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ARITHMETIC THEORY OF HARMONIC NUMBERS (II)

BY

ZHI-WEI SUN (Nanjing) and LI-LU ZHAO (Hefei)

Abstract. For k = 1, 2, . . . let Hk denote the harmonic number
∑k

j=1 1/j. In this
paper we establish some new congruences involving harmonic numbers. For example, we
show that for any prime p > 3 we have

p−1∑
k=1

Hk

k2k
≡ 7

24
pBp−3 (mod p2),

p−1∑
k=1

Hk,2

k2k
≡ −3

8
Bp−3 (mod p),

and
p−1∑
k=1

H2
k,2n

k2n
≡
(
6n+1
2n−1

)
+ n

6n + 1
pBp−1−6n (mod p2)

for any positive integer n < (p − 1)/6, where B0, B1, B2, . . . are Bernoulli numbers, and
Hk,m :=

∑k
j=1 1/jm.

1. Introduction. Recall that harmonic numbers are

Hn :=
∑

0<k≤n

1

k
(n ∈ N = {0, 1, 2, . . .}),

where H0 := 0 since we consider the value of an empty sum as zero. They
play important roles in mathematics. In 1862 J. Wolstenholme [W] showed
the congruence Hp−1 ≡ 0 (mod p2) for any prime p > 3. Throughout this
paper, for a prime p and two rational p-adic integers A and B, we write
A ≡ B (mod pn) (with n ∈ N) to mean that A−B is divisible by pn in the
ring of p-adic integers.

In [Su] the first author investigated arithmetic properties of harmonic
numbers systematically. For example, he proved that for any prime p > 5
we have

p−1∑
k=1

Hk

k2k
≡

p−1∑
k=1

H2
k

k2
≡ 0 (mod p).

2010 Mathematics Subject Classification: Primary 11A07, 11B68; Secondary 05A19,
11B75.
Key words and phrases: harmonic numbers, congruences, Bernoulli numbers.

DOI: 10.4064/cm130-1-7 [67] c© Instytut Matematyczny PAN, 2013



68 Z. W. SUN AND L. L. ZHAO

For m ∈ Z+ = {1, 2, 3, . . .}, harmonic numbers of order m are defined by

Hn,m :=
∑

0<k≤n

1

km
(n ∈ N).

It is known that
∞∑
k=1

Hk

k2k
=
π2

12
(S. W. Coffman [C], 1987)

and ∞∑
k=1

Hk,2

k2k
=

5

8
ζ(3) (B. Cloitre, 2004).

Both identities can be found in [SW].
Our first theorem is as follows.

Theorem 1.1. For any prime p > 3, we have

(1.1)

p−1∑
k=1

Hk

k2k
≡ 7

24
pBp−3 (mod p2)

and

(1.2)

p−1∑
k=1

Hk,2

k2k
≡ −3

8
Bp−3 (mod p),

where B0, B1, B2, . . . are Bernoulli numbers.

Remark 1.1. Formula (1.1) confirms the first part of [Su, Conjecture

1.1]. The second part of [Su, Conjecture 1.1] states that
∑p−1

k=1H
2
k/k

2 ≡
4
5pBp−5 (mod p2) for any prime p > 3; this was confirmed by R. Meštrović
[M] quite recently.

Our second theorem confirms the second conjecture of [Su].

Theorem 1.2 ([Su, Conjecture 1.2]). Let p be an odd prime and let n
be a positive integer with p− 1 - 6n. Then

(1.3)

p−1∑
k=1

H2
k,2n

k2n
≡ 0 (mod p).

Furthermore, when p > 6n+ 1 we have

(1.4)

p−1∑
k=1

H2
k,2n

k2n
≡ s(n)

6n+ 1
pBp−1−6n (mod p2),

where

s(n) =

(
6n+ 1

2n− 1

)
+ n.

Remark 1.2. We give here four initial values of the integer sequence
{s(n)}n≥1:

s(1) = 8, s(2) = 288, s(3) = 11631, s(4) = 480704.
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We will show Theorems 1.1 and 1.2 in Sections 2 and 3 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. Let p > 3 be a prime. Then

(2.1)

p−1∑
k=1

(−1)k

k2
≡ p

2
Bp−3 (mod p2),

p−1∑
k=1

(−1)k

k3
≡ −Bp−3

2
(mod p),

and

(2.2)

p−1∑
k=1

Hk

k
≡ p

3
Bp−3 (mod p2),

p−1∑
k=1

(−1)k

k2
Hk ≡ −

Bp−3
4

(mod p).

Proof. It is known that (cf. [S, Corollaries 5.1 and 5.2])

p−1∑
k=1

1

k2
≡ 2

3
pBp−3 (mod p2),

p−1∑
k=1

1

k3
≡ 3

4
pBp−4 ≡ −pδp,5 (mod p2),

and
(p−1)/2∑
k=1

1

k2
≡ 7

3
pBp−3 (mod p2),

(p−1)/2∑
k=1

1

k3
≡ −2Bp−3 (mod p).

Thus
p−1∑
k=1

(−1)k

k2
=

p−1∑
k=1

1 + (−1)k

k2
−

p−1∑
k=1

1

k2
=

1

2
H(p−1)/2,2 −Hp−1,2

≡ 7

6
pBp−3 −

2

3
pBp−3 =

p

2
Bp−3 (mod p2)

and
p−1∑
k=1

(−1)k

k3
=

p−1∑
k=1

1 + (−1)k

k3
−

p−1∑
k=1

1

k3

=
1

4
H(p−1)/2,3 −Hp−1,3 ≡

−2Bp−3
4

(mod p).

Therefore (2.1) holds.
By the proof of [S, Theorem 6.1],∑

1≤j<k≤p−1

1

jk
≡ −p

3
Bp−3 (mod p2).

So we have
p−1∑
k=1

Hk

k
=

p−1∑
k=1

1

k2
+

∑
1≤j<k≤p−1

1

jk
≡ 2

3
pBp−3 −

p

3
Bp−3 =

p

3
Bp−3 (mod p2).

This proves the first congruence in (2.2).
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Now we prove the second congruence in (2.2). Since

Hp−k = Hp−1 −
k−1∑
j=1

1

p− j
≡ Hk−1 = Hk −

1

k
(mod p)

for all k = 1, . . . , p− 1, we have
p−1∑
k=1

(−1)k

k2
Hk =

p−1∑
k=1

(−1)p−k

(p− k)2
Hp−k ≡ −

p−1∑
k=1

(−1)k

k2

(
Hk −

1

k

)
(mod p)

and hence
p−1∑
k=1

(−1)k

k2
Hk ≡

1

2

p−1∑
k=1

(−1)k

k3
≡ −Bp−3

4
(mod p).

Lemma 2.2.

(i) For any positive integers k and m we have

(2.3)

m∑
n=1

(
n− 1

k − 1

)
=

(
m

k

)
.

(ii) For each n = 1, 2, . . . we have

(2.4)

n∑
k=1

(
n

k

)
(−1)k−1

k
Hk = Hn,2.

Proof. (2.3) is well known (cf. [G, (1.5)]) and it can be easily proved by
induction on m.

(2.4) is also known (cf. [H]). Here we prove it by induction. Clearly (2.4)
holds for n = 1. Assume that (2.4) holds for a fixed positive integer n. Then

n+1∑
k=1

(
n+ 1

k

)
(−1)k−1

k
Hk =

n∑
k=1

(
n

k

)
(−1)k−1

k
Hk +

n+1∑
k=1

(
n

k − 1

)
(−1)k−1

k
Hk

= Hn,2 +
1

n+ 1

n+1∑
k=0

(
n+ 1

k

)
(−1)k−1Hk.

Note that

n+1∑
k=0

(
n+ 1

k

)
(−1)k−1Hk

=

n∑
k=0

(
n

k

)
(−1)k−1Hk +

n+1∑
k=1

(
n

k − 1

)
(−1)k−1

(
Hk−1 +

1

k

)

=
n+1∑
k=1

(
n

k − 1

)
(−1)k−1

k
= − 1

n+ 1

n+1∑
k=1

(
n+ 1

k

)
(−1)k =

1

n+ 1
.
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So
n+1∑
k=1

(
n+ 1

k

)
(−1)k−1

k
Hk = Hn,2 +

1

n+ 1
· 1

n+ 1
= Hn+1,2

as desired.

Lemma 2.3. Let p > 3 be a prime. Then

(2.5)
∑

1≤j≤k≤p−1

2j(j + k)

j2k2
≡

p−1∑
k=1

(−1)k

k3
(mod p).

Proof. Observe that∑
1≤i≤j≤k≤p−1

2i

ijk
−

∑
1≤i<j<k≤p−1

2i

ijk

=
∑

1≤j≤k≤p−1

2j

j2k
+

∑
1≤i≤j≤p−1

2i

ij2
−

p−1∑
k=1

2k

k3

=
∑

1≤j≤k≤p−1

(
2j

j2k
+

2j

jk2

)
−

p−1∑
k=1

2k

k3
.

Similarly,

2
∑

1≤i≤j≤k≤p−1

(−1)i

ijk
− 2

∑
1≤i<j<k≤p−1

(−1)i

ijk
− 2

p−1∑
k=1

(−1)k

k3

= 2
∑

1≤j<k≤p−1

(
(−1)j

j2k
+

(−1)j

jk2

)

≡
∑

1≤j<k≤p−1

(
(−1)j

j2k
+

(−1)j

jk2
+

(−1)p−j

(p− j)2(p− k)
+

(−1)p−j

(p− j)(p− k)2

)

=
∑

1≤j<k≤p−1

(−1)j

j2k
+

∑
1≤k<j≤p−1

(−1)j

j2k

+
∑

1≤j<k≤p−1

(−1)j

jk2
+

∑
1≤k<j≤p−1

(−1)j

jk2

= Hp−1

p−1∑
j=1

(−1)j

j2
+Hp−1,2

p−1∑
j=1

(−1)j

j
− 2

p−1∑
j=1

(−1)j

j3
(mod p).

Thus, with the help of Hp−1 ≡ Hp−1,2 ≡ 0 (mod p), we have∑
1≤i≤j≤k≤p−1

(−1)i

ijk
≡

∑
1≤i<j<k≤p−1

(−1)i

ijk
(mod p).
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By [ZS, Theorem 1.2],∑
1≤i<j<k≤p−1

(1− x)i

ijk
≡

∑
1≤i<j<k≤p−1

xi

ijk
(mod p).

So, in view of the above, we have

∑
1≤i≤j≤k≤p−1

(−1)i

ijk
≡

∑
1≤i<j<k≤p−1

2i

ijk

≡
∑

1≤i≤j≤k≤p−1

2i

ijk
+

p−1∑
k=1

2k

k3
−

∑
1≤j≤k≤p−1

2j(j + k)

j2k2
(mod p).

It remains to show that

(2.6)
∑

1≤i≤j≤k≤p−1

2i − (−1)i

ijk
≡

p−1∑
k=1

(−1)k − 2k

k3
(mod p).

With the help of Lemma 2.2, we have

∑
1≤i≤j≤k≤p−1

2i − (−1)i

ijk
=

∑
1≤i≤j≤k≤p−1

1

ijk

i∑
r=0

(1− (−2)r)

(
i

r

)

=

p−1∑
r=1

1− (−2)r

r

∑
1≤j≤k≤p−1

1

jk

j∑
i=1

(
i− 1

r − 1

)

=

p−1∑
r=1

1− (−2)r

r

∑
1≤j≤k≤p−1

1

jk

(
j

r

)
=

p−1∑
r=1

1− (−2)r

r2

p−1∑
k=1

1

k

k∑
j=1

(
j − 1

r − 1

)

=

p−1∑
r=1

1− (−2)r

r2

p−1∑
k=1

1

k

(
k

r

)
=

p−1∑
r=1

1− (−2)r

r3

p−1∑
k=1

(
k − 1

r − 1

)

=

p−1∑
r=1

1− (−2)r

r3

(
p− 1

r

)
≡

p−1∑
r=1

(−1)r − 2r

r3
(mod p).

Proof of Theorem 1.1. We prove (1.2) first. In view of (2.4), we have

p−1∑
n=1

Hn,2

n2n
=

p−1∑
n=1

1

n2n

n∑
k=1

(
n

k

)
(−1)k−1

k
Hk

=

p−1∑
k=1

(−1)k−1

k
Hk

p−1∑
n=k

1

n2n

(
n

k

)
=

p−1∑
k=1

(−1)k−1

k22k
Hk

p−1∑
n=k

(
n− 1

k − 1

)
1

2n−k
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=

p−1∑
k=1

(−1)k−1

k22k
Hk

p−1−k∑
j=0

(
k + j − 1

j

)
1

2j

=

p−1∑
k=1

(−1)k−1

k22k
Hk

p−1−k∑
j=0

(
−k
j

)
1

(−2)j

and hence
p−1∑
n=1

Hn,2

n2n
≡

p−1∑
k=1

(−1)k−1

k22k
Hk

p−1−k∑
j=0

(
p− k
j

)
1

(−2)j

=

p−1∑
k=1

(−1)k−1

k22k
Hk

1 + (−1)k

2p−k
≡ − 1

2

p−1∑
k=1

Hk

k2
(1 + (−1)k) (mod p).

Note that
p−1∑
k=1

Hk

k2
≡ Bp−3 (mod p) and

p−1∑
k=1

(−1)k

k2
Hk ≡ −

Bp−3
4

(mod p)

by [ST, (5.4)] and (2.2) respectively. So we get
p−1∑
n=1

Hn,2

n2n
≡ −1

2

(
Bp−3 −

Bp−3
4

)
= −3

8
Bp−3 (mod p).

Now we show (1.1). Observe that
p−1∑
k=1

Hk

k2k
=

∑
1≤j≤k≤p−1

1

jk2k
=

∑
1≤j≤k≤p−1

1

(p− k)(p− j)2p−j

=
∑

1≤j≤k≤p−1

2j−p(p+ j)(p+ k)

(p2 − j2)(p2 − k2)
≡

∑
1≤j≤k≤p−1

2j−p(jk + p(j + k))

j2k2

≡ 2−p
∑

1≤j≤k≤p−1

2j

jk
+
p

2

∑
1≤j≤k≤p−1

2j(j + k)

j2k2
(mod p2).

In view of Lemmas 2.2 and 2.1,∑
1≤j≤k≤p−1

2j − 1

jk
=

∑
1≤j≤k≤p−1

1

jk

j∑
i=1

(
j

i

)
=

p−1∑
i=1

1

i

p−1∑
k=1

1

k

k∑
j=1

(
j − 1

i− 1

)

=

p−1∑
i=1

1

i

p−1∑
k=1

1

k

(
k

i

)
=

p−1∑
i=1

1

i2

p−1∑
k=1

(
k − 1

i− 1

)

=

p−1∑
i=1

1

i2

(
p− 1

i

)
=

p−1∑
i=1

(−1)i

i2

i∏
r=1

(
1− p

r

)

≡
p−1∑
i=1

(−1)i(1− pHi)

i2
≡ p

2
Bp−3 − p

(
−Bp−3

4

)
(mod p2).
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Note that ∑
1≤j≤k≤p−1

1

jk
=

p−1∑
k=1

Hk

k
≡ p

3
Bp−3 (mod p2)

by (2.2). Combining the above with (2.5), we finally obtain
p−1∑
k=1

Hk

k2k
≡ 2−p

(
3

4
pBp−3 +

p

3
Bp−3

)
+
p

2

p−1∑
k=1

(−1)k

k3

≡ 13

24
pBp−3 +

p

2

(
−Bp−3

2

)
=

7

24
pBp−3 (mod p2) (by (2.1)).

3. Proof of Theorem 1.2

Lemma 3.1. Let p > 3 be a prime and let m be a positive integer with
p− 1 - 3m. Then

(3.1)
∑

1≤j<k≤p−1

(
1

jmk2m
+

1

j2mkm

)
≡ 0 (mod p).

Moreover, if p > 3m+ 1, then

(3.2)
∑

1≤j<k≤p−1

(
1

jmk2m
+

1

j2mkm

)
≡ −p 3m

3m+ 1
Bp−1−3m (mod p2).

Proof. It is well known that
p−1∑
k=1

1

kn
≡ 0 (mod p) for any integer n 6≡ 0 (mod p− 1).

Also,
p−1∑
k=1

1

kn
≡ pn

n+ 1
Bp−1−n (mod p2) for n = 1, . . . , p− 2

(see, e.g., [S, Corollary 5.1]). Thus∑
1≤j<k≤p−1

(
1

jmk2m
+

1

j2mkm

)
=

p−1∑
j=1

1

jm

p−1∑
k=1

1

k2m
−

p−1∑
k=1

1

k3m
≡ 0 (mod p).

Moreover, we have (3.2) if p > 3m+ 1.

Lemma 3.2. Let p > 3 be a prime and let m be a positive even integer.
Then

(3.3)
∑

1≤j<k≤p−1

(
1

jmk2m
− 1

j2mkm

)
≡ 0 (mod p).

Moreover, if p > 3m+ 1 then

(3.4)
∑

1≤j<k≤p−1

(
1

jmk2m
− 1

j2mkm

)
≡
pm
(
3m
m

)
Bp−1−3m

(m+ 1)(2m+ 1)
(mod p2).
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Proof. As m is even, we have∑
1≤j<k≤p−1

1

jmk2m
=

∑
1≤j<k≤p−1

1

(p− k)m(p− j)2m

≡
∑

1≤j<k≤p−1

1

j2mkm
(mod p).

Now suppose that p > 3m+ 1. Then∑
1≤j<k≤p−1

1

jmk2m
=

∑
1≤j<k≤p−1

(p+ k)m(p+ j)2m

(p2 − k2)m(p2 − j2)2m

≡
∑

1≤j<k≤p−1

(km + pmkm−1)(j2m + p2mj2m−1)

j4mk2m

≡
∑

1≤j<k≤p−1

1

j2mkm
+ pm

∑
1≤j<k≤p−1

(
1

j2mkm+1
+

2

j2m+1km

)
(mod p2).

So, (3.4) is reduced to

(3.5)
∑

1≤j<k≤p−1

(
1

j2mkm+1
+

2

j2m+1km

)
≡

(
3m
m

)
Bp−1−3m

(m+ 1)(2m+ 1)
(mod p).

Recall that for any integer n we have
p−1∑
k=1

kn ≡
{
p− 1 (mod p) if p− 1 | n,
0 (mod p) if p− 1 - n

(see, e.g., [IR, p. 235]). Also,
k−1∑
j=0

jn =
1

n+ 1

n∑
j=0

(
n+ 1

j

)
Bjk

n+1−j

for any k = 1, 2, . . . and n = 0, 1, . . . (see, e.g., [IR, p. 230]). Therefore∑
1≤j<k≤p−1

1

j2mkm+1
≡

p−1∑
k=1

1

km+1

k−1∑
j=0

jp−1−2m

=

p−1∑
k=1

1

km+1(p− 2m)

p−1−2m∑
j=0

(
p− 2m

j

)
Bjk

p−2m−j

≡ − 1

2m

p−1−2m∑
j=0

(
p− 2m

j

)
Bj

p−1∑
k=1

kp−1−3m−j

≡ 1

2m

p−1−2m∑
j=0, p−1|j+3m

(
p− 2m

j

)
Bj =

1

2m

(
p− 2m

m+ 1

)
Bp−1−3m

≡ 1

2m

(
−2m

m+ 1

)
Bp−1−3m =

(−1)m+1

2m

(
3m

m+ 1

)
Bp−1−3m (mod p).
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Similarly,∑
1≤j<k≤p−1

1

j2m+1km
≡

p−1∑
k=1

1

km

k−1∑
j=0

jp−2−2m

=

p−1∑
k=1

1

km(p−1−2m)

p−2−2m∑
j=0

(
p−1−2m

j

)
Bjk

p−1−2m−j

≡ − 1

2m+1

p−2−2m∑
j=0

(
p−1−2m

j

)
Bj

p−1∑
k=1

kp−1−3m−j

≡ 1

2m+1

p−2−2m∑
j=0, p−1|j+3m

(
p−1−2m

j

)
Bj =

1

2m+1

(
p−1−2m

m

)
Bp−1−3m

≡ 1

2m+1

(
−1−2m

m

)
Bp−1−3m =

(−1)m

2m+1

(
3m

m

)
Bp−1−3m (mod p).

Therefore∑
1≤j<k≤p−1

(
1

j2mkm+1
+

2

j2m+1km

)

≡
(

(−1)m+1

2m

(
3m

m+ 1

)
+ 2

(−1)m

2m+ 1

(
3m

m

))
Bp−1−3m

=
(−1)m

(m+ 1)(2m+ 1)

(
3m

m

)
Bp−1−3m (mod p).

So (3.5) holds as m is even.

Proof of Theorem 1.2. Let m = 2n. Clearly
p−1∑
k=1

H2
k,m

km
=

p−1∑
k=1

1

km

( k∑
j=1

1

jm

)2

=

p−1∑
k=1

1

km

( k∑
j=1

1

j2m
+ 2

∑
1≤i<j≤k

1

imjm

)
= Hp−1,3m +

∑
1≤j<k≤p−1

1

j2mkm
+ 2

∑
1≤i<j≤p−1

1

imj2m

+ 2
∑

1≤i<j<k≤p−1

1

imjmkm

and

H3
p−1,m =

p−1∑
i=1

1

im

(p−1∑
k=1

1

k2m
+ 2

∑
1≤j<k≤p−1

1

jmkm

)

= Hp−1,3m + 3
∑

1≤j<k≤p−1

(
1

j2mkm
+

1

jmk2m

)
+ 6

∑
1≤i<j<k≤p−1

1

imjmkm
.
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As Hp−1,m ≡ 0 (mod p), from the above we obtain

p−1∑
k=1

H2
k,m

km
≡ Hp−1,3m +

∑
1≤j<k≤p−1

(
1

j2mkm
+

2

jmk2m

)

− Hp−1,3m
3

−
∑

1≤j<k≤p−1

(
1

j2mkm
+

1

jmk2m

)
=

2

3
Hp−1,3m +

∑
1≤j<k≤p−1

1

jmk2m
(mod p2).

Thus, by (3.1), (3.3) and the congruence Hp−1,3m ≡ 0 (mod p), we immedi-
ately get (1.3).

Now assume that p > 3m+ 1. Adding (3.2) and (3.4) we obtain

2
∑

1≤j<k≤p−1

1

jmk2m
≡ pmBp−1−3m

(
− 3

3m+ 1
+

(
3m
m

)
(m+ 1)(2m+ 1)

)

=
pm

3m+ 1

((3m+1
m

)
m+ 1

− 3

)
Bp−1−3m (mod p2).

Note also that

Hp−1−3m ≡ p
3m

3m+ 1
Bp−1−3m (mod p2).

Therefore
p−1∑
k=1

H2
k,m

km
≡ 2

3
· p 3m

3m+ 1
Bp−1−3m +

((3m+1
m

)
m+ 1

− 3

)
pm/2

3m+ 1
Bp−1−3m

=

((3m+1
m

)
m+ 1

+ 1

)
pm/2

3m+ 1
Bp−1−3m

=

((
3m+ 1

m− 1

)
+
m

2

)
pBp−1−3m

3m+ 1
(mod p2).

This proves (1.4).
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