 (mod 8) and Vm ≡ 2, 7 (mod 8). This shows
that 7Vmx

2 ≡ 0, 1, 4, 6 (mod 8), which contradicts the fact that Vn ≡ 2, 7
(mod 8).

Secondly, we assume that P is even. Then since n is even and Q is odd,
it is seen that Vn ≡ 2 (mod 4) by Lemma 4. Similarly, we see that Vm ≡ 2
(mod 4) and V2r ≡ 2 (mod 4). This shows that Vn ≡ 0 (mod 4), which
contradicts the fact that Vn ≡ 2 (mod 4). This completes the proof.

Now the following corollary follows easily.

Corollary 9. Let m and r be two natural numbers. If r is an even
integer, then there is no integer x such that Vn = VmVrx

2.

In the next theorem we will use the following known lemma from number
theory.

Lemma 10. Let a, b, c, x ∈ Z, gcd(a, b) = 1 and ab = cx2. Then a = ru2

and b = sv2 with rs = c for some positive integers u and v.

In [6], the authors showed that for m > 1 and r > 1, there is no even
integer x such that Ln = LmLrx

2. If Q ≡ 1, 5 (mod 8) and x is even, then
the equation Vn = VmVrx

2 has no solutions by (2.8). Now, we consider the
same problem for P ≥ 1 and Q ≡ 7 (mod 8).

Theorem 11. Let x be an even integer and Q ≡ 7 (mod 8). If m and r
are positive integers and Vn = VmVrx

2, then m = r = 1, n = 3, and P = 3.

Proof. If one of m and r is even, the assertion follows from Corollary 9.
Assume that m and r are odd.

Firstly, we assume that P is odd. Since x is even, it follows that 4 |Vn
and therefore 3 |n by (2.12). If 3 |m or 3 | r, we see that Vm or Vr is even
by (2.12). Thus we get 8 |Vn. This is impossible by (2.7). Therefore we have
3 - m and 3 - r. Since Vm |Vn and Vr |Vn, there exist odd positive integers
t and s such that n = mt and n = rs by Theorem 6. Then n is odd. As a
result, n = mt, n = rs, 3 |n, 3 - m and 3 - r. Therefore t = 3a and s = 3b
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for some odd positive integers a and b. This shows that n = 3ma = 3rb, i.e.,
ma = rb. Thus since n is odd, we get

VmVrx
2 = Vn = V3ma = Vma(V 2

ma − 3Qma)

by (2.15). This shows that

(3.1)
Vma

Vm
(V 2

ma − 3Qma) = Vrx
2.

It can be seen that (Vma/Vm, V
2
ma−3Qma) = 1 or 3 by (2.17). In both cases,

by Lemma 10, we have either

(3.2)
Vma

Vm
= wu2

1 and V 2
ma − 3Qma = yu2

2

or

(3.3)
Vma

3Vm
= wu2

1 and
V 2
ma − 3Qma

3
= yu2

2

with wy = Vr for some positive integers w, y, u1, and u2. Using the fact that
ma = rb in (3.2) and (3.3), we get V 2

rb− 3Qrb = yu2
2 and V 2

rb− 3Qrb = 3yu2
2,

respectively. Thus y |V 2
rb − 3Qrb. Since y |Vr and Vr |Vrb, it is seen that

y | 3Qrb. Since y |Vr, we get y | 3 by (2.17). This shows that y = 1 or y = 3.
As a result, V 2

rb − 3Qrb = v2 or V 2
rb − 3Qrb = 3v2 for some integer v.

Assume that V 2
rb − 3Qrb = v2. Since V2rb = V 2

rb − 2Qrb by (2.11), we
obtain V2rb = v2 + Qrb. Assume that rb > 1. Then we can write 2rb =
2(4q± 1) = 2(2kz)± 2 for some positive odd integer z with k ≥ 2. Hence we
get either

V2rb ≡ −Qrb−1V2 (mod V2k)

or

V2rb ≡ −Qrb+1V−2 (mod V2k)

by (2.4). It is seen that

v2 +Qrb ≡ −Qrb−1V2 (mod V2k)

by (1.1). That is,

v2 ≡ −Qrb−1(V2 +Q) ≡ −Qrb−1U3 (mod V2k).

This shows that

J =

(
−Qrb−1U3

V2k

)
= 1.

On the other hand,

(
U3

V2k

)
= 1 by (2.16). Moreover, V2k ≡ 7 (mod 8) by

Lemma 3 and therefore

(
−1

V2k

)
= −1. Also since rb − 1 is even, it is seen
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that

(
Qrb−1

V2k

)
= 1. Thus we get

J =

(
−Qrb−1U3

V2k

)
=

(
−1

V2k

)(
Qrb−1

V2k

)(
U3

V2k

)
= −1,

which contradicts the fact that J = 1.

Assume now that V 2
rb − 3Qrb = 3v2. Then 3 |Vrb. This shows that 3 |P

by (2.18) since rb is odd. Moreover, V2rb = V 2
rb − 2Qrb by (2.11). Thus we

obtain V2rb = 3v2 +Qrb.

Assume that rb > 1. Then we can write 2rb = 2(4q± 1) = 2(2kz)± 2 for
some positive odd integer z with k ≥ 2. Hence we get either

V2rb ≡ −Qrb−1V2 (mod V2k)

or

V2rb ≡ −Qrb+1V−2 (mod V2k)

by (2.4). It is seen that

3v2 +Qrb ≡ −Qrb−1V2 (mod V2k)

by (1.1). That is,

3v2 ≡ −Qrb−1(V2 +Q) ≡ −Qrb−1U3 (mod V2k).

This shows that

J =

(
−3Qrb−1U3

V2k

)
= 1.

Since V2k ≡ 7 (mod 8) by Lemma 3 and

(
U3

V2k

)
= 1 by (2.16), it is seen

that

(
−1

V2k

)
= −1. Since rb is odd, we get

(
Qrb−1

V2k

)
= 1. Also since 3 |P

and k ≥ 2, it can be easily seen that V2k ≡ 2(−Q)2k/2 ≡ 2Q2k/2 (mod 3) by
Lemma 4. Therefore(

3

V2k

)
=

(
V2k

3

)
(−1)( 3−1

2
)(

V
2k

−1

2
) = −

(
2Q2k/2

3

)
= −

(
2

3

)(
Q2k/2

3

)
= 1.

Thus we get

J =

(
−3Qrb−1U3

V2k

)
=

(
−1

V2k

)(
3

V2k

)(
Qrb−1

V2k

)(
U3

V2k

)
= −1.

But this contradicts the fact that J = 1.

Therefore rb = 1, i.e., r = b = 1. This shows that m = r = 1 and n = 3.
Thus we obtain V3 = V1V1x

2 = (Px)2, i.e., P (P 2 − 3Q) = P 2x2. Hence
P |P 2−3Q and therefore P | 3Q. Since (P,Q) = 1, it follows that P | 3. This
shows that P = 3 since P = V1 = Vm > 1 by assumption.
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Secondly, we assume that P is even. Since x is even, it is seen that 4 |Vn
and therefore n is odd by Lemma 4. This shows that m and r are also
odd. Hence we have Vn ≡ nP (−Q)(n−1)/2 (mod P 2), Vm ≡ mP (−Q)(m−1)/2

(mod P 2) and Vr ≡ rP (−Q)(r−1)/2 (mod P 2) by Lemma 4. This implies
that

nP (−Q)(n−1)/2 ≡ mrP 2(−Q)(m+r−2
2

)x2 (mod P 2).

Thus it follows that

n(−Q)(n−1)/2 ≡ mrP (−Q)(m+r−2
2

)x2 (mod P ),

which is impossible since n and Q are odd integers. This completes the
proof.

Theorem 12. Let P ≡ 3 (mod 4) and Q ≡ 1 (mod 4). If m and r are
positive integers, then there is no integer x such that Vn = VmVrx

2.

Proof. Assume that Vn = VmVrx
2. When m or r is even, the assertion

follows from Corollary 9. Now assume that m and r are odd. Then n is also
odd.

Firstly, assume that P is odd. If 3 |m and 3 | r, then Vm and Vr are even
by (2.12). Thus it follows that 4 |Vn. This is impossible by (2.8). Therefore
3 - m or 3 - r. Since 4 - Vn, x is odd integer.

Assume that 3 - m and 3 - r. Thus 3 - n. Since n,m and r are odd, it is
seen that Vn ≡ P, 5P (mod 8), Vm ≡ P, 5P (mod 8) and Vr ≡ P, 5P (mod 8)
by (2.6). Thus we get Vn = VmVrx

2 ≡ 1, 5 (mod 8). Then either P ≡ 1, 5
(mod 8) or 5P ≡ 1, 5 (mod 8), which is impossible since P ≡ 3 (mod 4).

Assume that 3 |m and 3 - r. Then 3 |n. If Q ≡ 1 (mod 8), then it follows
that Vn ≡ 6P (mod 8), Vm ≡ 6P (mod 8), Vr ≡ P (mod 8) by (2.6) and
if Q ≡ 5 (mod 8), then Vn ≡ 2P (mod 8), Vm ≡ 2P (mod 8), Vr ≡ P, 5P
(mod 8) by (2.6). In both cases, from the equation Vn = VmVrx

2 we get
P ≡ 1 (mod 4), which is impossible since P ≡ 3 (mod 4).

Secondly, assume that P is even. In this case, since the proof is identical
to that for P even in Theorem 11, we omit the details.

The following theorem was proved by Keskin and Demirtürk in [6] when
(P,Q) = (1,−1).

Theorem 13. Let m and r be positive integers, P > 1 and Q = −1.
Then there is no generalized Lucas number Vn such that Vn = VmVr.

Proof. Assume that Vn = VmVr. If one of m and r is even, then the
statement follows from Corollary 9. Now assume that m and r are odd.

Firstly, we assume that P is odd. Since Vm |Vn and Vr |Vn, there exist
odd integers t and s such that n = mt and n = rs by Theorem 6. It is
obvious that t > 1 and s > 1. Hence t = 4q ± 1 for some q ≥ 1. Therefore
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n = mt = 4mq ±m = 2(2mq)±m. Then it follows that

(3.4) VmVr = Vn ≡ ±Vm (mod V2m)

by (2.4). Similarly, it can be seen that

(3.5) VmVr ≡ ±Vr (mod V2r).

If 3 |m and 3 | r, then, since m and r are odd, we get V3 |Vm and V3 |Vr
by Theorem 6. It follows that 8 |Vn by (2.9), which is impossible by (2.7).
Therefore 3 - m or 3 - r. Assume that 3 - m and 3 - r. Then (Vm, V2m) =
(Vr, V2r) = 1 by (2.12) and (2.13). Hence we get

(3.6) Vr ≡ ±1 (mod V2m)

by (3.4) and

(3.7) Vm ≡ ±1 (mod V2r)

by (3.5). Thus we obtain

V2m ≤ Vr ± 1 ≤ Vr + 1 and V2r ≤ Vm ± 1 ≤ Vm + 1

by (3.6) and (3.7), respectively. It follows that

(3.8) V2m + V2r ≤ Vm + Vr + 2.

Using (2.11) and (3.8), we get V 2
m + V 2

r + 2 ≤ Vm + Vr, which is impossible.
Assume that 3 |m and 3 - r. Then (Vm, V2m) = 2 and (Vr, V2r) = 1 by

(2.12) and (2.13). Hence

Vr ≡ ±1 (mod V2m/2),(3.9)

Vm ≡ ±1 (mod V2r),(3.10)

by (3.4) and (3.5), respectively. By (3.9) and (3.10), it can be seen that

V2m ≤ 2Vr + 2,(3.11)

V2r ≤ Vm + 1.(3.12)

Thus we get

(3.13) V2m + V2r ≤ Vm + 2Vr + 3

by (3.11) and (3.12). Using (2.11) in (3.13), we obtain V 2
m−Vm+V 2

r −2Vr ≤
−1. This shows that Vm(Vm − 1) + Vr(Vr − 2) ≤ −1, which is impossible
since Vm ≥ 2 and Vr ≥ 2.

Secondly, we assume that P is even. Since n,m, and r are odd, Vn ≡ nP
(mod P 2), Vm ≡ mP (mod P 2), and Vr ≡ rP (mod P 2) by Lemma 4. This
shows that nP ≡ mrP 2 (mod P 2). Hence n ≡ mrP (mod P ), which is
impossible since n is odd. This completes the proof.

Now we prove the same statement for Q = 1.

Theorem 14. Let m and r be positive integers, P > 1 and Q = 1. Then
there is no generalized Lucas number Vn such that Vn = VmVr.
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Proof. Assume that Vn = VmVr. If one of m and r is even, then the
conclusion follows from Corollary 9. Now assume that m and r are odd.

Firstly, we assume that P is odd. Then since Vm |Vn and Vr |Vn, there
exist odd integers t and s such that n = mt and n = rs by Theorem 6. It is
obvious that t > 1 and s > 1. Hence t = 4q ± 1 for some q ≥ 1. Therefore
n = mt = 4mq ±m = 2(2mq)±m. Then it follows that

(3.14) VmVr = Vn ≡ ±Vm (mod V2m)

by (2.4) and (1.1). Similarly, it can be seen that

(3.15) VmVr ≡ ±Vr (mod V2r).

If 3 |m and 3 | r, then Vm and Vr are even by (2.12). This shows that 4 |Vn,
which is impossible by (2.8). Therefore 3 - m or 3 - r. Assume that 3 - m
and 3 - r. Then (Vm, V2m) = (Vr, V2r) = 1 by (2.12) and (2.13). Hence

(3.16) Vr ≡ ±1 (mod V2m)

by (3.14) and

(3.17) Vm ≡ ±1 (mod V2r)

by (3.15). Thus we obtain

V2m ≤ Vr ± 1 ≤ Vr + 1

and

V2r ≤ Vm ± 1 ≤ Vm + 1

by (3.16) and (3.17), respectively. Then it follows that

(3.18) V2m + V2r ≤ Vm + Vr + 2.

Using (2.11) and (3.18), we get Vm(Vm − 1) + Vr(Vr − 1) ≤ 6, which is
impossible since Vm ≥ P ≥ 3 and Vr ≥ P ≥ 3.

Assume now that 3 |m and 3 - r. Then (Vm, V2m) = 2 and (Vr, V2r) = 1
by (2.12) and (2.13). Hence

Vr ≡ ±1 (mod V2m/2),(3.19)

Vm ≡ ±1 (mod V2r),(3.20)

by (3.14) and (3.15), respectively. It can be seen that

V2m ≤ 2Vr + 2,(3.21)

V2r ≤ Vm + 1,(3.22)

by (3.19) and (3.20). Thus we get

(3.23) V2m + V2r ≤ Vm + 2Vr + 3

by (3.21) and (3.22). Using (2.11) in (3.23), we obtain V 2
m−Vm+V 2

r −2Vr ≤ 7.
This shows that Vm(Vm − 1) + Vr(Vr − 2) ≤ 7, which is impossible since
Vm ≥ P ≥ 3 and Vr ≥ P ≥ 3.
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Secondly, we assume that P is even. Since n,m, and r are odd, Vn ≡ ±nP
(mod P 2), Vm ≡ ±mP (mod P 2) and Vr ≡ ±rP (mod P 2) by Lemma 4.
This shows that nP ≡ ±mrP 2 (mod P 2), implying n ≡ ±mrP (mod P ),
which is impossible since n is odd. This completes the proof.

Since the proof of the following lemma is easy, we omit it.

Lemma 15. If Q = ±1 and 0 < r < n, then Vn > 2Ur.

In [4], Farrokhi showed that the equation Fn = FmFr has no solutions
for m > 2 and r > 2. Now we give a similar result for generalized Fibonacci
numbers when P > 1 and Q = ±1.

Theorem 16. Let P > 1, Q = ±1 and m > r > 1. Then there is no
generalized Fibonacci number Un such that Un = UmUr.

Proof. Assume that Un = UmUr, Q = ±1 and m > r > 1. Then since
Um |Un and Ur |Un, it follows that n = mt and n = rs for some positive
integers t and s by Theorem 5.

Firstly, we assume that t is even, i.e., t = 2a for some positive integer a.
Then n = mt = 2ma. Hence UmUr = Un = U2ma = UmaVma by (2.10).
This shows that (Uma/Um)Vma = Ur by Theorem 5. Therefore Vma |Ur. By
Theorem 7, we obtain r = 2mac = nc for some natural number c. This shows
that n | r. Since r |n, we get n = r. Therefore Um = 1, which is impossible
since m > 1 and P > 1.

Secondly, we assume that t is odd. It is obvious that t > 1. Then we can
write t = 4q ± 1 with q ≥ 1. Therefore we get n = mt = 2(2mq)±m. Then

Un = U2(2mq)±m ≡ U±m (mod U2m),

by (2.1). Thus we get

(3.24) UmUr ≡ ±Um (mod U2m)

by (1.1). Since U2m = UmVm by (2.10), we obtain

Ur ≡ ±1 (mod Vm).

Hence Vm ≤ Ur±1 ≤ Ur +1. Moreover, since m > r > 1, we have Vm > 2Ur

by Lemma 15. Thus it is seen that Ur + 1 ≥ Vm > 2Ur, which is impossible.
This completes the proof.

It is well known that the greatest common divisor of Um and Un is again
a generalized Fibonacci number by (2.14). But the least common multiple of
Um and Un may not be a generalized Fibonacci number. This follows from
the following theorem. Since the proof is similar to that of Theorem 16, we
omit it.

Theorem 17. Let Q = ±1, 1 < m < n, and P > 1. Then [Um, Un], the
least common multiple of Um and Un, is a generalized Fibonacci number if
and only if Um |Un.
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Acknowledgements. The authors would like to thank the anonymous
referee for suggestions that improved the presentation of this paper.

REFERENCES

[1] J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61–70.
[2] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972),

631–646.
[3] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. 16 (1996),

153–166.
[4] M. Farrokhi D. G., Some remarks on the equation Fn = kFm in Fibonacci numbers,

J. Integer Sequences 10 (2007), no. 5.
[5] D. Kalman and R. Mena, The Fibonacci numbers—exposed, Math. Mag. 76 (2003),

167–181.
[6] R. Keskin and B. Demirtürk, Fibonacci and Lucas congruences and their applica-

tions, Acta Math. Sinica (English Ser.) 27 (2011), 725–736.
[7] W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences,

Fibonacci Quart. 29 (1991), 24–30.
[8] J. B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods,

Math. Comp. 61 (1993), 365–372.
[9] S. Rabinowitz, Algorithmic manipulation of Fibonacci identities, Appl. Fibonacci

Numbers 6 (1996), 389–408.
[10] P. Ribenboim and W. L. McDaniel, Squares in Lucas sequences having an even first

parameter, Colloq. Math. 78 (1998), 29–34.
[11] P. Ribenboim, My Numbers, My Friends, Springer, New York, 2000.
[12] P. Ribenboim and W. L. McDaniel, On Lucas sequence terms of the form kx2, in:

Number Theory (Turku, 1999) in memory of Kustaa Inkeri, de Gruyter, Berlin,
2001, 293–303.

[13] Z. Şiar and R. Keskin, Some new identities concerning generalized Fibonacci and
Lucas numbers, Hacettepe J. Math. Statist., to appear.

Refik Keskin
Department of Mathematics
Sakarya University
TR54187 Sakarya, Turkey
E-mail: rkeskin@sakarya.edu.tr

Zafer Şiar
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