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ON METRICS OF CHARACTERISTIC ZERO

BY

WŁADYSŁAW KULPA (Warszawa)

Abstract. We introduce and study the concept of characteristic for metrics. It turns
out that metrizable spaces endowed with an L∗-operator which admit a metric of charac-
teristic zero play an important role in the theory of fixed points. We prove the existence
of such spaces among infinite-dimensional linear topological spaces.

1. Introduction. For a given metric (or pseudometric) space (X, ρ) let
the characteristic of the metric (resp. pseudometric) ρ be defined as follows:

χ(ρ) := inf{ord(P ) · ρ(P ) : P ∈ UX},
where UX is the family of all open point finite coverings of X, ρ(P ) is the
diameter of the covering P , i.e.,

ρ(P ) := sup{diam(A) : A ∈ P},
and ord(P ) means the order of the covering P , i.e.,

ord(P ) := sup{|{A ∈ P : x ∈ A}| : x ∈ X}.
The symbol |C| stands for the cardinality of the set C and we set χ(ρ) =∞
in case ord(P ) or ρ(P ) is infinite. In this paper, we are concerned primarily
with the following general problem.

Problem 1. Let X be a metrizable space. Does there exist a metric
ρ : X ×X → [0,∞) of characteristic zero, χ(ρ) = 0, that is compatible with
the topology of X?

It is well known that any metrizable space X admits a metric ρ that
is compatible with the topology of X and such that diamX ≤ 1. Hence
any metrizable space admits a metric that is compatible with the topology
of the space and of characteristic not greater than 1. Let us notice that
if X has finite covering dimension, dimX < ∞, then χ(ρ) = 0 for each
metric ρ compatible with the topology of X. The Hilbert cube I∞, i.e.,
the Cartesian product of countably many segments [0, 1] with the product
Tikhonov topology is an instance of an infinite-dimensional metrizable space
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that has a metric of characteristic zero and compatible with the topology
of I∞, namely the standard metric

ρ(x, y) :=

∞∑
n=1

|xn − yn|
2n

, x = (x1, x2, . . .), y = (y1, y2, . . .).

A variation of Problem 1 in the setting of linear topological spaces is of
particular interest for us. Let us recall that a subnorm on a linear topological
space E satisfies the following conditions:

‖x‖ = 0 ⇔ x = 0, ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
‖tx‖ ≤ ‖x‖ for each t, |t| ≤ 1.

Problem 2. Let X be a convex compact subset of a metrizable linear
space E. Is there a subnorm ‖·‖ : E → [0,∞) such that the metric ρ(x, y) :=
‖x − y‖ for x, y ∈ X has characteristic zero and is compatible with the
topology of X?

Our motivation and interest in studying metrizable spaces admitting met-
rics of characteristic zero stems from the fact that they play an important
role in the theory of fixed points. To wit, let us recall the concept of an
L∗-operator (introduced in [5]).

For a given non-empty set X, let [X]<ω denote the set of all finite subsets
of X and let exp(X) denote the family non-empty subsets of X. An L∗-
operator on X is any map Λ : [X]<ω → exp(X) that satisfies the following
condition:

(∗) For each open covering {Ua : a ∈ A} of X, where A ∈ [X]<ω, there
exists B ⊂ A such that Λ(B) ∩

⋂
{Ub : b ∈ B} 6= ∅.

The convex hull operator constitutes a basic example of an L∗-operator
on any linear topological space (cf. [5], [4]). More examples can be found in
[4], [5].

An L∗-operator Λ : [X]<ω → exp(X) is said to be uniformly continuous
with respect to a metric ρ if there exists a real c ≥ 1 such that

∀A∈[X]<ω ∀ε>0 ∀x∈X A ⊂ B(x, ε) ⇒ Λ(A) ⊂ B(x, εc).

An L∗-operator Λ : [X]<ω → exp(X) is said to be weakly uniformly contin-
uous with respect to ρ if

∀A∈[X]<ω ∀ε>0 ∀x∈X A ⊂ B(x, ε) ⇒ Λ(A) ⊂ B(x, ε|A|),
where B(x, ε) := {y ∈ X : ρ(x, y) < ε}.

Moreover, define B(A, η) :=
⋃
{B(a, η) : a ∈ A}.

Let us verify that if X ⊂ E is a convex subset of a metric linear space
(E, ρ) with the metric ρ induced by a norm (resp. subnorm) ‖·‖ : E → [0,∞),
ρ(x, y) := ‖x−y‖, then the L∗-operator conv : [X]<ω → exp(X) is uniformly
continuous (resp. weakly uniformly continuous) with respect to ρ.
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Indeed, let A ⊂ B(x, ε), A = {x0, . . . , xn}, z ∈ convA, z =
∑n

i=0 tixi,
where

∑n
i=0 ti = 1, ti ≥ 0. Then

‖z − x‖ =
∥∥∥ n∑
i=0

ti(xi − x)
∥∥∥ ≤ n∑

i=0

‖ti(xi − x)‖.

If ‖ · ‖ is a norm, we get

‖z − x‖ ≤
n∑
i=0

ti‖xi − x‖ < ε

n∑
i=0

ti = ε.

If ‖ · ‖ is only a subnorm,

‖z − x‖ =
n∑
i=0

‖ti(xi − x)‖ ≤
n∑
i=0

‖xi − x‖ < ε · (n+ 1) = ε · |A|.

Theorem 1 (A Brouwer–Schauder type theorem). Let X be a metriz-
able space and Λ an L∗-operator on X. Suppose g : X → Y is a continuous
map into a compact subspace Y of X, and ρ is a metric on X compatible
with the topology. If the L∗-operator Λ is either uniformly continuous with
respect to ρ, or weakly uniformly continuous and χ(ρ) = 0 on Y , then g has
a fixed point.

Proof. Suppose g has no fixed point. Then ε := inf{ρ(x, g(x)) : x∈X}>0.
Choose an open finite covering P of Y , P = {Ux : x ∈ A}, A ⊂ Y , x ∈ Ux,
such that ρ(P ) < ε/(2c) and also ord(P )·ρ(P ) < ε/2 if Λ is weakly uniformly
continuous with respect to ρ.

Applying the property (∗) to the covering {g−1(Ux) : x ∈ A} of X one
can find a subset B ⊂ A and a point d ∈ X such that

d ∈ Λ(B) ∩
⋂
b∈B

g−1(Ub).

Then g(d) ∈
⋂
b∈B Ub, and since b ∈ Ub we get

B ⊂
⋃
b∈B

Ub ⊂ B(g(d), 2ρ(P )).

We see that in the case when Λ is uniformly continuous,

d ∈ Λ(B) ⊂ B(g(d), 2cρ(P )) ⊂ B(g(d), ε),

and if Λ is weakly uniformly continuous then

d ∈ Λ(B) ⊂ B(g(d), 2|B|ρ(P )) ⊂ B(g(d), ε),

contradicting ρ(d, g(d)) ≥ ε in both cases.

Corollary. If g : X → Y is a continuous map from a metrizable space
X with an L∗-operator Λ which is weakly uniformly continuous with respect
to some compatible metric on Y , where Y ⊂ X is a compact subspace of
finite dimension, then g has a fixed point.
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2. Constructing metrics of characteristic zero. A covering P of a
set X is a star-refinement of a covering Q if for each U ∈ P there is a set
V ∈ Q such that st(U,P ) ⊂ V , where st(U,P ) :=

⋃
{W ∈ P : U ∩W 6= ∅}.

The following lemma is of great importance for us. The idea of the proof is
very old and it is due to Birkhoff, Kakutani and Tukey. Some clues can be
found in Rudin [6] and Engelking [2].

Lemma. Let {Pn : n ∈ N} be a sequence of arbitrary coverings of a set
X such that Pn+1 is a star-refinement of Pn for each n ∈ N. Let ϕ : N→ N
be an increasing function and let ρ : X ×X → [0,∞) be defined as follows:

ρ(x, y) := inf
{ m∑
i=1

[xi−1, xi] : x0 = x, xm = y, xi ∈ X, m = 1, 2, . . .
}
,

where [xi−1, xi] := 2−ϕ(n) if n is the smallest number with xi−1 /∈ st(xi, Pn+1),
and [xi−1, xi] = 0 if xi−1 ∈ st(xi, Pn) for each n ∈ N.

Then ρ is a pseudometric such that st(x, Pn) ⊂ B(x, 2−ϕ(n)). Moreover,
if ϕ(n) ≤ n, then B(x, 2−n) ⊂ st(x, Pn) for each x ∈ X. If ord(Pn) ≤ ϕ(n) <
∞, then ρ is of characteristic zero.

Proof. Since y ∈ st(x, Pn) if and only if x ∈ st(y, Pn), we infer that
ρ(x, y) = ρ(y, x). By the definition of ρ we get immediately ρ(x, x) = 0,
ρ(x, y) ≤ ρ(x, z) + ρ(z, y) and st(x, Pn) ⊂ B(x, 2−ϕ(n)). The last inclusion
implies that ρ(Pn) ≤ 2−ϕ(n). Consequently, ord(Pn) · ρ(Pn) ≤ ϕ(n) · 2−ϕ(n)
whenever ordPn ≤ ϕ(n).

To finish the proof, it remains to show that in the case ϕ(n) = n, the
inclusion B(x, 2−n) ⊂ st(x, Pn) holds. To do this, it suffices to prove by in-
duction on m that for each n,

∑m
i=1[xi−1, xi] < 2−n implies xm ∈ st(x0, Pn).

It is clear that the implication holds for m = 1. Let m ≥ 2 and assume
that

∑k
i=1[xi−1, xi] < 2−n. Then [x0, x1] < 2−(n+1) or [xm−1, xm] < 2−(n+1);

we may assume that [x0, x1] < 2−(n+1). Let k ≤ m − 1 be the largest
index with

∑k
i=1[xi−1, xi] < 2−(n+1). Then

∑k+1
i=1 [xi−1, xi] ≥ 2−(n+1) and∑m

i=k+1[xi−1, xi] < 2−(n+1). We consider two cases: k < m−1 and k = m−1.
If k < m− 1, then by the inductive hypothesis x0 ∈ st(xk, Pn+1), xk+1 ∈

st(xm, Pn+1) and by assumption xk+1 ∈ st(xk, Pn+1) (because [xi−1, xi] <
2−(n+1)). This means that there are three sets U1, U2, U3 ∈ Pn+1 such that
x0, xk ∈ U1, xk, xk+1 ∈ U2 and xk+1, xm ∈ U3. Since Pn+1 is a star-
refinement of Pn, there is U ∈ Pn such that U1 ∪ U2 ∪ U3 ⊂ U . Then
x0, xm ∈ U , i.e. xm ∈ st(x0, Pn).

If k = m−1, then similarly x0 ∈ st(xm−1, Pn+1) and xm−1 ∈ st(xm, Pm+1)
by the inductive hypothesis. There are U1, U2 ∈ Pn+1 with x0, xm−1 ∈ U1

and xm−1, xm ∈ U2 and so x0, xm ∈ U1 ∪ U2 ⊂ U for some U ∈ Pn. Again,
x0 ∈ st(xm, Pn).
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We are ready to give instances of metrics compatible with the topology
of a space and of characteristic zero.

If the pseudometric described in the Lemma turns out to be a metric, it
will be called a metric given by the development {Pn : n ∈ N}.

In this part we shall show some constructions of metrics compatible with
given topology.

A family {Pn : n ∈ N} of open coverings of a topological T1 space X is
said to be a metrizable development if Pn+1 is a star-refinement of Pn for
each n ∈ N, and the family {st(x, Pn) : n ∈ N} is a local base at x for each
x ∈ X.

The development {Pn : n ∈ N} has characteristic r, 0 ≤ r ≤ ∞, if

lim
n→∞

ord(Pn) · δ(Pn) = r.

For every covering P of X let

ord∗(P ) := min{n ∈ N : P has an open finite refinement Q of order ≤ n}.

The following corollary results from the above Lemma. It can also be
thought of as a metrizability theorem of the Bing, Moore, Aleksandrov, and
Urysohn type.

Theorem 2. Let {Pn : n ∈ N} be a metrizable development of a topo-
logical space X. Then the metric ρ : X ×X → R as defined in the Lemma is
compatible with the topology, and B(x, 2−n) ⊂ st(x, Pn) ⊂ B(x, 2−ϕ(n)) for
each x ∈ X. If limn→∞ ord∗(Pn)/2

n = 0, then ρ is of characteristic zero.
If a linear space E is metrizable, then there is a local base {On : n ∈ N}

at 0 satisfying the following conditions:

1. tOn ⊂ On for each n ∈ N and |t| ≤ 1,
2. 3On+1 ⊂ On, and
3. {0} =

⋂
{On : n ∈ N}.

A local base {On : n ∈ N} at 0 satisfying conditions 1–3 will be called
a locally metrizable development at 0. It induces a metrizable development
{Pn : n ∈ N} of E by setting Pn := {On + x : x ∈ E}.

Let us notice that the metric as defined in the Lemma has the following
properties: ρ(x+a, y+a) = ρ(x, y) and ρ(tx, ty) ≤ ρ(x, y) for each t ∈ [−1, 1].

Indeed, we have [x, y] ≤ 2−n if and only if x − y /∈ On+1, and since
tx− ty = t(x− y) we get [tx, ty] ≤ [x, y] for each t ∈ [−1, 1].

Let ord∗(On) := ord∗(Pn). Thus we get the following

Theorem 3. If {On : n ∈ N} is a locally metrizable development of a
linear space E, then the function ‖ · ‖ : E → [0,∞), ‖x‖ := ρ(0, x) given by
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a metric induced by the development is a subnorm such that

B(0, 2−n) ⊂ On ⊂ B(0, 2−ϕ(n)).

If, in addition, limn→∞ ord∗(On)/2
n = 0, then χ(ρ) = 0.

A result in [3] suggests the following theorem. For the convenience of the
reader we provide a proof.

Theorem 4. Any linear metric space (E, ρ) of infinite dimension with
a metric ρ(x, y) = ‖x− y‖ given by a subnorm ‖ · ‖ contains a closed convex
subset C of infinite dimension such that the metric ρ : C × C → [0,∞)
restricted to C has characteristic zero.

Proof. We shall define by induction a sequence of affinely independent
points a0, a1, . . . ∈ E, a sequence of families Pn, n ∈ N, of open sets, and a
sequence of positive real numbers δ1 > δ2 > · · · > 0, δi < 2−i such that:

(1) δ(Pn+1) < 2−n and ord(Pn) ≤ n for each n ∈ N,
(2) Cn := conv{a0, . . . , an} ⊂

⋃
Pn ⊂ B(Cn−1, δn) ⊂ B(Cn−1, 2δn) ⊂⋃

Pn−1.

Inductive construction.

Step 0. Choose a0 ∈E\{0} and define C0 := {a0} and P0 := {B(a0, 1)}.
Step n + 1. Assume that we have already defined affinely independent

points a0, . . . , an, families P0, . . . , Pn of open sets and positive real numbers
δ1, . . . , δn satisfying (1) and (2).

Since Cn is compact, there exists δn+1 with 0 < δn+1 < δn and δn+1 ≤
2−(n+1) such that

Cn ⊂ B(Cn, δn+1) ⊂ B(Cn, 2δn+1) ⊂
⋃
Pn.

Choose a point an+1 ∈ B(Cn, δn+1) \ spanCn. The points a0, . . . , an+1 are
affinely independent. Note that

Cn+1 := conv{a0, . . . , an+1} ⊂ B(Cn, δn+1).

To see this, fix x ∈ Cn+1. Then

x =

n+1∑
i=0

tiai,

n+1∑
i=0

ti = 1, ti ≥ 0.

Choose b ∈ Cn such that ‖an+1 − b‖ < δn+1 and put

y :=

n∑
i=0

tiai + tn+1b.

Then y ∈ Cn and

‖x− y‖ = ‖tn+1(an+1 − b)‖ ≤ ‖an+1 − b‖ < δn+1.
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This yields x ∈ B(Cn, δn+1). Since dim Cn+1 = n+1, according to theorems
on shrinkings and swellings of families of sets (see [1, Theorems 1.7.8 and
3.1.2]), one can find a family Pn+1 of open sets in E such that

δ(Pn+1) < δn+1, ord(Pn+1) ≤ n+ 2, Cn+1 ⊂
⋃
Pn+1 ⊂ B(Cn, δn+1).

This completes the inductive construction. Now, let us put

C :=

∞⋃
n=0

Cn.

Note that
C ⊂

∞⋂
n=0

B(Cn, δn+1),

because
⋃∞
n=0Cn ⊂

⋂∞
n=0B(Cn, δn+1). Thus from (1) and (2) we infer that

C ⊂
⋃
Pn for each n ∈ N. The sequence {Pn|C : n ∈ N} of families Pn

restricted to the set C satisfies limn→∞ ord(Pn) · δ(Pn) = 0.
Theorem 5. For any 0 ≤ r ≤ ∞ there exists on the Hilbert cube a

metrizable development of characteristic r.
Proof. Let E be the linear space of all bounded real sequences x =

(x0, x1, x2, . . . ) with the norm
‖x‖ := sup{|xn| : n ∈ N}

and the induced metric ρ(x, y) := ‖x− y‖.
Let 0 ≤ r ≤ ∞. Choose a strongly decreasing sequence r0 > r1 > r2 >

· · · > 0 with limn→∞ n · rn = 0. The Cartesian product C :=
∏
{Jn : n ∈ N}

of the segments Jn = [0, rn] is a subspace of E homeomorphic to the Hilbert
cube. Since the cube In := I0 × · · · × In−1 has covering dimension n and
may be considered as a subspace of C by the embedding (x0, . . . , xn) 7→
(x0, . . . , xn, 0, 0, . . .), there exists a metrizable development {Pn : n ∈ N}
of C such that ordPn = n and ρ(Pn) = rn. It is clear that the characteristic
of the development {Pn : n ∈ N} is r.

Problem 3. Does there exist a metrizable development of characteristic
greater than zero such that the metric described in the Lemma and induced
by the development has characteristic zero?
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