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SEMICLASSICAL DISTRIBUTION OF EIGENVALUES FOR
ELLIPTIC OPERATORS WITH

HÖLDER CONTINUOUS COEFFICIENTS,
PART I: NON-CRITICAL CASE

BY

LECH ZIELIŃSKI (Calais)

Abstract. We consider a version of the Weyl formula describing the asymptotic
behaviour of the counting function of eigenvalues in the semiclassical approximation for
self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to
treat Hölder continuous coefficients and to investigate the case of critical energy values as
well.

1. Introduction. Since the papers of J. Chazarain [2] and B. Helffer
and D. Robert [4], the semiclassical spectral asymptotics has been investi-
gated in numerous works; we refer to the monographs [3], [8], [10] and [13].
The main results have been obtained by using the tools of microlocal anal-
ysis based on the approach of L. Hörmander [6]. However this approach
works only for smooth problems and the semiclassical framework is usually
considered for a non-critical energy value. Our aim is to present a method
of obtaining semiclassical estimates for more general classes of differential
operators.

(A) Formulation of the results. Let r ∈ ]0; 1] and denote by Br the set
of bounded, Hölder continuous functions of exponent r on Rd, i.e. a ∈ Br
means that a ∈ L∞(Rd) and there is C > 0 such that

(1.1) |a(x)− a(y)| ≤ C|x− y|r (x, y ∈ Rd).
Let m ∈ N∗ and for ν, ν ∈ Nd with |ν|, |ν| ≤ m consider real-valued aν,ν ∈ Br
such that aν,ν = aν,ν and

(1.2)
∑

|ν|=|ν|=m
aν,ν(x)ξν+ν ≥ c|ξ|2m (x, ξ ∈ Rd),

for some constant c > 0.
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For h > 0 let Ah be the quadratic form defined for ϕ,ψ ∈ Cm
0 (Rd) by

(1.3) Ah[ϕ,ψ] =
∑

|ν|,|ν|≤m
(aν,ν(hD)νϕ, (hD)νψ),

where (·, ·) is the scalar product of L2(Rd) and (hD)ν = (−ih)|ν|∂ν/∂xν .
The ellipticity hypothesis (1.2) ensures the Ah is bounded from below

and its closure defines a self-adjoint operator Ah. We introduce

(1.4) a(x, ξ) =
∑

|ν|,|ν|≤m
aν,ν(x)ξν+ν ,

and for E ∈ R we set

(1.5) ΓE = a−1(]−∞;E[) = {(x, ξ) ∈ R2d : a(x, ξ) < E}.
We have

Proposition 1.1. Let E,E0 ∈ R be such that E < E0 and ΓE0 is
bounded. Then one can find h0 > 0 such that for h ∈ ]0;h0], the spectrum
of Ah is discrete in ]−∞;E].

Further on, E0, E, h0 are as in Proposition 1.1 and |ΓE| =
�
a(x,ξ)<E dx dξ

is the Lebesgue measure of ΓE . For h ∈ ]0;h0] we define the counting function
N (Ah, E) as the number of eigenvalues (counted with their multiplicities)
smaller than E. Our principal result is:

Theorem 1.2. Let Ah be as above with aν,ν ∈ Br for some r ∈ ]0; 1]. If
µ ∈ ]0; 2r/(2 + r)[, then

(1.6) N (Ah, E) = |ΓE |(2πh)−d + (|ΓE+hµ | − |ΓE−hµ |)O(h−d).

Similarly to [1] one can observe that some additional conditions on a are
needed to obtain a good estimate of |ΓE+hµ | − |ΓE−hµ | as h → 0. In this
paper we are interested in the following condition:

(1.7) a(x, ξ) = E ⇒ ∇ξa(x, ξ) 6= 0.

If (1.7) holds then E will be called a non-critical energy value and it is easy
to see that this condition ensures |ΓE+hµ | − |ΓE−hµ | = O(hµ). Moreover it
is possible to obtain the following stronger estimates:

Theorem 1.3. Assume moreover (1.7). If µ ∈ ]0; r[, then

(1.8) N (Ah, E) = |ΓE|(2πh)−d +O(hµ−d).

(B) Comments. The proof of Theorem 1.3 is presented below and a suit-
able development, which allows us to prove Theorem 1.2, will be described
in [18]. The basic idea is to replace irregular coefficients by smooth ones and
to investigate the corresponding smooth problem following some ideas of
our earlier papers [14–15]. In the case of a non-critical energy value it is also
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possible to investigate the smooth problems by adapting the theory devel-
oped in the book of V. Ivrĭı [8], deducing Theorem 1.3 according to [9] (and
we also have (1.8) with the optimal value µ = 1 if the first order derivatives
of the coefficients are Hölder continuous, cf. [9] or [17]).

However the approach we present here is quite different from [9] or [17].
It seems to us that the most interesting feature of this approach is the
possibility of investigating non-critical and critical energy values in a quite
similar way and the fact that the analysis of the smooth problem works for
suitable classes of pseudodifferential operators as well.

A general plan is the following. In Section 2 we define the regularized
operators Ph; the Fourier transform allows us to express suitable functions
f̃h(Ph) by means of the evolution group Ut = eitPh/h

µ
. In Section 3 we

describe an approximation of Ut giving a pseudodifferential approximation
of f̃h(Ph) with correct asymptotic properties. The correct asymptotic be-
haviour of the approximation is proved at the end of Section 3 by means of
simple integrations by parts. In Section 4 we explain how to implement a
similar idea to estimate the difference between f̃h(Ph) and the approxima-
tion. The final computations justifying this idea are presented in Section 5
and some standard supplementary details are given in Section 6.

(C) Developments. 1. Let Ãh = Ah + hAh,1, where Ah is as above and

(1.9) ∃C0 > 0 ∀ϕ ∈ Cm0 (Rd), |Ah,1[ϕ,ϕ]| ≤ Ah[ϕ,ϕ] + C0‖ϕ‖2.
Then (Ãh[ϕ,ϕ] + C0‖ϕ‖2)1/2 and (Ah[ϕ,ϕ] + C0‖ϕ‖2)1/2 are equivalent
norms if h < h0 with h0 small enough and we can define Ãh, the associated
self-adjoint operator in L2(Rd). Moreover the assertions of Proposition 1.1,
Theorem 1.2 and 1.3 still hold with Ãh instead of Ah.

2. Let M be a compact (boundaryless) manifold with a density dx of
class Cm and let AM,h be a quadratic form on Cm(M)×Cm(M) satisfying

supp ϕ̃ ∩ supp ψ̃ = ∅ ⇒ AM,h[ϕ̃, ψ̃] = 0.

Assume that in local coordinates on U ⊂ Rd the form AM,h acts on ϕ,ψ ∈
Cm0 (U) according to the formula (1.3) with all the hypotheses of Theorem 1.2
(or 1.3) satisfied. Then a standard reasoning can be applied to obtain analo-
gous estimates for the counting function of AM,h, the associated self-adjoint
operator in L2(M,dx).

3. For an operator AM,1 considered in item 2, we can deduce the classical
Weyl formula considering a semiclassical problem ÃM,h with h = λ−1/(2m).
We need to assume the Hölder continuity of top order coefficients (|ν| = |ν|
= m) and we can consider the lower order coefficients belonging to L∞. In-
deed, reasoning as in item 1 we can modify lower order coefficients and since
the principal symbol is ξ-homogeneous, the energy value 1 is not critical,
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allowing us to adapt the proof of Theorem 1.3 to obtain

(1.10) N (AM,1, λ) = N (ÃM,λ−1/(2m) , 1) = cλd/(2m) +O(λ(d−µ)/(2m))

for every µ ∈ [0; r[. This result was described in [14–15] and we refer to
[8–11] and [16] for results concerning boundary value problems.

4. The regularity hypotheses on the coefficients aν,ν are in fact essential
only for x such that (x, ξ) ∈ ΓE0 with some E0 > E, while the behaviour
of the coefficients for other values of x can be more general: the main re-
quirement is the possibility of reducing the problem by adding an auxiliary
cut-off supported in ΓE0 as in Proposition 6.1. In particular we have as-
sumed aν,ν ∈ L∞(Rd) for the sake of simplicity, but it is possible to consider
unbounded coefficients in the framework of tempered variation models on
T ∗Rd (cf. e.g. [5]).

2. Regularized problem

(A) Definition of smooth operators. Let γ ∈ C∞0 (Rd) satisfy
�
γ(x) dx

= 1 and let γε(x) = ε−dγ(x/ε) for ε > 0.
We fix δ ∈ ]0; 1[ and define

(2.1) aν,ν,h(x) = (aν,ν ∗ γhδ)(x) = � aν,ν(y)γ(h−δ(x− y))h−δd dy.

As explained in Section 6, the hypothesis aν,ν ∈ Br ensures the estimates

(2.2) |aν,ν(x)− aν,ν,h(x)| ≤ Chδr,
(2.3) |∂αx aν,ν,h(x)| ≤ Cα(1 + hδ(r−|α|))

(for every α ∈ Nd). We define

(2.4) ph(x, ξ) =
∑

|ν|,|ν|≤m
aν,ν,h(x)ξν+ν

and assume further on that rδ > µ, hence (2.2) yields

(2.5) |∂αξ (a− ph)(x, ξ)| ≤ Cαhµ(1 + |ξ|)2m−|α|.

Moreover the operator

(2.6) P ◦h =
∑

|ν|,|ν|≤m
(hD)νaν,ν,h(x)(hD)ν

satisfies |((Ah − P ◦h )ϕ,ϕ)| ≤ Chµ((I − h2∆)mϕ,ϕ), and defining

(2.7) P±h = P ◦h ± Chµ(I − h2∆)m

(with C large enough) we obtain P−h ≤ Ah ≤ P+
h (in the sense of quadratic

forms). If h ∈ ]0;h0] with h0 as in Proposition 1.1, then the min-max prin-
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ciple (cf. [12]) yields

N (P+
h , E) ≤ N (Ah, E) ≤ N (P−h , E),

and it is clear that it suffices to prove

Theorem 2.1. The formula (1.8) holds with P±h instead of Ah.

(B) Microlocal trace formula. For E ′, E ∈ R let � [E′;E] : R → {0, 1} be
the characteristic function of [E ′;E] and let � [E′;E](P

±
h ) denote the spectral

projector of P±h on [E′;E]. If bh is a polynomially bounded smooth function
of (x, ξ) ∈ R2d, then Bh = bh(x, hD) denotes the pseudodifferential operator
acting on ϕ ∈ S(Rd) according to the formula

(Bhϕ)(x) = � dξ

(2πh)d
eixξ/hbh(x, ξ) � dy e−iyξ/hϕ(y).

Let s ∈ R. We write b ∈ Ss0,δ if b = (bh)h∈]0;1] is a family of smooth
functions satisfying the estimates

(2.8) |∂αξ ∂βx bh(x, ξ)| ≤ Cα,βh−s−|β|δ

for every α, β ∈ Nd. In Section 6 we show that Theorem 2.1 follows from

Theorem 2.2. Let Γ be a closed subset of ΓE0 such that

(2.9) (x, ξ) ∈ Γ ⇒ |∇ξph(x, ξ)| ≥ c
for some constant c > 0. Let l = (lh)h∈]0;1] ∈ S0

0,δ be such that lh is real-
valued and supp lh ⊂ Γ for every h ∈ ]0; 1]. If Lh = lh(x, hD) and L∗h
denotes its adjoint in L2(Rd), then

(2.10) tr(Lh � [E′;E](P
±
h )L∗h) = �

E′<ph(x,ξ)<E

dx dξ

(2πh)d
lh(x, ξ)2 +O(hµ−d).

(C) Plan of the proof of Theorem 2.2. Further on we drop the index h.
In particular we write simply L, l, p instead of Lh, lh, ph and we abbreviate
P±h = P . Let γ̃ ∈ C∞0 (]−1/2; 1/2[) be such that

�
γ̃ = 1 and γ̃ ≥ 0. Then

the convolution with γ̃hµ(λ) = h−µγ̃(λ/hµ) allows us to replace � [E′;E] by
the approximations

(2.11) f̃−h = � [E′+hµ/2;E−hµ/2] ∗ γ̃hµ , f̃+
h = � [E′−hµ/2;E+hµ/2] ∗ γ̃hµ ,

satisfying � [E′+hµ;E−hµ] ≤ f̃−h ≤ � [E′;E] ≤ f̃+
h ≤ � [E′−hµ;E+hµ], hence

(2.12) trLf̃−h (P )L∗ ≤ trL � [E′;E]L
∗ ≤ trLf̃+

h (P )L∗.

Clearly it suffices to prove (2.10) with f̃±h (P ) instead of � [E′;E]. Further on

we abbreviate f̃±h = f̃h; observe the estimates of derivatives

(2.13) |f̃ (k)
h (λ)| ≤ Ckh−kµ (k ∈ N).
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Next we introduce the hµ-Fourier transform of f̃h,

(2.14) fh(t) = (Fhµ f̃h)(t) =
∞

�
−∞

dλ e−iλt/h
µ
f̃h(λ),

and remark that for any k ∈ N we have

(2.15) tkfh(t) = (−i)khkµ(Fhµ f̃ (k)
h )(t) = O(1).

Since f̃h(λ) = (F−1
hµ fh)(λ) =

� ∞
−∞

dt
2πhµ fh(t)eitλ/h

µ
, we can write

(2.16) trLf̃h(P )L∗ =
∞

�
−∞

dt

2πhµ
fh(t) trLUtL∗,

where we have set Ut = eitP/h
µ
. Then our principal task is to construct a

sequence of operators (QN,t)N∈N which is a suitable approximation of LUt.
More precisely: assuming QN,t|t=0 = L and defining

(2.17) Q̃N,t =
d

dt
QN,t − iQN,tP/hµ,

we can write formally

(2.18) LUt −QN,t =
t

�
0

dτ
d

dτ
(QN,t−τUτ ) = −

t

�
0

dτ Q̃N,t−τUτ

and observe that due to (2.15–16) and (2.18), Theorem 2.2 follows from

Proposition 2.3. Let N ∈ N. Then there is QN,t ∈ B(L2(Rd)) satisfy-
ing

(2.19)
∞

�
−∞

dt

2πhµ
fh(t) trQN,tL

∗ = �
E′<p<E

dx dξ

(2πh)d
l2 +O(hµ−d),

(2.20) |tr Q̃N,t−τUτL∗| ≤ h(1−δ)N−5d(2 + |t|)CN ,

where Q̃N,t is given by (2.17), CN > 0 is a constant large enough, (t, τ) ∈
R∗ × R and τ/t ∈ [0; 1].

In Section 3 we describe the construction of

(2.21) QN,t =
(
eitp/h

µ
∑

0≤n≤N
tnq◦

N,n

)
(x, hD),

as suitable pseudodifferential operators. At the end of Section 3 we check
that (2.19) follows via integrations by parts; in Section 4 we describe a
similar strategy to obtain (2.20), completing the proof in Section 5.
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3. Description of the approximation. The operators (2.7) can be
written in a standard form

(3.1) P±h =
∑

|ν|≤2m

p±ν,h(x)(hD)ν = p±h (x, hD)

and it is easy to check that (2.3) still holds with p±ν,h instead of aν,ν,h and

(3.2) p±h (x, ξ) =
∑

|ν|≤2m

p±ν,h(x)ξν = a(x, ξ) +O(hµ)(1 + |ξ|)2m.

For a smooth function (x, ξ) 7→ bt(x, ξ) ∈ C we define

(3.3) P̃Nbt = e−itp/h
µ
(
∂t(bteitp/h

µ
)−

∑

|α|≤N

h|α|−µ

α! i|α|+1
∂αξ (bteitp/h

µ
∂αx p

±)
)
.

Further on, l ∈ S0
0,δ is as in Theorem 2.2.

Lemma 3.1. Let % = µ − 1 + δ. Let b ∈ Ss0,δ be independent of t and
such that supp b ⊂ supp l. Then we can find bn ∈ Ss+n%0,δ for n ∈ {0, . . . , N}
such that supp bn ⊂ supp l and

(3.4) P̃Nb =
∑

0≤n≤N
tnbn.

Proof. First of all we recall that b ∈ Ss0,δ, b̃ ∈ S s̃0,δ ⇒ b̃b ∈ Ss+s̃0,δ and

it is easy to see that bp, bp± belong to Ss0,δ. Since (2.5) still holds with
p±h instead of ph, and |α| ≥ 1 ⇒ h|α|∂αx aν,ν,h = O(hδr+(1−δ)|α|), we obtain

b(p − p±) ∈ S
s−δr−(1−δ)
0,δ and h|α|b∂αx p

± ∈ S
s−δr−(1−δ)|α|
0,δ if |α| ≥ 1. Using

moreover δr ≥ µ, we obtain

(3.5) b0 = ih−µ(p− p±)b+
∑

1≤|α|≤N

h|α|−µ

α!i|α|+1
∂αξ (b ∂αx p±) ∈ Ss0,δ.

Next for n ∈ {1, . . . , N} we obtain

bn =
∑

α=α0+···+αn
|α|≤N,αk 6=0 if k 6=0

cα0,...,αnh
|α|−(n+1)µ∂α0

ξ (b ∂αx p±)∂α1
ξ p · · · ∂αnξ p ∈ Ss+n%0,δ

by observing that 1 ≤ n ≤ |α| ⇒ (n+ 1)µ− (1− δ)|α| − δr ≤ n%.

Proposition 3.2. Assume that N ∈ {0, 1, . . . , N} and % = µ−1+δ ≥ 0.
Then we can find

(3.6(N)) qN,N,t =
∑

0≤n≤N
tnq◦

N,n
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such that qN,N,t|t=0 = q◦
N,0

= l and

(3.7(N)) P̃NqN,N,t =
∑

N≤n≤N+N

tnq̃ ◦
N,N,n

with

(3.8(N)) q◦
N,n
∈ S(n−1)%

0,δ , supp q◦
N,n
⊂ supp l (n ∈ {1, . . . , N}),

(3.9(N)) q̃ ◦N,N,n ∈ S
n%
0,δ, supp q̃ ◦N,N,n ⊂ supp l (n ∈ {N, . . . , N+N}).

Proof. If N = 0 then we take qN,0,t = q◦
N,0

= l ∈ S0
0,δ, and Lemma 3.1

with b = l gives the statement of Proposition 3.2 for N = 0. Next we assume
that the statement holds for a given N ≤ N − 1 and we prove that it still
holds for N + 1 in place of N .

Using the induction hypothesis (3.7(N)) to express P̃NqN,N,t we find

P̃NqN,N+1,t = P̃N (tN+1q◦
N,N+1) + P̃NqN,N,t

= tN ((N + 1)q◦
N,N+1 + q̃ ◦N,N,N ) + tN+1P̃Nq◦N,N+1 +

∑

N+1≤n≤N+N

tnq̃ ◦N,N,n.

In order to obtain (3.7(N + 1)) it suffices to cancel the term with tN taking

q◦
N,N+1 = −q̃ ◦

N,N,N
/(N + 1).

Since q̃ ◦
N,N,N

∈ SN%0,δ and supp q̃ ◦
N,N,N

⊂ supp l by the induction hypothesis,
we obtain (3.8(N + 1)), and using Lemma 3.1 with b = q◦

N,N+1
we observe

that % ≥ 0⇒ S
(N+n)%
0,δ ⊂ S(N+1+n)%

0,δ and (3.9(N + 1)) holds.

Lemma 3.3. For b ∈ C∞0 (R2d) define

(3.10) Jt(b) = � dx dξ

(2πh)d
eitp(x,ξ)/h

µ
b(x, ξ).

If b ∈ Ss0,δ satisfies supp b ⊂ supp l, then for every k ∈ N one can find
bk ∈ Ss0,δ such that supp bk ⊂ supp l and

(3.11) h−kµtkJt(b) = Jt(bk).

Proof. The hypothesis (2.9) ensures the existence of b̃j ∈ Ss0,δ such that

b =
∑d

j=1 b̃j∂ξjp and integrating by parts we find

(3.12) h−µtJt(̃bj∂ξjp) = Jt(i∂ξj b̃j).

Thus the statement of Lemma 3.3 holds for k = 1; the proof is completed
by induction on k ∈ N.

Proof of the estimate (2.19). Taking QN,t given by (2.21) with qN,N,t
defined in Proposition 3.2, we observe that QN,tL

∗ has the integral kernel
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KN,t(x, y) = � dξ

(2πh)d
ei(x−y)ξ/h+itp(x,ξ)/hµqN,N,t(x, ξ)l(y, ξ),

hence

(3.13) trQN,tL
∗ = � dxKN,t(x, x) = � dx dξ

(2πh)d
eitp/h

µ
lqN,N,t.

Therefore using Lemma 3.3 with k = n− 1 and b = h(n−1)µq◦
N,n

l ∈ S0
0,δ for

n = 2, . . . , N we can find q̃N ∈ S0
0,δ such that supp q̃N ⊂ supp l and

trQN,tL
∗ =

∑

0≤n≤N
tnJt(q◦N,nl) = Jt(l2) + tJt(q̃N ).

Changing the order of integrals we find

(3.14)
∞

�
−∞

dt

2πhµ
fh(t)Jt(l2) = � dx dξ

(2πh)d
l(x, ξ)2f̃h(p(x, ξ)).

Since supp(f̃h− � ]E′;E[) ⊂ [E′−hµ;E′+hµ]∪ [E−hµ;E+hµ], we can write
(3.14) as

�
E′<p(x,ξ)<E

dx dξ

(2πh)d
l(x, ξ)2 +R(l, p− E, hµ) +R(l, p− E′, hµ),

where

(3.15) R(l, p− E, hµ) := O(h−d) �
E−hµ≤p(x,ξ)≤E+hµ

dx dξ l(x, ξ)2

can be estimated by O(hµ−d) due to the hypothesis (2.9), and the same is
true with E′ instead of E. Next we use tfh(t) = −ihµ(Fhµ f̃ ′h)(t) to write

(3.16)
∞

�
−∞

dt

2πhµ
fh(t)tJt(q̃N ) = � dx dξ

(2πh)d
q̃N (x, ξ)(−i)hµf̃ ′h(p(x, ξ))

and we complete the proof of (2.19) by observing that since q̃N = O(1),
supp q̃N ⊂ supp l, hµf̃ ′h = O(1) and supp f̃ ′h ⊂ [E′ − hµ;E′ + hµ] ∪
[E − hµ;E + hµ], we can estimate (3.16) as before by

R(q̃N , p−E, hµ) +R(q̃N , p− E′, hµ) = O(hµ−d).

4. Auxiliary notations and properties

(A) Expression Q̃N,t−τ . Set V = {(t, τ) ∈ R∗ × R : τ/t ∈ [0; 1]}.
For s ∈ R we will write b ∈ S̃s if b = (bh,t,τ )h∈]0;1[, (t,τ)∈V satisfies

(4.1) |∂αξ ∂βx,ybh,t,τ (x, ξ, y)| ≤ Cα,βh−s−|β|δ(1 + |t|)C0

for every (α, β) ∈ Nd × N2d and supp bh,t,τ ⊂ (supp l)× Rd.
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Further on, ‖·‖ is the norm in the space B(L2(Rd)) of bounded operators,
and ‖B‖tr := tr (B∗B)1/2 is the trace class norm. If b ∈ S̃s then the formula

(4.2) (Opt,τ (b)ϕ)(x) = � dy dξ

(2πh)d
ei(x−y)ξ/h+i(t−τ)p(x,ξ)/hµbh,t,τ (x, ξ, y)ϕ(y)

defines Opt,τ (b) ∈ B(L2(Rd)) satisfying

(4.3) ‖Opt,τ (b)‖ ≤ Ch−s(2 + |t|)C0(1 + |t|/hµ)2d

for some constant C > 0 due to the Calderón–Vaillancourt theorem (cf. e.g.
[7, Section 18.6]). As proved at the end of Section 6, b ∈ S̃s also satisfies

(4.4) ‖Opt,τ (b)‖tr ≤ h−s−5d(2 + |t|)C′ .
Using (2.21), (3.6(N)) and P = P ∗ = p±(x, hD)∗, we find

QN,tP = Opt,0(qN,N,t(x, ξ) p
±(y, ξ)),

hence writing the Taylor development of y 7→ p±(y, ξ) at x and using

(y − x)αei(x−y)ξ/h = (ih)|α|∂αξj (e
i(x−y)ξ/h)

to perform standard integrations by parts in (4.2), we find

(4.5) Q̃N,t = Opt,0((P̃NqN,N,t)(x, ξ) + rN,t),

with the remainder term of the Taylor development of order N ,

(4.6) rN,t(x, ξ, y) = e−itp(x,ξ)/h
µ
(N + 1)

1

�
0

dσ (1− σ)N r̃N,σ,t(x, ξ, y),

where

(4.7) r̃N,σ,t(x, ξ, y)

=
∑

|α|=N+1

hN+1−µ

iN+2α!
∂αξ
(
(qN,N,te

itp/hµ)(x, ξ) ∂αx p±(x+ σ(y − x), ξ)
)
.

Let q̃ ◦N,N,n be as in Proposition 3.2 and define

(4.8) q̃ ◦N,n,t,τ (x, ξ, y) = (1− τ/t)n q̃ ◦N,N,n(x, ξ).

Then q̃ ◦N,n ∈ S̃n% ⊂ S̃nµ−N(1−δ) and we can write

(4.9) (P̃NqN,N,t−τ )(x, ξ) =
∑

N≤n≤2N

tnq̃ ◦N,n,t,τ (x, ξ, y).

Using the form of qN,N,t in (4.6–7), as in the proof of Lemma 3.1 we find

r◦
N,n
∈ S̃nµ−N(1−δ) such that

(4.10) rN,t−τ =
∑

0≤n≤2N

tnr◦
N,n,t,τ

and deduce



EIGENVALUES FOR ELLIPTIC OPERATORS 167

Corollary 4.1. There exist q̃N,n ∈ S̃nµ−N(1−δ) such that

(4.11) Q̃N,t−τ =
∑

0≤n≤2N

tn Opt,τ (q̃N,n).

(B) Auxiliary operator algebra Y. It is easy to see that Ut : S(Rd)
→ S(Rd) and for any B : S(Rd)→ S(Rd) we can define Yτ (B) := U∗τBUτ .
We write Y ∈ Y0 if there is N ∈ N such that Y = (Yτ )τ∈R has the form

(4.12) Yτ =
∑

1≤k≤N
�

[0;1]N

dw s′w,k,τYτsw,k,1(Bk,1) · · ·Yτsw,k,N (Bk,N ),

where Bk,k′ = bk,k′(x, hD) with




bk,k′ ∈ S0
0,δ for (k, k′) ∈ {1, . . . , N}2,

sw,k,k′ ∈ [−1; 1] for (w, k, k′) ∈ [0; 1]N × {1, . . . , N}2,

s′w,k,τ ∈C, |s′w,k,τ | ≤ (2 + |τ |)N for (w, k, τ)∈ [0; 1]N ×{1, . . . , N}×R.

We observe that taking sw,k,k′ = s′w,k,τ = 1 we obtain Yτ (Bk,1) · · ·Yτ (Bk,N )
∈ Y0 and it is not difficult to see that Y0 is an algebra with the property

(4.13) Y ∈ Y0 ⇒ ∃C > 0, ‖Yτ‖ ≤ (2 + |τ |)C .
We define Ŝs0,δ as the class of symbols b such that bn(x, ξ) = b(x, ξ)(1+ |ξ|2n)
belongs to Ss0,δ for any n ∈ N. Finally, we define Y as the set of operators
Y ∈ Y0 of the form (4.12), where bk,k′ , sw,k,k′ , s′w,k,τ are as before and for

every k ∈ {1, . . . , N} there is k′ ∈ {1, . . . , N} such that bk,k′ ∈ Ŝ0,δ.
For b ∈ S̃s, Y ∈ Y we define

(4.14) Jt,τ (b, Y ) := tr Opt,τ (b)UτYτ .

Using this notation and (4.11) we can write

(4.15) tr Q̃N,t−τUτL
∗ =

∑

0≤n≤2N

tnJt,τ (q̃N,n, L
∗).

In Section 5 we will prove

Proposition 4.2. Let Y ∈ Y and b0 ∈ S̃s. Then for every n ∈ N one
can find Kn ∈ N∗ and bn,k ∈ S̃s, Yn,k ∈ Y for k = 1, . . . ,Kn such that

(4.16) h−nµtnJt,τ (b0, Y ) =
∑

1≤k≤Kn
Jt,τ (bn,k, Yn,k).

It is easy to see that Proposition 4.2 implies the estimates (2.20). Indeed,
Proposition 4.2 allows us to replace each term of (4.15) by Jt,τ (bN,n,k, YN,n,k)

with bN,n,k ∈ S̃−N(1−δ), hence (2.20) follows from (4.13) and (4.4).

(C) Commutators with xj/h. We denote by xj the operator of multipli-
cation by the jth coordinate.
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Lemma 4.3. If Y ∈ Y and % = µ− 1 + δ, then there exist Ỹ +, Ỹ − ∈ Y
such that

(4.17) [Yτ , xj/h] = Ỹ +
τ + h−%τ Ỹ −τ .

Proof. Let B = b(x, hD) with b ∈ Ŝ0
0,δ. We will show that

(4.18) [Yτ (Bk,k′), xj/h] = Y +
τ + h−%τY −τ

with some Y +, Y − ∈ Y. To start we write

(4.19) [Yτ (B), xj/h] = U∗τ [B,Y−τ (xj/h)]Uτ

and introduce

(4.20) Pj := [iP, xj/h] = ∂ξjp
±(x, hD).

Then we can write the Taylor formula

(4.21) Y−τ (xj/h)

= xj/h− τ(∂τYτ )|τ=0(xj/h) + τ 2
1

�
0

dσ (1− σ)∂2
τY−στ (xj/h)

= xj/h+ h−µτPj + h−2µτUτYτ ([Pj, iP ])U∗τ ,

where Yτ (B̃) := τ
� 1
0 dσ (1−σ)Y(1−σ)τ(B̃) for any B̃ : S(Rd)→ S(Rd). Using

(4.21) we can express the commutator (4.19) in the form

(4.22) Yτ ([B, xj/h]) + h−%τYτ (hδ−1[B,Pj])

+ h−%τ [Yτ (B), Yτ (hδ−1−µ[Pj, P ])]

and since [B, xj/h] = −i∂ξjb(x, hD), the first term of (4.22) belongs to Y.

Then using Lemma 6.3 we find that hδ−1[B,Pj] = bj(x, hD) with bj ∈ Ŝ0
0,δ

and hδ−1−µ[P,Pj] = pj(x, hD) with (1 + |ξ|2)−2mpj(x, ξ) belonging to S0
0,δ.

Thus choosing E′0 ∈ R large enough we have P ′ = P +E′0I ≥ I and we can
write

Yτ (hδ−1−µ[Pj , P ])] = Yτ (BP ′2)Yτ (hδ−1−µP ′−2[Pj , P ])].

Then BP ′2 = b̃(x, hD) with b̃ ∈ Ŝ0
0,δ and the standard parametrix construc-

tion (cf. e.g. [7, Theorem 8.1.9]) gives P ′−2hδ−1−µ[P,Pj] = p̃j(x, hD) with
p̃j ∈ S0

0,δ, completing the proof of (4.18).
If we assume only B = b(x, hD) with b ∈ S0

0,δ, then reasoning as above
we can find Y +, Y − ∈ Y0 such that

(4.18′) [Yτ (Bk,k′), xj/h] = Y +
τ + h−%τY −τ P

′2.

It is clear that to obtain the general statement of Lemma 4.3 it remains
to commute successively xj/h with Yτsw,k,k′ (Bk,k′), k

′ ∈ {1, . . . , N}. If

bk,k′ ∈ S0
0,δ, then we still have P ′2Bk,k′P ′−2 = b̃k,k′(x, hD) with bk,k′ ∈ S0

0,δ,
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hence P ′2 from the last term of (4.18′) can be put near bk,k′(x, hD) with k′

such that bk,k′ ∈ Ŝ0
0,δ, i.e. Y ∈ Y ⇒ Y P ′2 ∈ Y.

Lemma 4.4. Let Y ∈ Y and Pj = [iP, xj/h]. Then one can find Y +, Y −

∈ Y such that

(4.23) h−µτPjUτYτ = [UτYτ , xj/h] + Uτ (Y +
τ + h−%τY −τ ).

Proof. Using (4.21) to express [Uτ , xj/h] = (Y−τ (xj/h) − xj/h)Uτ and
applying Lemma 4.3, we find

[UτYτ , xj/h] = [Uτ , xj/h]Yτ + Uτ [Yτ , xj/h]

h−µτPjUτYτ + h−%τUτYτ (hδ−1−µ[Pj, iP ])Yτ + Uτ (Ỹ +
τ + h−%τ Ỹ −τ ),

i.e. (4.23) holds with Y −τ = −Yτ (hδ−1−µ[Pj , iP ])Yτ − Ỹ −τ , Y +
τ = −Ỹ +

τ .

5. End of proof of Theorem 2.2. It remains to prove Proposition 4.2.
We start with

Lemma 5.1. Let b ∈ S̃s. Define b∂ξjp ∈ S̃s by

(5.1) (b∂ξjp)(x, ξ, y) = b(x, ξ, y)∂ξjp(x, ξ).

Then

(5.2) [Opt,τ (b), xj/h] = h−µ(t− τ)Opt,τ (b∂ξjp)−Opt,τ (i∂ξjb).

Proof. Since the integral kernel of [Opt,τ (b), xj/h] is

(5.3) (x, y) 7→ � dξ

(2πh)d
yj − xj
h

ei(x−y)ξ/h+i(t−τ)p(x,ξ)/hµb(x, ξ, y),

using yj−xj
h ei(x−y)ξ/h = i∂ξje

i(x−y)ξ/h to integrate by parts, we can rewrite
it as

� dξ

(2πh)d
ei(x−y)ξ/h+i(t−τ)p(x,ξ)/hµ(h−µ(t− τ)∂ξjpb− i∂ξjb)(x, ξ, y).

Proposition 5.2. Let b ∈ S̃s, Y ∈ Y, j ∈ {1, . . . , d} and set

(5.4) p(j),t,τ (x, ξ, y) =
(

1− τ

t

)
∂ξjp(x, ξ) +

τ

t
∂ξjp

±(y, ξ).

Then there exist bk ∈ S̃s and Yk ∈ Y such that

(5.5) h−µtJt,τ (p(j)b, Y ) =
∑

1≤k≤2

(Jt,τ (bk, Yk) + h−%tJt,τ (b−k, Y−k)).

Proof. Since Pj = P ∗j = ∂ξjp
±(x, hD)∗ is a differential operator of order

2m− 1, the standard composition formula gives

(5.6) Opt,τ (b)Pj = Opt,τ (b∂ξjp
] + h1−δ b̃),
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where (b∂ξjp
])(x, ξ, y) = b(x, ξ, y) ∂ξjp±(y, ξ) and b̃ ∈ S̃s has the form

b̃(x, ξ, y) =
∑

1≤|α|≤2m−1

h|α|−1+δ

i|α|α!
∂αy b(x, ξ, y) ∂αξ ∂ξjp

±(y, ξ).

By definition h−µt Jt,τ (p(j)b, Y ) can be expressed as

(5.7) h−µ(t− τ) tr Opt,τ (b∂ξjp)UτYτ + h−µτ tr Opt,τ (b∂ξjp
])UτYτ .

Due to (5.2) the first term of (5.7) can be written as

(5.8) tr [Opt,τ (b), xj/h]UτYτ + Jt,τ (i∂ξjb, Y )

and (5.6) allows us to write the second term of (5.7) in the form

(5.9) h−µ tr Opt,τ (b)τPjUτYτ + h−%τJt,τ (̃b, Y ).

Then by (4.23), the first term of (5.9) can be written as

(5.10) tr Opt,τ (b)[UτYτ , xj/h] + Jt,τ (b, Y +) + h−%τJt,τ (b, Y −).

Taking b1 = i∂ξjb, Y1 = Y , b2 = b, Y2 = Y +, b−1 = (τ/t)̃b, Y−1 = Y ,
b−2 = (τ/t)b and Y−2 = Y − we obtain (5.5) by observing that

tr [Opt,τ (b), xj/h]UτYτ + tr Opt,τ (b)[UτYτ , xj/h]

= tr [Opt,τ (b)UτYτ , xj/h] = 0.

Lemma 5.3. Let χ ∈ C∞0 (Rd) be such that χ = 1 on a neighbourhood
of 0. Let b ∈ S̃s and bχ(x, ξ, y) = b(x, ξ, y)χ(x − y). Then one can find
b′ ∈ S̃s−1 such that Opt,τ (b) = Opt,τ (bχ + b′).

Proof. Let ε = min{1 − δ, 1 − µ}. We are going to show that for every
n ∈ N one can find bn ∈ S̃s−nε such that Opt,τ (b − bχ) = Opt,τ (bn) and
bn(x, ξ, y) = 0 for x − y in a small neighbourhood of 0. Reasoning by in-
duction we assume the existence of such bn for a given n ∈ N. Then we can
find bn,j ∈ S̃s−nε such that bn =

∑
1≤j≤d(xj − yj)bn,j and bn,j(x, ξ, y) = 0

for y − x in a neighbourhood of 0. Next we observe that decomposing
Opt,τ ((xj − yj)bn,j) as a sum

(5.11) Opt,τ ((xj − yj +h1−µ(t− τ)∂ξjp)bn,j)−h1−µ(t− τ)Opt,τ (∂ξjpbn,j),

we can write the first term of (5.11) as Opt,τ (ih∂xjbn,j). Thus (5.11) can
be written as Opt,τ (bn+1,j) with bn+1,j = ih∂xjbn,j − (t − τ)h1−µ∂ξjpbn,j ∈
S̃s−(n+1)ε and bn+1,j(x, ξ, y) = 0 for x−y in a small neighbourhood of 0, i.e.
the statement holds for n+ 1.

Proof of Proposition 4.2. Choosing h0 > 0 small enough we obtain∑d
j=1 |p(j)(x, ξ, x)| ≥ c/2 for (x, ξ) ∈ supp l and h < h0. Then using Lem-

ma 5.3 we can modify b0 to get
∑d

j=1 |p(j)(x, ξ, y)| ≥ c/3 for (x, ξ, y) ∈
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supp b0. Therefore we can find b(j) ∈ S̃s such that b0 =
∑d

j=1 b(j)p(j) and
applying Proposition 4.2 we can write

(5.12) h−µtJt,τ (b0, Y ) =
∑

1≤k≤K
(Jt,τ (bk, Yk) + h1−δ−µtJt,τ (b−k, Y−k))

with some bk ∈ S̃s, Yk ∈ Y. Applying the analogous reasoning to express
h−µt Jt,τ (b−k, Y−k), k = 1, . . . ,K, we can write a formula similar to (5.12)
with h1−δ−µ replaced by h2(1−δ)−µ and after N iterations we can replace
h1−δ−µ by hN(1−δ)−µ. Thus for N ≥ µ/(1− δ) we obtain (4.16) with n = 1,
and the statement of Proposition 4.2 clearly follows by induction on n ∈ N.

6. Appendix

(A) Proof of (2.2) and (2.3). Dropping the indices ν, ν we can write

(6.1) ∂αx ah(x) = � a(y)γ(α)
hδ

(x− y)h−δ|α| dy.

Further on we assume |α| ≥ 1, hence
�
γ

(α)
hδ

(x−y) dy = 0 and (6.1) still holds
if a(y) is replaced by a(y)− a(x). Therefore

|∂αx ah(x)| ≤ � |a(y)− a(x)| |γ(α)
hδ

(x− y)|h−δ|α| dy

≤ C � |y − x|r|γ(α)
hδ

(x− y)|h−δ|α| dy = Ch(r−|α|)δ � |y|r|γ(α)(y)| dy
completes the proof of (2.3). To obtain (2.2) we write

ah(x)− a(x) = � (a(y)− a(x))γhδ(x− y) dy,

i.e. |ah(x)− a(x)| ≤ C
�
|y − x|r|γhδ(x− y)| dy = Crh

rδ.

(B) We describe how to deduce Theorem 2.1 from Theorem 2.2. Let
E′ ∈ R be fixed such that p(x, ξ) ≥ E ′ and the spectrum σ(P ) is contained
in [E′;∞[. Next we fix E1 < E0 and consider g̃ ∈ C∞0 (]−∞;E1[). We observe
that (2.5) allows us to find hg̃ > 0 such that supp(g̃ ◦ p) ⊂ ΓE1 ⊂ ΓE0

for h ∈ ]0;hg̃], and we recall our hypothesis that ΓE0 is bounded. Then
reasoning as in the proof of Lemma 3.1 of [17] we obtain

Proposition 6.1. Let g̃ be as above. Fix l̃ ∈ C∞0 (R2d) such that l̃ = 1
on a neighbourhood of ΓE1 and set L̃ = l̃(x, hD). Then for every N ∈ N,

(6.2) ‖g̃(P )(I − L̃)‖tr = O(hN).

If E < E1 < E0 then we can find g̃ as above satisfying g̃ ≥ � [E′;E]. Now

‖ � [E′;E](P )‖tr ≤ ‖g̃(P )‖tr ≤ ‖g̃(P )‖ ‖L̃‖tr +O(hN) = O(h−d)

follows from (6.2) and from the well known estimate ‖l̃(x, hD)‖tr = O(h−d).
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Proposition 6.2. If g̃ is as above, then

(6.3) ‖g̃(P )− (g̃ ◦ p)(x, hD)‖tr = O(hµ−d).

Proof. Let l̃ be as in Proposition 6.1 and Q◦t = (eitp l̃)(x, hD). Then it
is easy to see that computing Q̃◦t = d

dtQ
◦
t − iPQ◦t we can apply (4.3) with

s = −δr, µ = 0 to obtain

‖Q̃◦t L̃∗‖tr ≤ ‖Q̃◦t‖ ‖L̃∗‖tr ≤ hδr−d(2 + |t|)C.
Reasoning as in (2.18) we find ‖(L̃eitP −Q◦t )L∗‖tr ≤ hδr−d(2 + |t|)C+1, and
introducing the Fourier transform F g̃ = g ∈ S(R) to write

(L̃g̃(P )− (g̃ ◦ p)(x, hD))L̃∗ =
∞

�
−∞

dt

2π
g(t)(L̃eitP −Q◦t )L̃∗,

we obtain ‖(L̃g̃(P ) − (g̃ ◦ p)(x, hD))L̃∗‖tr = O(hµ−d), which implies (6.3)
due to (6.2).

From (1.7) we have E ∈ ]E′1;E1[ with some E1, E
′
1 ∈ R satisfying

(6.4) E′1 ≤ a(x, ξ) ≤ E1 ⇒∇ξa(x, ξ) 6= 0,

and by (2.5) we can find c > 0 and h0 > 0 such that

(6.5) E′1 ≤ p(x, ξ) ≤ E1 ⇒ |∇ξp(x, ξ)| ≥ c
for h ∈ ]0;h0]. Let g0 ∈ C∞0 (]E′1;E1[) and g1 ∈ C∞0 (]−∞;E[) be real-valued,
g0 = 1 in a neighbourhood of E and g1 + g2

0 = 1 on [E′;E]. Then

(6.6) N (P,E) = tr � [E′;E](P ) = tr g1(P ) + tr(g2
0 � [E′;E])(P ).

Using (6.3) with g1, g0 in place of g̃ we find that (6.6) can be written as

(6.7) tr(g1 ◦ p)(x, hD) + trL � [E′;E](P )L∗ +O(hµ−d),

where L = l(x, hD) with l = g0 ◦ p. Since (x, ξ) ∈ supp l ⇒ E′1 ≤ p(x, ξ)
≤ E1, (6.5) yields (2.9) and we can use Theorem 2.2 to express (6.7) as

(6.8) � dx dξ

(2πh)d
g1(p(x, ξ)) + � dx dξ

(2πh)d
(g2

0 � [E′;E])(p(x, ξ)) +O(hµ−d).

Since g1 + g2
0 � [E′;E] = � [E′;E], the sum of the two integrals from (6.8) gives

(2πh)−d
�
p<E dx dξ. Finally, (2.5) and (1.7) imply

ΓE − C ′hµ ≤ ΓE−Chµ ≤ �
p<E

dx dξ ≤ ΓE+Chµ ≤ ΓE + C ′hµ.

(C) Proposition 1.1 now follows as described in the Appendix of [17].

(D) Some properties of pseudodifferential operators. From well known
composition formulas (cf. e.g. [7, Theorem 18.5.4 and 18.5.10]) we have
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Lemma 6.3. Let b ∈ Ss0,δ, b̃ ∈ S s̃0,δ. Then there is b � b̃ ∈ Ss+s̃0,δ such that

b(x, hD)̃b(x, hD) = (b � b̃)(x, hD).

Let s′, s′′, s̃ ′, s̃ ′′ ∈ R be such that the conditions

∂xkb ∈ Ss
′

0,δ, ∂ξkb ∈ Ss
′′

0,δ, ∂xk b̃ ∈ S s̃
′

0,δ, ∂ξk b̃ ∈ S s̃
′′

0,δ

hold for k ∈ {1, . . . , d}, and let s = max{s′ + s̃ ′′, s′′ + s̃ ′} − 1. Then

[b(x, hD), b̃(x, hD)] = b′(x, hD) with b′ ∈ Ss0,δ.

Proof of (4.4). Let ld(x, ξ) = (1 + |x|2)d(1 + |ξ|2)d. Then ld(x, hD)−1 is
of trace class and

‖Opt,τ (b)‖tr ≤ ‖(ld(x, hD)∗)−1‖tr‖ld(x, hD)∗Opt,τ (b)‖,

where ld(x, hD)∗Opt,τ (b) = Opt,τ (bd) with bd ∈ S̃s+2d, i.e. (4.4) follows
from (4.3).
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coefficients, I, II , Osaka J. Math. 28 (1991), 935–973; 30 (1993), 267–301.

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. I–IV, Aca-
demic Press, New York, 1972, 1975, 1979.

[13] D. Robert, Autour de l’approximation semi-classique, Birkhäuser, Boston, 1987.
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