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LOGARITHMIC INEQUALITIES FOR
SECOND-ORDER RIESZ TRANSFORMS
AND RELATED FOURIER MULTIPLIERS
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ADAM OSĘKOWSKI (Warszawa)

Abstract. We study logarithmic estimates for a class of Fourier multipliers which
arise from a nonsymmetric modulation of jumps of Lévy processes. In particular, this
leads to corresponding tight bounds for second-order Riesz transforms on Rd.

1. Introduction. As evidenced in [BB], [BBB], [BJ], [BM], [BW],
[GMSS], [O3] and many other papers, the martingale theory plays a fun-
damental role in obtaining various bounds for many important singular in-
tegrals and Fourier multipliers. So far, the martingale methods have consti-
tuted a particularly efficient tool in the proofs of Lp bounds. In [O3] the
author proposed a novel approach which enabled the study of logarithmic
estimates and used it to obtain some tight bounds for the Beurling–Ahlfors
operator. This paper is a continuation of that work and contains, among
other things, a “fine-tuning” of the martingale methods which leads to the
improvement of several results from [O3], and indicates various interesting
connections between certain classes of Fourier multipliers and special pairs
of differentially subordinated martingales.

We start with recalling the necessary background and notation. Let d ≥ 1
be a fixed integer. For any bounded function m : Rd → C, there is a
unique bounded linear operator Tm on L2(Rd), called the Fourier multi-
plier with the symbol m, which is given by the identity T̂mf = mf̂ . By
Plancherel’s theorem, the norm of Tm on L2(Rd) is equal to ‖m‖L∞(Rd)

and there is a classical problem to characterize those m for which the corre-
sponding Fourier multiplier extends to a bounded linear operator on Lp(Rd),
1 < p < ∞. This question is motivated by the analysis of the classical
example, the collection of Riesz transforms {Rj}dj=1 on Rd [St]. Here, for
any j, the transform Rj is a Fourier multiplier corresponding to the symbol
m(ξ) = −iξj/|ξ|, ξ 6= 0. The remarkable feature is that Rj can be alterna-
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tively defined via the singular integrals

Rjf(x) =
Γ
(
d+1

2

)
π(d+1)/2

p.v.
�

Rd

xj − yj
|x− y|d+1

f(y) dy, j = 1, . . . , d.

It is well-known that singular integral operators are important in the
theory of partial differential equations and have been used, in particular, in
the study of the higher integrability theory of the gradient of weak solutions.
In addition, the exact information on the size of such operators (e.g. on
the p-norms) provides insight into the degrees of improved regularity and
other geometric properties of solutions and their gradients. This gives rise to
another classical problem for Fourier multipliers: for a given m, provide tight
bounds for the size of the multiplier Tm in terms of some characteristics of
the symbol.

We will study this question for the following class of symbols, introduced
by Bañuelos and Bogdan in [BB]. Let ν be a Lévy measure on Rd, i.e., a
nonnegative Borel measure on Rd such that ν({0}) = 0 and

�

Rd
min{|x|2, 1} ν(dx) <∞.

Assume further that µ is a finite nonnegative Borel measure on the unit
sphere S of Rd and fix two Borel functions φ on Rd and ψ on S which take
values in the unit ball of C. We define the associated multiplier m = mφ,ψ,µ,ν

on Rd by

(1.1) m(ξ) =
1
2

	
S〈ξ, θ〉

2ψ(θ)µ(dθ) +
	
Rd [1− cos〈ξ, x〉]φ(x) ν(dx)

1
2

	
S〈ξ, θ〉2 µ(dθ) +

	
Rd [1− cos〈ξ, x〉] ν(dx)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the
scalar product in Rd. The Fourier multipliers corresponding to these symbols
can be given a martingale representation by the use of transformations of
jumps of Lévy processes (see [BB] and [BBB]). Combining this representation
with Burkholder’s martingale inequalities, Bañuelos and Bogdan [BB] and
Bañuelos, Bielaszewski and Bogdan [BBB] obtained the following Lp bound.

Theorem 1.1. Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.1).
Then for any f ∈ Lp(Rd) we have

(1.2) ‖Tmf‖Lp(Rd) ≤ (p∗ − 1)‖f‖Lp(Rd),

where p∗ = max{p, p/(p− 1)}.

It turns out that the above constant p∗−1 cannot be replaced by a smaller
number, which has recently been shown by Geiss, Montgomery-Smith and
Saksman [GMSS] (see also [BO]). In the limit case p = 1, the Lp estimate
does not hold with any finite constant, but we have the following substitute.
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Throughout the paper, the functions Φ, Ψ : [0,∞)→ [0,∞) are given by the
formulas

Φ(x) = ex − 1− x and Ψ(x) = (x+ 1) log(x+ 1)− x

and the LlogL class is defined by

LlogL(Rd) =
{
f : Rd → C :

�

Rd
Ψ(|f(x)|) dx <∞

}
.

Using a standard density argument and Corollary 1.3 from [O3], one can
define the action of a multiplier Tm (with m coming from (1.1)) on the class
LlogL(Rd). In addition, we have the following bound, the main result of [O3].

Theorem 1.2. Let m = mφ,ψ,µ,ν be given by (1.1), with µ, ν, φ and ψ
satisfying the above assumptions. Then for any K > 1, any f ∈ LlogL(Rd)
and any Borel subset A of Rd we have

(1.3)
�

A

|Tmf(x)| dx ≤ K
�

Rd
Ψ(|f(x)|) dx+

|A|
2(K − 1)

.

Furthermore, for any K > 2/π there is a multiplier m : C → R from the
class (1.1), a Borel subset A of C and a function f ∈LlogL(C) for which

�

A

|Tmf(z)| dz = K
�

C

Ψ(|f(z)|) dz +
|A|

π(Kπ − 2)
.

In particular, the above theorems give quite precise information for se-
cond-order Riesz transforms RiRj , as well as for

∑d
i, j=1 aijRiRj , the linear

combinations of such operators (cf. [BM], [BO], see also Section 4 below),
which have further important connections to the Beurling–Ahlfors operator
and Iwaniec’ conjecture [I].

It turns out that for a certain natural and wide subclass of (1.1) the
estimate (1.3) can be considerably improved. Specifically, we will restrict
ourselves to the symbols of the form (1.1) in which the functions φ and ψ take
values in the interval [0, 1] (some examples which motivate this restriction
are presented in Section 3). For such multipliers, we will prove the following.
For K > 1/2, define

CK =
1

K

[ 1�

0

e2λ − 1

2λ
dλ+

3/2�

1

e2λ − 1

2(2λ− 1)2
dλ

]
+

e3

16(K − 1/2)
.(1.4)

Computer simulations show that CK ≤ 3.1325/K + 1.2554/(K − 1/2).

Theorem 1.3. Fix K > 1/2 and let m = mφ,ψ,µ,ν be given by (1.1),
with µ, ν as above and φ, ψ taking values in the interval [0, 1]. Then for any
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f ∈ LlogL(Rd) and any Borel subset A of Rd we have

(1.5)
�

A

|Tmf(x)| dx ≤ K
�

Rd
Ψ(|f(x)|) dx+ CK |A|.

Further, for any d ≥ 2 and any K > 1/2 there is a multiplier m : Rd → R
from the class (1.1), a Borel subset A of Rd and a function f ∈ LlogL(Rd)
for which

(1.6)
�

A

|Tmf(z)| dz ≥ K
�

Rd
Ψ(|f(z)|) dz +

2K − 1

2(4K − 1)2
· |A|.

Comparing the assertions of the above two theorems, we see that the
restriction to [0, 1]-valued functions φ and ψ results in the improvement
of the integrability of the multiplier: the threshold K > 1 is reduced to
K > 1/2, while the multiplicative constant appearing in front of |A| remains
of order O(K−1) as K → ∞. We believe, but have been unable to prove,
that for K ≤ 1/2 the inequality (1.5) does not hold in general with any
finite CK (however, we have managed to prove the probabilistic version of
this statement: see Section 2 below).

A few words about the proof and the organization of the paper are in
order. It should be stressed here that the proof of (1.5) is not just a mere
repetition of the arguments from [O3]. The passage to the above special sub-
class of the symbols m requires an appropriate adjustment in the martingale
setting, which leads to an exponential estimate which is much more challeng-
ing than its counterpart in [O3]. This exponential bound will be established
by means of the corresponding weak-type inequality, which is of independent
interest. All these probabilistic facts will be presented in the next section.
Section 3 is devoted to the proof of (1.5) and contains some examples and
applications. We also discuss there the possibility of extending (1.5) to the
vector-valued setting. In the final part of the paper we study the lower bound
for the constant CK in (1.5); first we show (1.6) in the two-dimensional case,
exploiting the properties of the Beurling–Ahlfors operator, and then pass to
the general setting, using an appropriate transference method.

2. A martingale inequality

2.1. Background and statement of the results. Assume that
(Ω,F ,P) is a complete probability space, equipped with (Ft)t≥0, a non-
decreasing family of sub-σ-fields of F , such that F0 contains all the events of
probability 0. Suppose that X,Y are two adapted martingales taking values
in a certain separable Hilbert space H with norm | · | and scalar product 〈·, ·〉;
in fact, we may takeH to be equal to the subspace of `2. We impose the usual
regularity conditions on the trajectories of the processes: we assume that the
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paths are right-continuous and have limits from the left. Then X∗, the max-
imal function of X, is defined by X∗ = supt≥0 |Xt|. The symbol [X,Y ] will
stand for the quadratic covariance process of X and Y . See e.g. Dellacherie
and Meyer [DM] for details in the case when the processes are real-valued,
and extend the definition to the vector setting by [X,Y ] =

∑∞
k=0[Xk, Y k],

where Xk, Y k are the kth coordinates of X,Y . Following Bañuelos and
Wang [BW] and Wang [W], we say that Y is differentially subordinate to
X if the process ([X,X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing as
a function of t. For example, if X is a standard one-dimensional Brownian
motion, stopped at the set {−1, 1}, H is a predictable process taking values
in [−1, 1] and Y = H ·X is the Itô integral of H with respect to X, then Y
is differentially subordinate to X: this follows from the identity

[X,X]t − [Y, Y ]t = X2
0 (1−H2

0 ) +

t�

0+

(1−H2
s ) ds, t ≥ 0.

As exhibited in [BB], [BBB], martingales X,Y satisfying the differential
subordination arise naturally in the martingale study of the Fourier multi-
pliers (1.1). In order to investigate the subclass studied in this paper (i.e.,
corresponding to φ, ψ taking values in [0, 1]), we will work with pairs X,Y
satisfying a slightly different condition:
(2.1)
([X,Y ]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a function of t,

which can be regarded as “nonsymmetric differential subordination”. For in-
stance, this holds in the above setting of stochastic integrals, if we assume
that the integrand H takes values in [0, 1]. Inequalities for such martingales
were studied by a number of authors (see e.g. Burkholder [B1], Choi [C]
and the author [O1], [O2]). We refer the interested reader to those papers
and mention here only one result, which will be needed later. It was proved
for martingale transforms by Burkholder [B1] and in the general case by
the author in [O2]. Throughout, we use the notation ‖X‖p = supt≥0 ‖Xt‖p,
1 ≤ p ≤ ∞.

Theorem 2.1. Let X,Y be two Hilbert-space-valued martingales satisfy-
ing (2.1). Then for any λ > 0 we have
(2.2) λP(Y ∗ ≥ λ) ≤ ‖X‖1.
For each λ the inequality is sharp.

The main result of this section is the following.

Theorem 2.2. Suppose that X,Y are Hilbert-space-valued martingales
satisfying (2.1) and ‖X‖∞ ≤ 1. Then for any K > 1/2 we have

(2.3) sup
t≥0

EΦ(|Yt|/K) ≤ CK
K
‖X‖1,
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where CK is given by (1.4). The above inequality does not hold with any finite
constant CK when K ≤ 1/2. Furthermore, the constant CK/K is of optimal
order O((K − 1/2)−1) as K → 1/2 and O(K−2) as K →∞.

The analogous statement concerning differentially subordinated martin-
gales, with the best constant, was established in [O3]. In the above “non-
symmetric” setting the inequality is much more difficult and, in particular,
we did not manage to obtain the optimal value of CK . The key ingredient
of the proof is the following weak-type estimate, which is of independent
interest (and for which we have found the best constants).

Theorem 2.3. Suppose that X,Y are Hilbert-space-valued martingales
satisfying (2.1) and ‖X‖∞ ≤ 1. Then for any λ > 0 we have

(2.4) P(Y ∗ ≥ λ) ≤ P (λ)‖X‖1,
where

P (λ) =


λ−1 if 0 < λ ≤ 1,
(2λ− 1)−2 if 1 < λ ≤ 3/2,
e3−2λ/4 if λ > 3/2.

The bound on the right-hand side of (2.4) is the best possible for each λ.

For related results for differentially subordinated martingales, see Sec-
tions 8 and 9 in [B2].

2.2. On the method of proof. Let us describe the method which
will be used to establish the weak-type estimate of Theorem 2.3. We will
restrict ourselves to the case in which the dimension of the Hilbert space H
is finite (this will be sufficient for our purposes), but the reasoning can be
easily extended to the infinite-dimensional setting, by the use of standard
approximation arguments (see e.g. Wang [W]). So, assume that H = Rd for
some positive integer d. Let λ > 0 be given and fixed, and suppose that
there is a real-valued function Uλ, defined on the strip S = {(x, y) ∈ H×H :

|x| ≤ 1}, which satisfies the following four properties (here and below, Ao and
A stand for the interior and the closure of the set A, respectively):

1◦ Uλ is of class C2 on So.
2◦ For all (x, y) ∈ S we have the majorization

(2.5) Uλ(x, y) ≥ 1{|y|≥λ} − P (λ)|x|.
3◦ There is a Borel function c : So → [0,∞) with the following property:

for any (x, y) ∈ So and any h, k ∈ H such that |x+ h| ≤ 1, we have

(2.6) 〈Uλxx(x, y)h, h〉+ 2〈Uλxy(x, y)h, k〉+ 〈Uλyy(x, y)k, k〉
≤ c(x, y)(|k|2 − 〈h, k〉).
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4◦ For any (x, y) ∈ S with |y|2 ≤ 〈x, y〉 we have Uλ(x, y) ≤ 0.

Then (2.4) follows. To see this, it is convenient to split the reasoning into a
few parts.

Step 1. A stopping time argument. It suffices to prove the following
weaker form of (2.4): for all X,Y as in the statement and any t ≥ 0,

(2.7) P(|Yt| > λ) ≤ P (λ)‖X‖1.
Indeed, suppose that we have established (2.7). Fix ε ∈ (0, λ/2) and consider
the stopping time τ = inf{t : |Yt| ≥ λ− ε}. Since
{Y ∗ ≥ λ} ⊆ {|Yt| ≥ λ− ε for some t} = {|Yτ∧t| ≥ λ− ε for some t}

and the events {|Yτ∧t| ≥ λ− ε} are monotone with respect to t, we conclude
that

P(Y ∗ ≥ λ) ≤ lim
t→∞

P(|Yτ∧t| ≥ λ− ε).

However, if we apply (2.7) to λ−2ε and to the stopped martingales (Xτ∧t)t≥0,
(Yτ∧t)t≥0 (for which (2.1) is still satisfied), we obtain

P(|Yτ∧t| ≥ λ− ε) ≤ P(|Yτ∧t| > λ− 2ε) ≤ P (λ− 2ε)‖X‖1.
Consequently,

P(Y ∗ ≥ λ) ≤ P (λ− 2ε)‖X‖1,
and letting ε→ 0 yields the claim, since the function P is continuous.

Step 2. An application of Itô’s formula. Take martingales X,Y as in the
statement and let Zt = (Xt, Yt) for t ≥ 0. An application of Itô’s formula to
the process (Uλ(Zt))t≥0 yields

(2.8) Uλ(Zt) = Uλ(Z0) + I1 + I2/2 + I3,

where

I1 =

t�

0+

Uλx(Zs−) dXs +

t�

0+

Uλy(Zs−) dYs,

I2 =

t�

0+

Uλxx(Zs−) d[X,X]cs + 2

t�

0+

Uλxy(Zs−) d[X,Y ]cs+

t�

0+

Uλyy(Zs−) d[Y, Y ]cs,

I3 =
∑

0<s≤t
[Uλ(Zs)− Uλ(Zs−)− 〈Uλx(Zs−), ∆Xs〉 − 〈Uλy(Zs−), ∆Ys〉].

Now let us analyze each of the terms I1–I3 separately. We have EI1 = 0, by
the properties of stochastic integrals. To deal with I2, let 0 ≤ s0 < s1 ≤ t.
For any j ≥ 0, let (ηji )1≤i≤ij be a sequence of nondecreasing finite stopping
times with ηj0 = s0, η

j
ij

= s1 such that limj→∞max1≤i≤ij−1 |ηji+1 − η
j
i | = 0.

Keeping j fixed, we apply, for each i = 0, 1, . . . , ij , the inequality (2.6) to
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x = Xs0−, y = Ys0− and h = hji = X
ηji+1
− X

ηji
, k = kji = Y

ηji+1
− Y

ηji
.

Summing the resulting ij + 1 inequalities and letting j →∞ yields

d∑
m=1

d∑
n=1

[
Uxmxn(Zs0−)[Xm, Xn]s1s0

+ 2Uxmyn(Zs0−)[Xm, Y n]s1s0 + Uymyn(Zs0−)[Y m, Y n]s1s0
]

≤ c(Zs0−)([Y, Y ]s1s0 − [X,Y ]s1s0),

where we have used the notation [S, T ]s1s0 = [S, T ]s1 − [S, T ]s0 and Xm, Y n

denote the mth and nth coordinates of X and Y , respectively. By (2.1)
and the condition c ≥ 0, the double sum above is nonpositive; hence, if
we approximate I2 by discrete sums, we obtain I2 ≤ 0. Finally, I3 is also
nonpositive. To see this, apply the mean-value property: for any ω ∈ Ω we
write

Uλ(Zs(ω))−Uλ(Zs−(ω))−〈Uλx(Zs−(ω)), ∆Xs(ω)〉−〈Uλy(Zs−(ω)), ∆Ys(ω)〉

=
1

2

[
〈Uλxx(ξ)∆Xs(ω), ∆Xs(ω)〉+ 2〈Uλxy(ξ)∆Xs(ω), ∆Ys(ω)〉

+ 〈Uλyy(ξ)∆Ys(ω), ∆Ys(ω)〉
]
,

where ξ is a certain point in S. Using (2.6), this can be bounded from above
by c(ξ)[|∆Ys(ω)|2 − 〈∆Xs(ω), ∆Ys(ω)〉]. However, we have

|∆Ys(ω)|2 ≤ 〈∆Xs(ω), ∆Ys(ω)〉,
since otherwise the condition (2.1) would not be satisfied, and the inequality
I3 ≤ 0 follows.

Step 3. The final part. Combining all the above facts and taking ex-
pectation of both sides of (2.8) gives EUλ(Zt) ≤ EUλ(Z0). Using (2.5), this
estimate implies

P(|Yt| ≥ λ) ≤ P (λ)E|Xt|+ EUλ(Z0) ≤ P (λ)‖X‖1 + EUλ(Z0).

It remains to use condition 4◦: by (2.1), we have Uλ(Z0) ≤ 0.

As we will see, the method can be modified to the case when Uλ satisfies
slightly less restrictive conditions (see below).

2.3. Proof of (2.4). We consider the cases 0 < λ ≤ 1, 1 < λ ≤ 3/2 and
λ > 3/2 separately.

Case 0 < λ ≤ 1. This follows immediately from (2.2); in fact, for these
λ’s the inequality (2.4) is valid without the assumption ‖X‖∞ ≤ 1.

Case 1 < λ ≤ 3/2. Let Uλ : S → R be given by

Uλ(x, y) =
4

(2λ− 1)2
(|y|2 − 〈y, x〉).
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Then 1◦ is obvious, since Uλ is of class C∞ in the interior of S. To check 2◦,
note that for |y| < λ,

Uλ(x, y) ≥ − 1

(2λ− 1)2
|x|2 ≥ −P (λ)|x| = 1{|y|≥λ} − P (λ)|x|

(in the second passage we have used |x| ≤ 1). For |y| ≥ λ, we have

Uλ(x, y) ≥ 4(λ2 − λ|x|)
(2λ− 1)2

=
(4λ− 1)(1− |x|)

(2λ− 1)2
+ 1− P (λ)|x|

≥ 1{|y|≥1} − P (λ)|x|.
Condition 3◦ is obvious: we have

〈Uλxx(x, y)h, h〉+ 2〈Uλxy(x, y)h, k〉+ 〈Uλyy(x, y)k, k〉 =
8(|k|2 − 〈h, k〉)

(2λ− 1)2
,

so we can take c(x, y) = 8(2λ− 1)−2. Finally, 4◦ is trivial. Therefore, using
the above machinery, we deduce that (2.4) holds true.

Case λ > 3/2. This is the most difficult part, and the special function
will be much more complicated. Introduce the following subsets of the strip S:

D1 = {(x, y) ∈ S : |x|+ |2y − x| ≤ 1},
D2 = {(x, y) ∈ S : 1 < |x|+ |2y − x| ≤ 2λ− 2},
D3 = {(x, y) ∈ S : |x|+ |2y − x| > 2λ− 2}

and let Uλ : S → R be given by

Uλ(x, y) =


e3−2λ(|y|2 − 〈x, y〉) if (x, y) ∈ D1,
(1− |x|)e|x|+|2y−x|−2λ+2/2− e3−2λ/4 if (x, y) ∈ D2,
[(|2y − x| − 2λ+ 3)2 − |x|2 + 1− e3−2λ]/4 if (x, y) ∈ D3.

The above function does not have the necessary smoothness, but this will
be overcome with the use of a straightforward mollification. However, let us
first verify that Uλ satisfies (2.5), condition 3◦ on the large part of S, and
condition 4◦.

Let us deal with the majorization (2.5). If (x, y) ∈ D1, then

Uλ(x, y) ≥ −1

4
e3−2λ|x|2 ≥ −1

4
e3−2λ|x| = 1{|y|≥λ} − P (λ)|x|,

where in the second passage we have used the bound |x| ≤ 1. If (x, y) ∈ D2,
then

|y| ≤ 1

2
(|x|+ |2y − x|) ≤ λ− 1,

so (2.5) holds trivially. If (x, y) ∈ D3 and |y| < λ, we derive that

Uλ(x, y) ≥ 1

4
(−|x|2 + 1− e3−2λ) =

1

4
(1− |x|)(|x|+ 1− e3−2λ)− P (λ)|x|

≥ 1{|y|≥λ} − P (λ)|x|.
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Finally, if (x, y) ∈ D3 and |y| ≥ λ, then |2y − x| ≥ 2λ− 1 and

Uλ(x, y) ≥ 1

4
(4−|x|2 +1−e3−2λ) = 1+

1

4
(1−|x|)(|x|+1−e3−2λ)−P (λ)|x|

≥ 1{|y|≥λ}−P (λ)|x|.
The next step is to verify the condition (2.6), under the additional as-

sumption that (x, y) ∈ Do
1 ∪ Do

2 ∪ Do
3 and that |x|, |2y − x| are nonzero.

If (x, y) ∈ Do
1, then the left-hand side of (2.6) equals 2e3−2λ(|k|2 − 〈h, k〉),

so one can take c(x, y) = 2e3−2λ. Suppose that (x, y) belongs to the inte-
rior of D2. The left-hand side of (2.6) is equal to the second derivative of
t 7→ Uλ(x+ th, y + tk) at 0. For x 6= 0, we have

d

dt
|x+ th|

∣∣∣∣
t=0

= 〈x′, h〉 and
d2

dt2
|x+ th|

∣∣∣∣
t=0

=
|x|2|h|2 − 〈x, h〉2

|x|3

(where x′ = x/|x|). Therefore, the left-hand side of (2.6) equals
1

2
e|x|+|2y−x|−2λ+2(A+B + C),

where

A = −|x|[〈x′, h〉+ 〈(2y − x)′, 2k − h〉]2,
B = 4(|k|2 − 〈k, h〉),
C = −[|2k − h|2 − 〈(2y − x)′, 2k − h〉2](|x|+ |2y − x| − 1)/|2y − x|.

Since A and C are nonpositive, we may take c(x, y) = 2e|x|+|2y−x|−2λ+2.
Finally, suppose that (x, y) lies in Do

3 and write the identity

(|2y − x| − 2λ+ 3)2 = |2y − x|2 + (2λ− 3)2 + 2(−2λ+ 3)|2y − x|.
The function (x, y) 7→ 2(−2λ+ 3)|2y− x| is concave, so if we omit this term
while computing the left-hand side of (2.6), we obtain

〈Uλxx(x, y)h, h〉+ 2〈Uλxy(x, y)h, k〉+ 〈Uλyy(x, y)k, k〉 ≤ 2(|k|2 − 〈h, k〉).
Consequently, c(x, y) = 2 works fine; note that the function c which we

have just introduced is bounded.
Finally, we check 4◦. If (x, y) ∈ D1, then the condition is obvious. Suppose

that (x, y) ∈ D2. The inequality |y|2 ≤ 〈x, y〉 is equivalent to |2y − x| ≤ |x|,
so we have

Uλ(x, y) ≤ 1

2
(1− |x|)e2|x|−2λ+2 − 1

4
e3−2λ ≤ 0,

because of the elementary bound (1 − t)e2t ≤ e/2. If (x, y) ∈ D3, then, by
the definition of D3, |2y − x| > 2λ − 2 − |x| ≥ 2λ − 3; on the other hand,
|2y − x| ≤ |x| (which follows from |y|2 ≤ 〈x, y〉), so

Uλ(x, y)+
1

4
e3−2λ≤ 1

4
[(|x|−2λ+3)2−|x|2+1] =

1

4
[(2λ−3)2+1−2(2λ−3)|x|].
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Using again the definition of D3 and the inequality |2y − x| ≤ |x|, we see
that |x| > λ− 1, which implies

Uλ(x, y) +
1

4
e3−2λ <

1

4
[(2λ− 3)2 + 1− 2(2λ− 3)(λ− 1)] =

1

4
[1 + (3− 2λ)].

The latter expression does not exceed e3−2λ/4. This completes the proof
of 4◦.

Now we carry out the mollification argument. Consider a C∞ function
g : H × H → [0,∞), supported on the unit ball of H × H and satisfying	
H×H g = 1. For a given δ ∈ (0, 1/4), let U (δ)

λ be defined on (1 − δ)S =
{(x, y) : |x| ≤ 1− δ} by the convolution

U
(δ)
λ (x, y) =

�

[−1,1]d×[−1,1]d

Uλ(x+ δu, y + δv)g(u, v) du dv.

Of course, U (δ)
λ is of class C∞ in the interior of its domain. This function

inherits the crucial properties from Uλ. Namely, we have the following version
of (2.5):

(2.9) U
(δ)
λ (x, y) ≥ 1{|y|≥λ+δ} − P (λ)(|x|+ δ)

for all (x, y) ∈ (1 − δ)S. Next, note that the function Uλ is of class C1 on
the set So \ {x = 0 or 2y − x = 0}; therefore, integrating by parts implies

U
(δ)
λxx(x, y) =

�

[−1,1]d×[−1,1]d

Uλxx(x+ δu, y + δv)g(u, v) du dv,

on the set W = {(x, y) ∈ (1 − δ)S : |x| ≥ δ and |2y − x| ≥ 3δ}. Similar
identities hold for U (δ)

λxy and U
(δ)
λyy, so (2.6) holds true, for all (x, y) ∈ W ,

with

c(δ)(x, y) =
�

[−1,1]d×[−1,1]d

c(x+ δu, y + δv)g(u, v) du dv ≥ 0

(recall that c constructed above was bounded, so there is no problem with
the integration). To apply the methodology described in §2.2, we need to
ensure that the martingale pair takes values in W . To this end, we add one
dimension and replace H by H×R. Consider a new pair Z(δ) of H×R-valued
martingales X(δ) = ((1−4δ)X, 3δ) and Y (δ) = ((1−4δ)Y, 0). Then Z(δ) ∈W
almost surely, so we are permitted to repeat the arguments of §2.2 to U (δ)

λ

and Z(δ). As the result, we obtain EU (δ)
λ (Z

(δ)
t ) ≤ EU (δ)

λ (Z
(δ)
0 ), and combining

this with (2.9), we arrive at

P(|Y (δ)
t | ≥ λ+ δ) ≤ P (λ)(‖X(δ)‖1 + δ) + EU (δ)

λ (Z
(δ)
0 ).

Letting δ → 0 we obtain (2.7), which immediately leads us to the desired
bound.



114 A. OSĘKOWSKI

2.4. Sharpness of (2.4). Suppose that B is a standard one-dimensional
Brownian motion. We will prove that for any λ there is a nonzero stopping
time τ and a predictable process H taking values in [0, 1] such that if X =
(Bτ∧t)t≥0 and Y = H ·X, then ‖X‖∞ ≤ 1 and both sides of (2.4) are either
equal, or as close as we wish. As previously, we consider the cases λ ≤ 1,
1 < λ ≤ 3/2 and λ > 3/2 separately.

Case 0 < λ ≤ 1. Here the example is straightforward: we take τ =
inf{t : |Bt| = λ} and H ≡ 1. Then Y = X,

1 = P(Y ∗ ≥ λ) = ‖X‖1/λ.

Case 1 < λ ≤ 3/2. The idea is to first construct an appropriate Markov
process taking values in [−1, 1] × [−λ, λ] and then embed it into (X,Y )
as above. Distinguish the following eleven points from R2: A0 =

(
1
2 ,

1
2

)
,

A1 =
(
1, 1

2

)
, A2 =

(
3
2 −λ,

1
2

)
, A3 = (1, λ), A4 =

(
1
2 −λ,−

1
2

)
and A5 = −A1,

A6 = −A2, A7 = −A3, A8 = −A4, A9 = A1, A10 = A2. Consider the Markov
martingale (f, g) uniquely determined by the following conditions:

(i) We have (f0, g0) ≡ A0.
(ii) For any 0 ≤ k ≤ 4, the state A2k leads to A2k+1 or to A2k+2.
(iii) The states A1, A3, A5 and A7 are absorbing.

Let us gather some relevant information about the behavior of the pair (f, g).
For any 0 ≤ k ≤ 4, the line segments A2kA2k+1 and A2kA2k+2 are of slope
0 or 1; therefore, we may embed the pair (f, g) into the martingale (X,Y ),
where X is a one-dimensional Brownian motion started at 1/2 and stopped
at τ , its exit time from [−1, 1], and Y = H · X for a certain predictable
process H taking values in {0, 1}. To be more precise, note that there is a
nondecreasing sequence (τn)n≥0, adapted to the filtration generated by X,
such that (Xτk)k≥0 and f have the same distribution. Next, put H0 ≡ 1
and

Ht =

{
0 if τ2k < t ≤ τ2k+1,
1 if τ2k+1 < t ≤ τ2k+2,

whenever t < τ , and Ht = 0 for t ≥ τ . This implies Yτ2k+1
− Yτ2k = 0 and

Yτ2k+2
− Yτ2k+1

= Xτ2k+2
−Xτ2k+1

= f2k+2 − f2k+1, so the pair (Xτk , Yτk)k≥0

has the same distribution as (f, g). Now, observe that the terminal value
(Xτ , Yτ ) takes values in the set {A1, A3, A5, A7}, and hence 2Yτ − Xτ ∈
{0,±(2λ − 1)}. Furthermore, Yτ ∈ {λ,−λ} if and only if 2Y − X ∈
{2λ− 1,−2λ+ 1}. Therefore,

P(Y ∗ ≥ λ) = P(|Yτ | = λ) = P(|2Yτ −Xτ | = 2λ− 1) =
E|2Yτ −Xτ |2

(2λ− 1)2
.
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However, the martingales X,Y are bounded, so

E|2Yτ −Xτ |2 = E[2Yτ −Xτ , 2Yτ −Xτ ]

= E
τ�

0

|2Hs − 1|2 ds = Eτ = E|Xτ |2 = 1,

where in the third passage we have used the equality |2Hs− 1| ≡ 1 for all s.
This implies that P (λ) is indeed the best in the range 1 < λ ≤ 3/2.

Case λ > 3/2. Here the reasoning is similar: first we construct an ap-
propriate discrete-time Markov process. Fix a large positive integer N and
let δ = (λ − 3/2)/N . Consider the Markov martingale (f, g) given by the
following:

(i) We have (f0, g0) ≡ (1/2, 1/2).
(ii) Any state of the form (x, y) with x ∈ (0, 1) and y > 0 leads to (0, y)

or to (1, y).
(iii) Any state of the form (0, y), where 0 < y < λ− 1, leads to (δ, y+ δ)

or to (−1, y − 1).
(iv) The state (0, λ− 1) leads to (−1, λ− 2) or to (1, λ).
(v) All the states lying on the lines x = ±1 are absorbing.

Arguing as previously, we may embed (f, g) into a pair (X,Y ) such that X is
a Brownian motion starting from 1/2 and Y is an Itô integral, with respect
to X, of a certain predictable process with values in {0, 1}. Directly from
the transition probabilities above, we have
P(Y ∗≥ λ) = P(g∗≥ λ) = P((f0, f1, . . . , f2N+2) = (1/2, 0, δ, 0, δ, 0, . . . , δ, 0, 1))

=
1

4

(
1− δ
1 + δ

)N
.

Recall that δ = (λ− 3/2)/N ; thus, if N is sufficiently large, the above prob-
ability can be made arbitrarily close to e3−2λ/4. This proves the desired
sharpness of the bound (1.5).

2.5. Proof of Theorem 2.2. Finally, we show how to deduce the expo-
nential inequality (2.3) from (2.4) and study the behavior of CK as K → 1/2
and K →∞. For X,Y as in the statement and any t ≥ 0, we have

EΦ
(
|Yt|
K

)
≤ EΦ

(
Y ∗

K

)
=

1

K

∞�

0

Φ′
(
λ

K

)
P(Y ∗ ≥ λ) dλ

≤ ‖X‖1
K

[ 1�

0

eλ/K − 1

λ
dλ+

3/2�

1

eλ/K − 1

(2λ− 1)2
dλ+

∞�

3/2

(eλ/K − 1)e3−2λ

4
dλ

]
=

1

K2
AK‖X‖1 +

1

8K(K − 1/2)
BK‖X‖1,
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where the constants AK , BK are given by

AK =

1�

0

eλ/K − 1

λ/K
dλ+

3/2�

1

eλ/K − 1

(2λ− 1)2/K
dλ,

BK = Ke3/(2K) −K + 1/2.

It suffices to note that AK , BK are decreasing functions ofK; sinceK > 1/2,
this implies

AK ≤
1�

0

e2λ − 1

2λ
dλ+

3/2�

1

e2λ − 1

2(2λ− 1)2
dλ, BK ≤ e3/2,

and (2.3) follows.
We turn to the lower bounds for the best constant in (2.3). Fix K ∈

(1/2,∞). We will use a Markov martingale similar to that used in the case
λ > 3/2 above. Fix δ ∈ (0, 1) and consider the pair (f, g) satisfying the
following conditions:

(i) We have (f0, g0) ≡ (1/2, 1/2).
(ii) Any state of the form (x, y) with x ∈ (0, 1) and y > 0 leads to (0, y)

or to (1, y).
(iii) Any state of the form (0, y) with y > 0 leads to (δ, y + δ) or to

(−1, y − 1).
(iv) All the states lying on the lines x = ±1 are absorbing.

Next, embed it in the pair (Xt, Yt)t≤τ as above. For any positive integer n,
the event

{f = (1/2, 0, δ, 0, . . . , δ, 1, 1, 1, 1, . . .)},
where the first 1 occurs at the 2n+ 1-st coordinate, has probability

1

2

(
1− δ
1 + δ

)n−1 δ

1 + δ

and is contained in {|Yτ | = nδ + 1/2}. Consequently,

sup
t≥0

EΦ(|Yt|/K) = EΦ(|Yτ |/K) ≥ δ

2(1 + δ)

∞∑
n=1

Φ

(
nδ

K

)(
1− δ
1 + δ

)n−1

.

However, if δ is sufficiently small, the latter sum can be made arbitrarily
close to

1

2

∞�

0

Φ

(
s

K

)
e−2s ds =

1

16K(K − 1/2)
.

This immediately yields the assertions concerning the order of CK for
K → 1/2 and K →∞. Because of the explosion of the constant at K = 1/2,
(2.3) does not hold with any finite CK when K ≤ 1/2.
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3. Proof of (1.5). This section is divided into two parts. The first
of them describes the martingale representation of Fourier multipliers with
symbols as in (1.1); the material is essentially taken from [BB] and [BBB],
and we have decided to include it here for the sake of completeness. The
second subsection contains the proof of (1.5).

3.1. The martingale representation of the Fourier multipliers
(1.1). By the results from [BBB], we may assume that the Lévy measure ν
satisfies the symmetry condition ν(B) = ν(−B) for all Borel subsets B of Rd
(more precisely, for any ν there is a symmetric ν̄ which leads to the
same multiplier). Assume in addition that |ν| = ν(Rd) is finite and
nonzero, and define ν̃ = ν/|ν|. Consider the independent random variables
T−1, T−2, . . . , Z−1, Z−2, . . . such that, for each n = −1,−2, . . . , Tn has expo-
nential distribution with parameter |ν| and Zn takes values in Rd and has
distribution ν̃. Next, put Sn = −(T−1 + T−2 + · · ·+ Tn) for n = −1,−2, . . .
and let

Xs,t =
∑

s<Sj≤t
Zj , Xs,t− =

∑
s<Sj<t

Zj , ∆Xs,t = Xs,t −Xs,t−

for −∞ < s ≤ t ≤ 0. For a given f ∈ L∞(Rd), define its parabolic extension
Uf to (−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).

Next, fix x ∈ Rd, s < 0 and let f, φ ∈ L∞(Rd). We introduce the processes
F = (F x,s,ft )s≤t≤0 and G = (Gx,s,f,φt )s≤t≤0 by

(3.1)
Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[∆Fu · φ(∆Xs,u)]

−
t�

s

�

Rd
[Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)]φ(z) ν(dz) dv.

These processes are martingales adapted to the filtration Ft = σ(Xs,t :
t ∈ [s, 0]) (see [BB], [BBB]). The key fact is the following.

Lemma 3.1. If φ takes values in [0, 1], then the pair (F x,s,f , Gx,s,f,φ)
satisfies (2.1).

Proof. The assertion follows immediately from the identities

[F,G]t =
∑
s<u≤t

|∆Fu|2φ(∆Xs,u)
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and
[G,G]t =

∑
s<u≤t

|∆Fu|2(φ(∆Xs,u))2,

which can be established by repeating the reasoning from [BB].

Now we introduce a family of multipliers. Fix s < 0 and a function φ on
Rd taking values in the unit ball of C, and define the operator T = T s by
the bilinear form

(3.2)
�

Rd
T f(x)g(x) dx =

�

Rd
E[Gx,s,f,φ0 g(x+Xs,0)] dx,

where f, g ∈ C∞0 (Rd). We have the following fact, proved in [BB].

Lemma 3.2. Let 1 < p <∞ and d ≥ 2. The operator T s is well-defined
and extends to a bounded operator on Lp(Rd) which can be expressed as a
Fourier multiplier with symbol

M(ξ) = Ms(ξ)

=
[
1− exp

(
2s

�

Rd
(1− cos〈ξ, z〉) ν(dz)

)]	
Rd(1− cos〈ξ, z〉)φ(z) ν(dz)	

Rd(1− cos〈ξ, z〉) ν(dz)

if
	
Rd(1 − cos〈ξ, z〉) ν(dz) 6= 0, and M(ξ) = 0 otherwise. Furthermore,

(3.2) holds true for all f ∈ C∞0 (Rd) and all g belonging to Lq(Rd) for some
1 < q <∞.

3.2. Proof of (1.5). We start by proving the dual version of (1.5).

Theorem 3.3. Assume that K > 1/2 and let m : Rd → C be a multiplier
as in Theorem 1.3. Then for any function f ∈ L1(Rd) taking values in the
unit ball of C we have

(3.3) ‖Φ(|Tmf |/K)‖L1(Rd) ≤
CK
K
‖f‖L1(Rd).

Proof. We divide the proof into two parts.

Step 1. First we show the estimate for the multipliers of the form

(3.4) Mφ,ν(ξ) =

	
Rd(1− cos〈ξ, z〉)φ(z) ν(dz)	

Rd(1− cos〈ξ, z〉) ν(dz)
.

In addition, we assume that 0 < ν(Rd) < ∞, so that the above approach
using Lévy processes is applicable. Fix s < 0 and functions f, g ∈ C∞0 (Rd)
such that f is bounded by 1; then the martingale F x,s,f also takes values
in the unit ball of C. By Young’s inequality, Fubini’s theorem, Lemma 3.1
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and (2.3), we have

(3.5)
∣∣∣∣ �
Rd

E
[
Gx,s,f,φ0

K
g(x+Xs,0)

]
dx

∣∣∣∣
≤

�

Rd
EΦ
(
|Gx,s,f,φ0 |

K

)
dx+

�

Rd
EΨ(|g(x+Xs,0)|) dx

≤ CK
K

�

Rd
E|F x,s,f0 | dx+

�

Rd
Ψ(|g(x)|) dx

=
CK
K

�

Rd
|f(x)| dx+

�

Rd
Ψ(|g(x)|) dx.

Plugging this into the definition of T s (see (3.2)), we obtain
�

Rd

[
T sf(x)

K
g(x)− Ψ(|g(x)|)

]
dx ≤ CK

K
‖f‖L1(Rd).

Now fix M > 0 and put

g(x) =
T sf(x)

|T sf(x)|

[
exp

(
min

{
|T sf(x)|

K
,M

})
− 1

]
(if T sf(x) = 0, set g(x) = 0). We have |g| ≤ c|T sf | for some constant
c depending on M and K; furthermore, T sf ∈ L2(Rd), directly from the
formula for the symbol of the multiplier (and the fact that f ∈ L2(Rd)).
Consequently, plugging g into the preceding inequality gives
�

Rd
Φ

(∣∣∣∣T sf(x)

K

∣∣∣∣)1{|T sf(x)|≤MK}

+

(
|T sf(x)|(eM − 1)

K
− Ψ(eM − 1)

)
1{|T sf(x)|>MK} dx ≤

CK
K
‖f‖L1(Rd)

and hence, by Fatou’s lemma, if we let M →∞, we get
�

Rd
Φ

(∣∣∣∣T sf(x)

K

∣∣∣∣) dx ≤ CK
K
‖f‖L1(Rd).

If we now let s→ −∞, then Ms converges pointwise to the multiplier Mφ,ν

given by (3.4). By Plancherel’s theorem, T sf → TMφ,ν
f in L2 and hence

there is a sequence (sn)∞n=1 converging to −∞ such that limn→∞ T snf →
TMφ,ν

f almost everywhere. Thus Fatou’s lemma yields the desired bound for
the multiplier TMφ,ν

.

Step 2. Now we deduce the result for the general multipliers as in (1.1)
and drop the assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy
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measure νε in polar coordinates (r, θ) ∈ (0,∞)× S by

νε(dr dθ) = ε−2 δε(dr)µ(dθ),

where δε denotes Dirac measure on {ε}. Next, consider a multiplier mε as
in (3.4), in which the Lévy measure is 1{|x|>ε}ν+νε and the jump modulator
is given by 1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). This yields the claim by applying
the previous step to νε and letting ε→ 0. Indeed, we have

�

Rd
[1− cos〈ξ, x〉]ψ(x/|x|) νε(dx) =

�

S

ψ(θ)
1− cos〈ξ, εθ〉

ε2
µ(dθ)

ε→0−−−→ 1

2

�

S

〈ξ, θ〉2ψ(θ)µ(dθ),

so, as above, it suffices to use Plancherel’s theorem and pass to a subsequence
which converges almost everywhere.

Proof of (1.5). Let us skip the lower indices and write m instead of
mφ,ψ,µ,ν . Fix f ∈ L2(Rd) and put g = Tmf1A/|Tmf | (g = 0 if the denomi-
nator is zero). We have

�

A

|Tmf(x)| dx =
�

Rd
Tmf(x)g(x) dx =

�

Rd
T̂mf(x)ĝ(x) dx(3.6)

=
�

Rd
f̂(x)T̂m̄g(x) dx =

�

Rd
f(x)Tm̄g(x) dx

≤ K
�

Rd
Ψ(|f(x)|) dx+K

�

Rd
Φ(|Tm̄g(x)|/K) dx

≤ K
�

Rd
Ψ(|f(x)|) dx+ CK‖g‖L1(Rd).

Here in the third line we have exploited Young’s inequality and in the last
passage we have used (3.3) and the fact that g takes values in the unit
ball of C. It suffices to note that ‖g‖L1(Rd) ≤ |A| to complete the proof
for square-integrable f . For general functions from the class LlogL we use a
straightforward approximation: there is a sequence (fn)n≥1 ⊂ L2(Rd) such
that

	
Rd Ψ(|fn|)

n→∞−−−→
	
Rd Ψ(|f |) and Tmfn

n→∞−−−→ Tmf almost everywhere.

Let us present some examples, following the exposition in [BBB]. Let
µ ≡ 0 and let ν be the Lévy measure of a nonzero symmetric α-stable Lévy
process in Rd, α ∈ (0, 2). In polar coordinates we have (see e.g. [S]),

ν(drdθ) = r−1−αdrσ(dθ), r > 0, θ ∈ S,

where the so-called spectral measure σ is finite and nonzero on S. Pick a
function φ : Rd → [0, 1] bounded by 1 and homogeneous of order 0, that is,
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φ(x) = φ(x/|x|) for x 6= 0. Let cα =
	∞
0 [1− cos s]s−1−α ds. We have

�

Rd
[1− cos〈ξ, x〉]φ(x) ν(dx) =

�

S

∞�

0

[1− cos〈ξ, rθ〉]φ(rθ)r−1−α dr σ(dθ)

= cα
�

S

|〈ξ, θ〉|αφ(θ)σ(dθ)

and thus Theorem 1.3 shows that the multiplier with symbol

(3.7) Mα(ξ) =

	
S |〈ξ, θ〉|

αφ(θ)σ(dθ)	
S |〈ξ, θ〉|α σ(dθ)

satisfies (1.5). In particular, if we take σ to be the probability measure sat-
isfying

σ({(1, 0, 0, . . . , 0)}) = σ({(0, 1, 0, . . . , 0)}) = · · · = σ({(0, 0, . . . , 0, 1)}) =
1

d
,

and φ is the indicator function of the jth axis, we obtain Marcinkiewicz-type
multipliers (see Stein [St, p. 110])

Mα,j(ξ) =
|ξj |α

|ξ1|α + · · ·+ |ξd|α
.

If we let α ↑ 2, we obtain the second-order Riesz transforms R2
j .

To give another example, suppose that d is even: d = 2n, and let σ be
the uniform measure on

{x ∈ S : x2
1 + · · ·+ x2

n = 1 or x2
n+1 + · · ·+ x2

2n = 1}.

If φ is the indicator function of {x ∈ S : x2
1 + · · · + x2

n = 1}, then (3.7)
becomes

(3.8) M(ξ) =
|ξ2

1 · · ·+ ξ2
n|α/2

|ξ2
1 + · · ·+ ξ2

n|α/2 + |ξ2
n+1 + · · ·+ ξ2

2n|α/2
.

Finally, we mention an example which is induced by the class of so-called
tempered stable Lévy processes [R]. As previously, take µ ≡ 0 and define the
Lévy measure ν in polar coordinates by

ν(dr dθ) = r−1e−r dr σ(dθ), r > 0, θ ∈ S,

where σ is as above. This choice leads to the multiplier

M(ξ) =

	
S log[1 + 〈ξ, θ〉2]φ(θ)σ(dθ)	

S log[1 + 〈ξ, θ〉2]σ(dθ)
,

which, in virtue of Theorem 1.3, satisfies (1.5). (We would like to point out
the misprint in the formula for M(ξ) in [BBB]. The authors of that paper
will likely appreciate a corrected version of the formula.) In particular, by
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choosing φ, σ as above, we get the logarithmic estimate for the multipliers

Mj(ξ) =
log(1 + ξ2

j )

log(1 + ξ2
1) + · · ·+ log(1 + ξ2

d)
,

for j = 1, . . . , d.
In the remainder of this section we discuss the possibility of extending

the assertion of Theorems 1.3 and 3.3 to vector-valued multipliers. Note that
for any bounded function m = (m1, . . . ,mn) : Rd → Cn, we may define the
associated Fourier multiplier acting on complex-valued functions on Rd by
the formula Tmf = (Tm1f, . . . , Tmnf). The reasoning presented above can
be easily modified to yield the following statement.

Theorem 3.4. Let ν, µ be two measures on Rd and S, respectively, sat-
isfying the assumptions of Theorem 1.3. Assume further that φ, ψ are two
Borel functions on Rd taking values in the cube [0, 1]n and let m : Rd → Rn
be the associated symbol given by (1.1). Let K > 1/2 be a fixed number.

(i) For any integrable function f on Rd, taking values in the unit ball
of C,

�

Rd
Φ

(∣∣∣∣Tmf(x)

K

∣∣∣∣) dx ≤ CK
K
‖f‖L1(Rd).

(ii) For any f ∈ LlogL(Rd) and any Borel subset A of Rd,
�

A

|Tmf(x)| dx ≤ K
�

Rd
Ψ(|f(x)|) dx+ CK |A|.

The proof is word-by-word repetition of the argument from [O3] and is
omitted.

4. On the lower bound for the constant in (1.5)

4.1. The case d = 2. We start with the two-dimensional setting, in
which a very convenient tool, the Beurling–Ahlfors transform, is available.
Recall that this operator is a Fourier multiplier with the symbol m(ξ) = ξ/ξ,
ξ ∈ C; alternatively, it can be defined by the singular integral

BAf(z) = − 1

π
p.v.

�

C

f(w)

(z − w)2
dw

(here and below, we identify R2 with the complex plane C). The fundamental
property of this object is that it transforms the complex derivative ∂ to ∂.
Precisely, for any f from the Sobolev space W 1,2(C,C) we have

(4.1) BA(∂f) = ∂f,
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where, as usual,

∂f =
1

2

(
∂f

∂x
− i∂f

∂y

)
, ∂f =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Directly from the form of the symbol, we infer that BA = (R2
1 − R2

2)
+ 2iR1R2, where R1, R2 are planar Riesz transforms, and hence R2

1f =
(−f + (ReBA)f)/2, if we restrict ourselves to the real-valued functions f
(here we have used the identity −Id= R2

1 +R2
2, which follows directly from

the passage to Fourier transforms).
We are ready to establish the second part of Theorem 1.3. Consider the

following example. For a fixed α ∈ (0, 1/2), let R > 0 be given by the
equation R2α = 1− α and define w : C→ C by

w(z) =

{
z|z|−2α − z if |z| ≤ R,
R2−2αz−1 −R2z−1 if |z| > R.

We easily check that w ∈W 1,2(C,C) and derive that

∂w(z) =

{
αz2|z|−2α−2 if |z| < R,
−R2−2αz−2 +R2z−2 if |z| > R′,

∂w(z) =

{
(1− α)|z|−2α − 1 if |z| < R,
0 if |z| > R.

Finally, put A = {z ∈ C : |z| ≤ R} and f = ∂̄w. We have
�

C

Ψ(|f(z)|) dz = πR2−2α

[
log(1−α)+

2α−1

1− α
−2α logR

]
+πR2 =

α2|A|
(1−α)2

and
�

A

|R2
1f(z)| dz =

1

2

�

A

|−f(z) + (ReBA)f(z)| dz

=
1

2

�

A

|−(1− α)|z|−2α + 1 + α|z|−2α−2Re z̄2| dz

≥ 1

2

�

A

(1− α− αRe(z̄2/|z|2))|z|−2α dz − |A|
2
,

where in the last line we have used the triangle inequality and the bound
α < 1/2. Passing to polar coordinates and applying the identity R2α = 1−α,
we verify that

�

A

|R2
1f(z)| dz ≥ π

R�

0

(1− α)r1−2α dr − |A|
2

=
|A|
2
· α

1− α
.

Now substitute α = (4K)−1 and plug the above facts into (1.5). If we divide
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both sides by |A|, we see that the constant CK must satisfy

CK ≥
1

|A|

[ �
A

|R2
1f | −K

�

C

Ψ(|f |)
]

≥ 1

2(4K − 1)
− K

(4K − 1)2
=

2K − 1

2(4K − 1)2
.

This yields the claim in the two-dimensional setting.

4.2. The case d ≥ 3. Suppose that for a fixed K > 1/2 and some
DK > 0 we have

(4.2)
�

A

|R2
1f(x)| dx ≤ K

�

Rd
Ψ(|f(x)|) dx+DK · |A|

for all Borel subsets A of Rd and all Borel functions f : Rd → R. For t > 0,
define the dilation operator δt as follows: for any function g : R2×Rd−2 → R,
let δtg(ξ, ζ) = g(ξ, tζ); for any A ⊂ R2×Rd−2, let δtA = {(ξ, tζ) : (ξ, ζ) ∈ A}.
By (4.2), the operator Tt := δ−1

t ◦R2
1 ◦ δt satisfies�

A

|Ttf(x)| dx = td−2
�

δ−1
t A

|R2
1 ◦ δtf(x)| dx(4.3)

≤ td−2
[
K

�

Rd
Ψ(|δtf(x)|) dx+DK |δ−1

t A|
]

= K
�

Rd
Ψ(|f(x)|) dx+DK |A|.

Now fix f ∈ L2(Rd) satisfying
	
R Ψ(|f |) <∞. It is not difficult to check that

the Fourier transform F satisfies the identity F = td−2δt ◦ F ◦ δt and hence
the operator Tt has the property that

T̂tf(ξ, ζ) = − ξ2
1

|ξ|2 + t2|ζ|2
f̂(ξ, ζ), (ξ, ζ) ∈ R2 × Rd−2.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂tf(ξ, ζ) = T̂0f(ξ, ζ)

in L2(Rd), where T̂0f(ξ, ζ) = −ξ2
1 f̂(ξ, ζ)/|ξ|2. The convergence in L2(Rd)

implies the convergence in L1(A) provided |A| is finite; therefore, (4.3) gives

(4.4)
�

A

|T0f(x)| dx ≤ K
�

Rd
Ψ(|f(x)|) dx+DK |A|

(if |A| =∞ this is of course also true).
Now, recall the function w and the set B = {z ∈ R2 : |z| ≤ R} from

the previous subsection, and define f : R2 × Rd−2 → R by f(ξ, ζ) =
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∂̄w(ξ)1[0,1]d−2(ζ). Denoting by R1 the first planar Riesz transform, we have
T0f(ξ, ζ) = (R2

1∂̄w)(ξ)1[0,1]d−2(ζ), because of the identity

T̂0f(ξ, ζ) = − ξ2
1

|ξ|2
̂̄∂w(ξ) ̂1[0,1]d−2(ζ).

Plug this into (4.4) with the choice A = B × [0, 1]d−2 to obtain�

B

|R2
1∂̄w(ξ)| dξ ≤ K

�

R2

Ψ(|∂̄w(ξ)|) dξ +DK |B|.

As we have computed in the previous subsection, this implies

DK ≥
2K − 1

2(4K − 1)2
.

The proof is complete.
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