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PART I: NON-CRITICAL CASE
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LECH ZIELINSKI (Calais)

Abstract. We consider a version of the Weyl formula describing the asymptotic
behaviour of the counting function of eigenvalues in the semiclassical approximation for
self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to
treat Holder continuous coefficients and to investigate the case of critical energy values as
well.

1. Introduction. Since the papers of J. Chazarain [2] and B. Helffer
and D. Robert [4], the semiclassical spectral asymptotics has been investi-
gated in numerous works; we refer to the monographs [3], [8], [10] and [13].
The main results have been obtained by using the tools of microlocal anal-
ysis based on the approach of L. Hérmander [6]. However this approach
works only for smooth problems and the semiclassical framework is usually
considered for a non-critical energy value. Our aim is to present a method
of obtaining semiclassical estimates for more general classes of differential
operators.

(A) Formulation of the results. Let r € ]0;1] and denote by B" the set
of bounded, Hélder continuous functions of exponent r on R%, i.e. a € B"
means that a € L(R?) and there is C' > 0 such that

(1.1) la(z) —a(y)| < Clz—y["  (z,y € RY).
Let m € N* and for v,7 € N with |v|, [7| < m consider real-valued a, 5 € B"
such that a, 7 = ap, and
(1.2) > ap(@)E T = P (2,6 €RY,
lv|=l7|=m
for some constant ¢ > 0.
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For h > 0 let Aj, be the quadratic form defined for ¢, € CJ*(R?) by
(1.3) Anlo ¥l = > (avs(hD) e, (hD)"),

v],|7|<m
where (-, -) is the scalar product of L2(R?%) and (hD)” = (—ih)I¥19" /0z".
The ellipticity hypothesis (1.2) ensures the A;, is bounded from below
and its closure defines a self-adjoint operator A,. We introduce

(14) CL(.T, 5) = Z ay,ﬁ(x)fy—i_va
vl,[7[<m

and for £ € R we set
(1.5) I'p=a™'(]-00; E[) = {(2,€) € R** : a(z,€) < E}.
We have

PROPOSITION 1.1. Let E,Ey € R be such that E < Ey and I'g, is
bounded. Then one can find hy > 0 such that for h € |0; hy], the spectrum
of Ay, is discrete in |—oo; E.

Further on, Ey, E, hg are as in Proposition 1.1 and |I'g| = Sa(r ¢)<E dx d¢
is the Lebesgue measure of I'g. For h € ]0; ho] we define the counting function

N(Ap, E) as the number of eigenvalues (counted with their multiplicities)
smaller than F. Our principal result is:

THEOREM 1.2. Let A, be as above with a,y € B" for some r € |0;1]. If
pw€0;2r/(2+7), then

(L6)  N(Au B) = |l (2rh) + (|Dpn| — Do YO,

Similarly to [1] one can observe that some additional conditions on a are
needed to obtain a good estimate of [I'gypu| — |I'g—pu| as h — 0. In this
paper we are interested in the following condition:

(1.7) a(z,§) =E = Vea(z,§) #0.

If (1.7) holds then E will be called a non-critical energy value and it is easy
to see that this condition ensures |I'gipu| — |[I'g—pu| = O(W*). Moreover it
is possible to obtain the following stronger estimates:

THEOREM 1.3. Assume moreover (1.7). If u €]0;r[, then
(1.8) N(An, E) = |Tg|(27h)~% + O(h*~%).

(B) Comments. The proof of Theorem 1.3 is presented below and a suit-
able development, which allows us to prove Theorem 1.2, will be described
in [18]. The basic idea is to replace irregular coefficients by smooth ones and
to investigate the corresponding smooth problem following some ideas of
our earlier papers [14-15]. In the case of a non-critical energy value it is also
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possible to investigate the smooth problems by adapting the theory devel-
oped in the book of V. Ivrii [8], deducing Theorem 1.3 according to [9] (and
we also have (1.8) with the optimal value o = 1 if the first order derivatives
of the coefficients are Holder continuous, cf. [9] or [17]).

However the approach we present here is quite different from [9] or [17].
It seems to us that the most interesting feature of this approach is the
possibility of investigating non-critical and critical energy values in a quite
similar way and the fact that the analysis of the smooth problem works for
suitable classes of pseudodifferential operators as well.

A general plan is the following. In Section 2 we define the regularized
operators Pj; the Fourier transform allows us to express suitable functions
ﬁl(Ph) by means of the evolution group U; = e*Fh/M In Section 3 we
describe an approximation of U; giving a pseudodifferential approximation
of fr(Pp) with correct asymptotic properties. The correct asymptotic be-
haviour of the approximation is proved at the end of Section 3 by means of
simple integrations by parts. In Section 4 we explain how to implement a
similar idea to estimate the difference between fh(Ph) and the approxima-
tion. The final computations justifying this idea are presented in Section 5
and some standard supplementary details are given in Section 6.

(C) Developments. 1. Let A= A + hAp 1, where Ay, is as above and
(1.9) 3Co > 0 Ve € CFHRY),  [Anale, @]l < Anlp, @] + Colloll*.

Then (A, @] + Collp[[*)/? and (Anle, @] + Collp]|?)'/? are equivalent
norms if h < hg with hy small enough and we can define jh, the associated
self-adjoint operator in L?(R%). Moreover the assertions of Proposition 1.1,
Theorem 1.2 and 1.3 still hold with ﬁh instead of Ay,

2. Let M be a compact (boundaryless) manifold with a density dz of
class C™ and let Ajs;, be a quadratic form on C™ (M) x C™ (M) satisfying

supp @ Nsuppd =0 = Ayl 9] = 0.

Assume that in local coordinates on U € R? the form Aprp acts on ¢, €
Cy*(U) according to the formula (1.3) with all the hypotheses of Theorem 1.2
(or 1.3) satisfied. Then a standard reasoning can be applied to obtain analo-
gous estimates for the counting function of Ay, the associated self-adjoint
operator in L?(M, dx).

3. For an operator A, 1 considered in item 2, we can deduce the classical
Weyl formula considering a semiclassical problem A M,p With h = A~Y@m)
We need to assume the Holder continuity of top order coefficients (|v| = |7|
= m) and we can consider the lower order coefficients belonging to L. In-
deed, reasoning as in item 1 we can modify lower order coefficients and since
the principal symbol is {-homogeneous, the energy value 1 is not critical,
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allowing us to adapt the proof of Theorem 1.3 to obtain
(1.10)  N(An1,A) = N(Ay s 1/em, 1) = XY Cm) 4 o(Ad=m/(m))

for every p € [0;r]. This result was described in [14-15] and we refer to
[8-11] and [16] for results concerning boundary value problems.

4. The regularity hypotheses on the coefficients a, 7 are in fact essential
only for = such that (x,¢) € 'y, with some Ey > E, while the behaviour
of the coefficients for other values of x can be more general: the main re-
quirement is the possibility of reducing the problem by adding an auxiliary
cut-off supported in I'g, as in Proposition 6.1. In particular we have as-
sumed a, 5 € L™ (]Rd) for the sake of simplicity, but it is possible to consider
unbounded coefficients in the framework of tempered variation models on

T*R? (cf. e.g. [5]).

2. Regularized problem

(A) Definition of smooth operators. Let v € C§°(RY) satisfy {~(z)dx
=1 and let v.(z) = e 9y(z/e) for € > 0.
We fix 0 € |0; 1] and define

(2.1) a7 (%) = (v * 1) (@) = () v (W (x — y))h ™ dy.
As explained in Section 6, the hypothesis a, € B" ensures the estimates
(2.2) |y (z) — aypp(z)| < CRT,
(2.3) 10%a,54(2)] < Ca(l + ROUID)
(for every o € N%). We define
(2.4) pu(@,§) = Y aypa()gt?
v],|[7|<m

and assume further on that rd > p, hence (2.2) yields

(2.5) 08 (@ — pa)(@, €)| < Cah(L+ [¢])m .
Moreover the operator
(2.6) Pp= Y (kD) aypn(x)(hD)”

vl,[7|<m
satisfies |((An — P9)g, ¢)| < Ch*((I — h?A)™p,¢), and defining
(2.7) P = P+ Ch*(I - R*A)™

(with C' large enough) we obtain P, < A, < P;’ (in the sense of quadratic
forms). If h € |0; hy] with hg as in Proposition 1.1, then the min-max prin-



EIGENVALUES FOR ELLIPTIC OPERATORS 161

ciple (cf. [12]) yields
N(P},E) < N(An, E) < N (P, B),
and it is clear that it suffices to prove
THEOREM 2.1. The formula (1.8) holds with P instead of Ap,.

(B) Microlocal trace formula. For E',E € R let ;g5 : R — {0,1} be
the characteristic function of [E'; E] and let 1(g,p (P;%) denote the spectral
projector of Phi on [E'; E]. If by, is a polynomially bounded smooth function
of (z,£) € R?, then B), = by(x, hD) denotes the pseudodifferential operator
acting on ¢ € S(R?) according to the formula

(Brep)(z) = S %

Let s € R. We write b € 555 if b = (bn)nejo;y) is a family of smooth
functions satisfying the estimates

(2.8) 108056y (, €)| < Co gh™ 1710

¢y (2, €) dy e/ Mo (y).

for every a, 3 € N% In Section 6 we show that Theorem 2.1 follows from
THEOREM 2.2. Let I be a closed subset of I'g, such that

(29) (3375) el = ’vﬁph(xagﬂ =>c

for some constant ¢ > 0. Let | = (In)nejo;1) € 5875 be such that Iy, is real-

valued and supply, C I' for every h € 10;1]. If L, = lp(z,hD) and Lj

denotes its adjoint in L?(R?), then

S dx d§

—— 1y (x, €)% + O(h*9).

+ *
(2.10)  tr(Lplip.p (P )Ly) = (27h)d

E/<ph($,£)<E

(C) Plan of the proof of Theorem 2.2. Further on we drop the index h.
In particular we write simply L, [, p instead of Ly, I, py, and we abbreviate
P,f = P. Let ¥ € C§°(]—1/2;1/2[) be such that {5 = 1 and ¥ > 0. Then
the convolution with Y« () = h™#5(A/h*) allows us to replace 1jgr,g by
the approximations

(211)  fy = Lrnejompo g2 * Ahos Sy = Lmr—ho 2] * T
satisfying 1 pu;p_pu) < .]?h_ <1ip,p < E‘L" < 1ip_pu;E4he], hence

(2.12) tr Lf, (P)L* < tr Llg.gmL* <trLf, (P)L*.

Clearly it suffices to prove (2.10) with .]?;LE(P) instead of 1(pr, ). Further on

we abbreviate fv}f = fh; observe the estimates of derivatives

(2.13) B < Ceh ™ (k e N).
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Next we introduce the h*-Fourier transform of fh,

o0

(2.14) () = (Fuuf)(t) = | dxe M f (),

—00

and remark that for any & € N we have

(2.15) t fu(t) = (=) R (Fnu 1) (1) = O(1).
Since fu(\) = (Fiit ) (\) = i~ 27?};“ fr()e™h e can write
(2.16) tr Lfp(P)L* = OSO dt fu(t) tr LU L*
) 2mh ’
where we have set U; = /" Then our principal task is to construct a

sequence of operators (Q N,t) ~en Which is a suitable approximation of LUj.
More precisely: assuming Qg ;|,_, = L and defining

~ d .
(2.17) Ry = EQ]V,t —iQy P/,
we can write formally
t d t .
(2.18) LU — QN¢ = SdT E(Q]V,t—TUT) == X dr QZV,t—TUT
0 0

and observe that due to (2.15-16) and (2.18), Theorem 2.2 follows from

PROPOSITION 2.3. Let N € N. Then there is Qys € B(L*(RY)) satisfy-
mng

o

dt ok dxdg 2 pn—d
(2.19) | S () 1 QL™ = | (%h)dz + O(h#=),
—00 E'<p<E
(2.20) ltr Qo UrL*| < RUTINT5 (g 4 [¢)OR

where @N,t is given by (2.17), Cx > 0 is a constant large enough, (t,7) €
R* xR and 7/t € [0;1].

In Section 3 we describe the construction of
(2.21) Qwy = (™™ 3" 1'% ) (@, hD),
0<n<N

as suitable pseudodifferential operators. At the end of Section 3 we check
that (2.19) follows via integrations by parts; in Section 4 we describe a
similar strategy to obtain (2.20), completing the proof in Section 5.
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3. Description of the approximation. The operators (2.7) can be
written in a standard form

(3.1) P = > pi(x)(hD)" = p(x,hD)
[v|<2m
and it is easy to check that (2.3) still holds with p?jh instead of a,, 7 5 and
(32) P& = > pry()& =alx,&)+Om*)(1+ ¢
v|<2m
For a smooth function (z,£) — b (x, ) € C we define

plol—n
al ilal+1

(33) ﬁﬁbt = e—itp/h“ <8t(bteitp/h“) — Z
|a|<N

e 579,

Further on, [ € 505 is as in Theorem 2.2.

LEMMA 3.1. Let o= pu—14+9. Let b € 5] 0. be independent of t and
such that suppb C suppl. Then we can find b, € Ss+ng forn€{0,...,N}
such that supp b, C suppl and

(3.4) Pyb= > t"b,.
0<n<N
Proof. First of all we recall that b € 5057 b€ S&a = bb € Sgi;g and
it is easy to see that bp, bp* belong to 55,6+ Since (2.5) still holds with
pf instead of py, and |a| > 1 = Al*10%a, 5, = O(R+1-9)el) we obtain
b(p — pF) € Sg’_éér_(l_(s) and hlolboop* ng;dr_(l_é)'al if |a] > 1. Using
moreover 0r > [, we obtain

_ plal—n
(35)  bo=ihF(p—pEb+ Y

1<|a|<N

T 0% (bOepT) € Si 5.

Next for n € {1,..., N} we obtain
b= 3 Cagan AR (b B E ) - O € S5

a=ao+Fan
|| <N, o, #0 if k40

by observing that 1 <n < |a| = (n+ 1)p— (1 = 9J)|a| —0r < np. =

PROPOSITION 3.2. Assume that N € {0,1,..., N} and o = p—1+6 > 0.
Then we can find

(3.6(N)) Gy = D, "Gy,
0<n<N
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such that qy n 1),y = qu\7,0 =1 and

(3.7(N)) Pytwne= Y. PlXnn
N<n<N+N
with
(o] _1 [¢]
(3.8(N)) A5, € S(()Z )Q, supp ¢y ,, C suppl! (ne{l,...,N}),

(3.9(N)) §%7N7n € S&g, Suppijj’v’]\ﬂn Csuppl (n€{N,...,N+N}).

Proof. If N = 0 then we take N0t = qj’vo =] € Sgé, and Lemma 3.1

with b = [ gives the statement of Proposition 3.2 for V = 0. Next we assume
that the statement holds for a given N < N — 1 and we prove that it still
holds for NV + 1 in place of N.

Using the induction hypothesis (3.7(/V)) to express ﬁﬁqﬁ ¢ We find

N+1 ~
(" q?V,NH)JFPNqN,N,t

PNaN.N41t = Pr
N ~ N+15 ~
=" (N + 1)Q;V,N+1 + q%,N,N) +T PNQ;V,NH + Z t"q ?VNn
N+1<n<N+N
In order to obtain (3.7(N + 1)) it suffices to cancel the term with ¢V taking

q?V,N-i—l = _a?v,N,N/(N +1).

Since % vy v € S(])Vf and supp ¢ 5, y C supp!/ by the induction hypothesis,
we obtain (3.8()V + 1)), and using Lemma 3.1 with b = ¢5%; Nl

that 0> 0= S5y ™ ¢ ST and (3.9(V + 1)) holds. =

we observe

LEMMA 3.3. For b € C°(R??) define
dz d¢
—e
(2wh)d
If b € S§s satisfies suppb C suppl, then for every k € N one can find
b € S5 5 such that supp by C suppl and
(3.11) h=kutk I (b) = Ji(by).

Proof. The hypothesis (2.9) ensures the existence of Ej € 587 s such that

(3.10) Te(b) =\ @/ b (g €.

b= Zf:ﬁjagj p and integrating by parts we find
(3.12) h_“tJt(gjagjp) = Jt(iagjgj).

Thus the statement of Lemma 3.3 holds for £ = 1; the proof is completed
by induction on k € N. =

Proof of the estimate (2.19). Taking Qg , given by (2.21) with ¢ 5,
defined in Proposition 3.2, we observe that Q5 ,L* has the integral kernel
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dg i(x— itp(z
Ky (2,y) = S Tk (z—y)€&/h+itp( ,ﬁ)/h“qﬁ7ﬁ7t(x’ )l(y, €),
hence
(3.13) trQy,L° = de Ky (z,2) = S ) e tp/hﬂlq]\—,’mt.

Therefore using Lemma 3.3 with k =n — 1 and b = h("’l)”q;’v S 5875 for
n=2,...,N wecan find {5 € 5875 such that supp ¢ 5 C supp! and
trQu L = > (g%, ) = K(P) + t(dy)-
0<n<N
Changing the order of integrals we find

s IO 1(P) = | g (o

o0

(3.14) |

L Fn(p(,€)).

Since supp(f), — Lgr.pp) C [B' —h#; E'+ hH]U[E — h*; E+ h*], we can write
(3.14) as

S MZ(;{},&)Q—FR([,])—E,}LM)+R(l,p—E,,hu)7
(2mwh)d
E'<p(z,)<E
where
(3.15) R(l,p— E, ") := O(h™%) | dr del(z, €)?

E—h#<p(z,&) <E+hw

can be estimated by O(h#~%) due to the hypothesis (2.9), and the same is
true with E’ instead of E. Next we use tf(t) = —ih*(Fpu f})(t) to write

[e.e]

dx d ~
B16) g AOUN) = G A8 OO 06, ©)
and we complete the proof of (2.19) by observing that since ¢5 = O(1),

suppgy C suppl, h*f, = O(1) and supp f;, C [E' — h*;E' + h*] U
[E — ht*; E + h*], we can estimate (3.16) as before by

R(@x.p— E,W") + R(@x,p — E,h") = O(h"~). u

4. Auxiliary notations and properties
(A) Ezpression Qg i Set V={(t,7) e R* xR : 7/t € [0;1]}.
For s € R we will write b € 5% if b= (bh,t,r ) ne)oi], (1,7)ev satisfies
(4.1) 0807 bnpr (3, €, 9)| < Caph™* 10 (1 4 [1]) 0
for every (a, ) € N% x N2¢ and supp bht,r C (suppl) x RY.
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Further on, ||-|| is the norm in the space B(L?(R?)) of bounded operators,
and || Bl|t := tr (B*B)Y/2 is the trace class norm. If b € 5% then the formula

d d zx— 1(t—7)p(x
(4.2)  (Op;, (b)) (x) = | YA ita—vpe/mrii=rin M by 2 (2,6, )0 (y)

(2mh)d
defines Op; . (b) € B(L?*(R?)) satisfying
(4.3) 10Dy - (B)]| < Ch™*(2 + [¢) O (1 + [t /h)*

for some constant C' > 0 due to the Calderén—Vaillancourt theorem (cf. e.g.
[7, Section 18.6]). As proved at the end of Section 6, b € S* also satisfies

(4.4) 10D - (B)er < 7722 + [¢]) "
Using (2.21), (3.6(N)) and P = P* = p*(x, hD)*, we find
Qn P = Opyo(aw, 5 (2, ) pE(y,€)),

hence writing the Taylor development of y — p*(y, &) at x and using
(y — )@V = (Zh)\alaa( Uz=y)&/hy

to perform standard integrations by parts in (4.2), we find

(4.5) Qs = Opyo((Pray 5. (@, €) +15,),

with the remainder term of the Taylor development of order N,
1

(46) 7y (2,&y) = e PEOMN 1 1) do (1 - 0)VFy (2, y),

0

where
4.7)  Tyoi(®,& )

hN—H_u itp/hH

= Z_ mag (g 5" ) (@, €) Ogp* (2 + oy — 2),6)).
|a|=N+1
Let ¢ q v N D€ as in Proposition 3.2 and define
(4.8) T (@.60) = (1= /0" Ty n(@:€):
Then %, € Sne « §ru=N(1-0) and we can write
(4.9) (PRaxme @8 = Y Ty, (@6y).
N<n<2N

Using the form of ¢y 5, in (4.6-7), as in the proof of Lemma 3.1 we find
TS, € Sru=N(1-8) guch that

)

(4.10) = > TN

0<n<2N
and deduce
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COROLLARY 4.1. There exist Q~N,n € §nu=N(1=0) gych that

(4.11) Qnir= >, t"Op,(T5,).

0<n<2N

(B) Auziliary operator algebra Y. It is easy to see that U; : S(RY)
— S(RY) and for any B : S(RY) — S(R?) we can define Y,(B) := U*BU,.
We write Y € )} if there is N € N such that Y = (Y;),cgr has the form

(412) YT = Z S dw wa,k:,TYTSw,k,l (Bk'71) e YTSw,k,N (BkhN)’

L<k<N [0;1]N
where By, jy = by i (x, hD) with
brkr € S 5 or (k,k') € {1,...,N}?
Swig € [—151] or (w,k, k") €[0;1]Y x {1,...,N}?
Swrr €C, |3wk7|<(2~|—|7|)N for (w,k,7) €[0; 1]V x {1,..., N} xR.

We observe that taking s, = siﬂ,k,‘r =1 we obtain Y;(By 1) Y-(Brn)
€ Yo and it is not difficult to see that ) is an algebra with the property

(4.13) YeY = 3C>0, Y] <2+ |7)°.

We define 5’85 as the class of symbols b such that b, (x, ) = b(x, £)(1+[£]?")

belongs to S5 0.6 for any n € N. Finally, we define ) as the set of operators

Y € Yy of the form (4.12), where by, Sw k' sw ko

every k € {1,..., N} there is ¥ € {1,..., N} such that by € §075.
For b € gs, Y € Y we define

are as before and for

(4.14) Jir(0,Y) == tr Op, ,(b)U; Yr.

Using this notation and (4.11) we can write

(4.15) 1 Qy UL = > " (G, LY).
0<n<2N

In Section 5 we will prove

PROPOSITION 4.2. Let Y € Y and by € S%. Then for every n € N one
can find K, € N* and b, € S°, Y, €)Y fork=1,..., K, such that

(416) h™ nutnl]t T bo, Z Jt‘l‘ n k’ n k)
1<k<Kn
It is easy to see that Proposition 4.2 implies the estimates (2.20). Indeed,
Proposition 4.2 allows us to replace each term of (4.15) by Ji + (b, 1+ Y 10 1)
with by, 1 € S—N(1-9) hence (2.20) follows from (4.13) and (4.4).

C) Commutators with x;/h. We denote by x; the operator of multipli-
J J
cation by the jth coordinate.
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LEMMA 4.3. If Y € Y and o = — 149, then there exist Yt Y ey
such that

(4.17) Yy, 2;/h) = Y +h= 07y,
Proof. Let B = b(x,hD) with b € SJ ;. We will show that
(4.18) Y (Brw),zj/hl = YW + ™01y,
with some Y, Y~ € ). To start we write
(4.19) [Y2(B),zj/h] = U7[B,Y_+(x;/h)|Us
and introduce
(4.20) Pj = [iP,x;/h] = O¢,p™ (x,hD).

Then we can write the Taylor formula
(421) Yoo (a;/h) 1

=3 /h — 7(0-Y7)|r=o(z;/h) + 7*\ do (1 — 0)92Y_ o1 (x;/P)
0

=2, /h+h "7 P; + h™*7U,.Y,([P;,iP))U;,
where Y,(B) := 1 S(l) do (1— U)}/(I,U)T(E) for any B : S(R%) — S(RY). Using

(4.21) we can express the commutator (4.19) in the form
(422)  Yo((B,a;/h]) + h-2rY, (0 [B, P)))
+hOr[Yo(B), Yo (h* M Py, P))]

and since [B, x;/h] = —i0¢;b(z, hD), the first term of (4.22) belongs to V.

Then using Lemma 6.3 we find that h°~![B, P;] = b;(x, hD) with b; € §8’5
and h*~17H[P, Pj] = p;(z, hD) with (1 + |¢]?)~2"p;(x, £) belonging to 5’8’5.
Thus choosing Ef, € R large enough we have P’ = P + E{I > I and we can
write

Yo (R~ [Py, P])] = Yo (BP)Y, (k"' 7HP'~? [Py, P])].

Then BP"? = g(m, hD) with be §8 s and the standard parametrix construc-
tion (cf. e.g. [7, Theorem 8.1.9]) gives P'~2h°~1H[P, P;] = p;(x, hD) with
Dj € 585, completing the proof of (4.18).

If we assume only B = b(x, hD) with b € 58’5, then reasoning as above
we can find YT, Y~ € ) such that
(4.18") [Y-(Byy), xj/h] = Y +h™e7Y P™.
It is clear that to obtain the general statement of Lemma 4.3 it remains
to commute successively x;/h with Y., (Brpw), ¥ € {1,...,N}. If
bk,k’ € 585, then we still have P’QBka/P’_Q = fbka (z,hD) with bk;,k;’ S 585,
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hence P’ from the last term of (4.18") can be put near by (z, hD) with &’
such that by € Sys,ie. Y EY=>YP?€ ). u

LEMMA 4.4. Let Y € Y and P; = [iP,x;/h]. Then one can find Y, Y~
€ Y such that

(4.23) hHrPUY, = [UsYr, a5/h] + Up (Y + h™0rY,).

Proof. Using (4.21) to express Uy, z;/h] = (Y_r(x;/h) — x;/h)U; and
applying Lemma 4.3, we find

[UrYr, xj/h] = [Ur, /W)Y + Ur[Yr, x;/h]
WP PU Y, 4+ h™erU, Yo (WY1 Py, iP))Y, 4+ U (Y + h=0rY),
i.e. (4.23) holds with Y;~ = =Y, (R0~1"H[P;,iP])Y, =Y, , Yt = -V . u

T

5. End of proof of Theorem 2.2. It remains to prove Proposition 4.2.
We start with

LEMMA 5.1. Let b € S°. Define bOg,p € Ss by

(5.1) (b9g;p) (2, €, y) = b(x, &, y)Ig;p(x, €).

Then

(5:2)  [Opy;(b), j/h] = hH(t = 7)Opy - (b9, p) — Opy 7 (i0g;b)-
Proof. Since the integral kernel of [Op, . (b), z;/h] is

d£ Y =% i(z— i(t—7)p(x
63) @y fGam g RO M e ),

using M ell@—v)e/h — = 10, e@=v)&/h to integrate by parts, we can rewrite
it as

d i(T— i(t—7)p(x - .
S(Qwi)d WS/ MU= 1 ({1 — 7)0 pb — D b) (2,€, ). m

PROPOSITION 5.2. Let be 85, Y €, je{l,...,d} and set
(54)  pyus(e ) = (1 - —)agj (@.6) + T 9 (.6)

Then there exist by, € S and Y, € YV such that

(5.5) W T oy, Y) = Y (Jir (b, Yi) + b7t 1 e (b, Yoi)).-
1<k<2

Proof. Since P; = P = O, pT(z,hD)* is a differential operator of order
2m — 1, the standard composition formula gives

(5.6) Opy,, (b)P; = Op, (b, p* + h' ),
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where (bagjpﬁ)(ac,f,y) = b(x,&,y) O,p*(y, &) and b € S° has the form

~ h|a\71+6 N -
b(xa§7y) = Z Wayb(xa£7y) 8?8§in(y,f)

1<]a]<2m—1
By definition h™#t J; -(p(;)b, Y) can be expressed as
(5.7) h™H(t — 7)tr Opy - (b0¢, p)Ur Yr + h™H7 tr Opth(bagjpﬁ)UTYT.
Due to (5.2) the first term of (5.7) can be written as
(5.8) tr [Op; ,(b), 2j/h|U-Yr + Ji - (i0¢,b,Y)

and (5.6) allows us to write the second term of (5.7) in the form

(5.9) Wt Op, , ()T PUYs + b7y, (5,Y).
Then by (4.23), the first term of (5.9) can be written as
(5.10) trOp, . (0)[Ur Y7, 25/h] + Jur(b,Y ) + h ™27 J (b, Y 7).
Taking by = ig,b, Y1 = YV, by = b, Yo = Y+, by = (7/)b, Y1 = Y,
b_o = (7/t)b and Y_o =Y~ we obtain (5.5) by observing that

b5 [Opy,, (8), 23 /MUY + tr Op,., (WU Yr 25/1]

=tr[Op; - (b)Ur Y7, x;/h] = 0. u

LEMMA 5.3. Let x € C°(RY) be such that x = 1 on a neighbourhood
of 0. Let b € 5% and by(x,&,y) = b(z,&, y)x(x — y). Then one can find
v € S5 such that Op; . (b) = Op; . (by + V).

Proof. Let ¢ = min{1 — 6,1 — u}. We are going to show that for every
n € N one can find b, € S5 such that Op; (b — by) = Op; . (bn) and
bn(z,€,y) = 0 for x — y in a small neighbourhood of 0. Reasoning by in-
duction we assume the existence of such b,, for a given n € N. Then we can
find b, ; € 551 guch that by, = lejgd(a:j —y;)bn; and by, j(z,€,y) =0
for y — x in a neighbourhood of 0. Next we observe that decomposing
Opy - ((zj — yj)bn,;) as a sum
(5.11)  Opy((aj =y +h 7 (t = 7)0%;p)bnj) — B (t = 7)Opy - (9e; Pbu. )
we can write the first term of (5.11) as Op; ,(ih0y;by ;). Thus (5.11) can
be written as Opm(an,j) with b1 = $h0y,bnj — (1 — T)hk”@g].pbn,j €

Ss=(n+1)e and bn1,(x, €, y) = 0 for  —y in a small neighbourhood of 0, i.e.
the statement holds for n + 1. =

Proof of Proposition 4.2. Choosing hg > 0 small enough we obtain
Z;-lzl Ip) (%, &, 2)| > ¢/2 for (z,§) € suppl and h < hg. Then using Lem-

ma 5.3 we can modify by to get Z?:l Ipiy (7,8, 9)| > ¢/3 for (z,8,y) €
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supp bp. Therefore we can find b;) € S% such that by = Z;l:l bi;)p) and
applying Proposition 4.2 we can write

(5.12)  hTHLT (b0, Y) = > (Jur(br, Vi) + RO, (g, Yog))
1<k<K

with some by € Ss , Yr € V. Applying the analogous reasoning to express
h=Pt Jer(b_g, Y_r), k= 1,..., K, we can write a formula similar to (5.12)
with Al=9=# replaced by h21=9—# and after N iterations we can replace
h1=0=# by BNO=0)=k Thus for N > p/(1 — ) we obtain (4.16) with n = 1,
and the statement of Proposition 4.2 clearly follows by inductiononn € N. =

6. Appendix
(A) Proof of (2.2) and (2.3). Dropping the indices v, 7 we can write
(6.1) o an(w) = Ja(y)s (@ —y)h ="l dy.

Further on we assume |a| > 1, hence S’y}(lo;)(x —y)dy =0 and (6.1) still holds
if a(y) is replaced by a(y) — a(zx). Therefore

02 an(x)] < {la(y) — a(@)| |73 (x = y)|n~0 dy
< Ofly — 2"y (x — )0l dy = CRO1D | [y () (3)] dy
completes the proof of (2.3). To obtain (2.2) we write
an(z) — a(z) = [ (a(y) — a(x)) s (z — y) dy,
ie. an(z) — a(@)| < CSly — o[y (@ — y)| dy = C,h".

(B) We describe how to deduce Theorem 2.1 from Theorem 2.2. Let
E’ € R be fixed such that p(z,£) > E’ and the spectrum o(P) is contained
in [E'; oo[. Next we fix £} < Ey and consider g € C§°(]—o0o; E1[). We observe
that (2.5) allows us to find hz > 0 such that supp(gop) C I'g, C Ig,
for h € ]0;hg], and we recall our hypothesis that I'g, is bounded. Then
reasoning as in the proof of Lemma 3.1 of [17] we obtain

PROPOSITION 6.1. Let § be as above. Fiz | € Ce°(R2?) such that =1
on a neighbourhood of I'g, and set L = I(x,hD). Then for every N € N,

(6.2) IG(P)(I = L) Jux = O(™).
If E < E1 < Ep then we can find g as above satisfying g > 1;p/.g). Now
125 (P)ler < [GP)]lex < 1G(P) 1 Lllex + O(RN) = O(h™%)

follows from (6.2) and from the well known estimate ||I(z, hD)||¢: = O(h™%).
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PROPOSITION 6.2. If ¢ is as above, then
(6.3) IG(P) = (g 0 p)(x, AD)||tr = O(h*~%).

Proof. Let I be as in Proposition 6.1 and Q7 = (e'Pl)(z,hD). Then it
is easy to see that computing Q7 = %Qf — iPQY we can apply (4.3) with
s = —0r, u =0 to obtain

IQFL e < IQFINIL ler < R 4(2 + [

Reasoning as in (2.18) we find ||(Le™” — Q9)L* ||y, < h9~4(2 + |t[)+, and
introducing the Fourier transform Fg = g € S(R) to write

T~ ~ T * Todt T i o\ T *

(Lg(P) = (gop)(@,hD))L* = | o 9((Le™ = Q7)L”,

—00

we obtain |[(L§(P) — (§ o p)(z, hD))L* ||y = O(h*~%), which implies (6.3)
due to (6.2). =

From (1.7) we have E € |E{; E1[ with some Ej, E] € R satisfying

(6.4) Fl <a(z,&) < Ey = Vea(z,§) # 0,
and by (2.5) we can find ¢ > 0 and hg > 0 such that
(6.5) B} <p(2,€) < Br = |[Vep(z,€)] =

for h € ]0; hol. Let go € C§°(JEy; Eq[) and g1 € C§°(]—o0; E|) be real-valued,
go = 1 in a neighbourhood of E and g1 + g3 = 1 on [E’; E]. Then

(6.6) N(P,E) = tr g, p)(P) = tr g1(P) + tr(93151,) (P)-
Using (6.3) with g1, go in place of g we find that (6.6) can be written as
(6.7) tr(g1 o p)(z, hD) + tr L. (P)L* + O(h*7),

where L = [(xz,hD) with | = gg o p. Since (z,§) € suppl = E| < p(x,§)
< Ej, (6.5) yields (2.9) and we can use Theorem 2.2 to express (6.7) as

S dx d§ dx d§

T 91 0@ ) +§ G (6511 (b, ©) + O ).

Since ¢ + g%]l[E/;E} = 1(g,g), the sum of the two integrals from (6.8) gives
(2mh)~4( __dxd¢. Finally, (2.5) and (1.7) imply

(6.8)

p<E

I'g—C'h <Tp_ow < | dedé < Tpiope < Tp+C'h*.
p<E

(C) Proposition 1.1 now follows as described in the Appendix of [17].

(D) Some properties of pseudodifferential operators. From well known
composition formulas (cf. e.g. [7, Theorem 18.5.4 and 18.5.10]) we have
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LEMMA 6.3. Let b € S§ s, be Sg& Then there is bob € Sg'gg such that

b(z, hD)b(x, hD) = (bo b)(z, hD).
Let s',s",5",5"” € R be such that the conditions
Oub € Sis. Db € S5s,  0ubE Shs e b€ Sy
hold for k € {1,...,d}, and let § = max{s' +35",s" +35'} — 1. Then

[b(z, hD), b(x, hD)] = V'(x,hD)  with b’ € S§ 5.

Proof of (4.4). Let lg(z,&) = (14 |2[*)(1 + |¢|?)%. Then l4(z, hD)~! is
of trace class and

10D 7 (B)ller < [[(la(ar, kD))~ e lla(, hD)*Opy - (B)I,

where [q(z,hD)*Op, . (b) = Op;,(bg) with by € S5t2d 5o (4.4) follows
from (4.3). m
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