VOL. 99

2004

NO. 2

SOLVABILITY OF THE FUNCTIONAL EQUATION f = (T - I)hFOR VECTOR-VALUED FUNCTIONS

BҮ

RYOTARO SATO (Okayama)

Abstract. Let X be a reflexive Banach space and $(\Omega, \mathcal{A}, \mu)$ be a probability measure space. Let $T: M(\mu; X) \to M(\mu; X)$ be a linear operator, where $M(\mu; X)$ is the space of all X-valued strongly measurable functions on $(\Omega, \mathcal{A}, \mu)$. We assume that T is continuous in the sense that if (f_n) is a sequence in $M(\mu; X)$ and $\lim_{n\to\infty} f_n = f$ in measure for some $f \in M(\mu; X)$, then also $\lim_{n\to\infty} Tf_n = Tf$ in measure. Then we consider the functional equation f = (T - I)h, where $f \in M(\mu; X)$ is given. We obtain several conditions for the existence of $h \in M(\mu; X)$ satisfying f = (T - I)h.

1. Introduction. Let $(X, \|\cdot\|_X)$ be a reflexive Banach space and $(\Omega, \mathcal{A}, \mu)$ be a probability measure space. Let $M(\mu; X)$ denote the linear space of all X-valued strongly measurable functions on Ω under pointwise operations. Two functions f and g in $M(\mu; X)$ are not distinguished provided that $f(\omega) = g(\omega)$ for almost all $\omega \in \Omega$. We define a metric d_0 on $M(\mu; X)$ by

$$d_0(f,g) := \int_{\Omega} \frac{\|f(\omega) - g(\omega)\|_X}{1 + \|f(\omega) - g(\omega)\|_X} \, d\mu.$$

It is known that under this metric $M(\mu; X)$ becomes an *F*-space (see p. 8 of [8] for the definition of an *F*-space). It is easily checked that if (f_n) is a sequence in $M(\mu; X)$, then $\lim_{n\to\infty} d_0(f_n, f) = 0$ for some $f \in M(\mu; X)$ is equivalent to the convergence of f_n to f in measure as $n \to \infty$.

For $0 , let <math>L_p(\mu; X)$ denote the set of all functions f in $M(\mu; X)$ such that $\int_{\Omega} \|f(\omega)\|_X^p d\mu < \infty$. If 0 , then under the metric

$$d_{p}(f,g) := \int_{\Omega} \|f(\omega) - g(\omega)\|_{X}^{p} d\mu \quad (= \|f - g\|_{p}^{p})$$

 $L_p(\mu; X)$ becomes an F-space, and if $1 \le p < \infty$, then under the norm

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A35, 28D05, 37A20.

Key words and phrases: reflexive Banach space, probability measure space, vectorvalued function, null-preserving transformation, measure-preserving transformation, Lamperti-type operator, conservative, ergodic, cohomology equation, coboundary.

$$\|f\|_p := \left(\int_{\Omega} \|f(\omega)\|_X^p \, d\mu\right)^{1/p}$$

 $L_p(\mu; X)$ becomes a Banach space. For $p = \infty$, let $L_{\infty}(\mu; X)$ denote the set of all functions f in $M(\mu; X)$ such that $||f||_{\infty} := \text{ess sup}\{||f(\omega)||_X : \omega \in \Omega\} < \infty$. Then $L_{\infty}(\mu; X)$ becomes a Banach space under the norm $|| \cdot ||_{\infty}$. The symbols $M(\mu)$ and $L_p(\mu)$ ($0) mean <math>M(\mu; X)$ and $L_p(\mu; X)$, respectively, for X = the scalars.

Let $T: M(\mu; X) \to M(\mu; X)$ be a linear operator continuous with respect to the metric d_0 , and let $f \in M(\mu; X)$ be given. We consider the solvability of the cohomology equation f = (T - I)h. We first prove that if $0 < r_n < 1$ and $\lim_{n\to\infty} r_n = 1$, and the series $\sum_{k=0}^{\infty} r_n^k T^k f$ is summable in $M(\mu; X)$ for every $n \ge 1$, then the condition

$$\sup_{n\geq 1} \int_{\Omega} \left\| \left(\sum_{k=0}^{\infty} r_n^k T^k f \right)(\omega) \right\|_X d\lambda < \infty,$$

where λ is a σ -finite measure equivalent to μ , implies that there exists $h \in L_1(\lambda; X)$ such that f = (T - I)h. Applying this, we then extend Assani's result [2] to vector-valued functions. Next, we consider a Lamperti-type operator $T = T_{\xi,\tau}$ (i.e., T has the form $Tf(\omega) = \xi(\omega)f(\tau\omega)$ for $f \in M(\mu; X)$ and $\omega \in \Omega$, where $\xi \in M(\mu)$ and τ is a null-preserving transformation on $(\Omega, \mathcal{A}, \mu)$). We extend Krzyżewski's result [6] to vector-valued functions. Lastly, we consider a Lamperti-type operator $T = T_{\xi,\tau}$, where τ is a measure-preserving transformation on $(\Omega, \mathcal{A}, \mu)$. Under this assumption, we extend Alonso, Hong and Obaya's result [1] and the author's result [9] to vector-valued functions.

For general notions and definitions in ergodic theory we follow Krengel's book [5].

2. Results. Our main result is the following theorem.

THEOREM 1. Let X be a reflexive Banach space and v be a strictly positive measurable function on Ω . Let T be a continuous linear operator on $M(\mu; X)$, and $f \in M(\mu; X)$. Assume that (r_n) is a sequence of positive numbers such that $0 < r_n < 1$, $\lim_{n\to\infty} r_n = 1$, and the series $\sum_{k=0}^{\infty} r_n^k T^k f$ is summable in $M(\mu; X)$ for every $n \ge 1$. Then the condition

(1)
$$C := \sup_{n \ge 1} \iint_{\Omega} \left\| \left(\sum_{k=0}^{\infty} r_n^k T^k f \right)(\omega) \right\|_X v(\omega) \, d\mu < \infty$$

implies that there exists $h \in M(\mu; X)$ satisfying f = (T - I)h and $\int_{\Omega} \|h(\omega)\|_X v(\omega) d\mu \leq C$.

For the proof of Theorem 1 we need the following key lemma.

LEMMA 1 (cf. [6]). Let X be a reflexive Banach space and (f_n) be a sequence in $M(\mu; X)$ such that

(2)
$$\sup_{n \ge 1} \|f_n(\omega)\|_X < \infty \quad \text{for almost all } \omega \in \Omega.$$

Then there exists a function $g \in M(\mu; X)$ satisfying

(3)
$$g(\omega) = \lim_{n \to \infty} \tilde{f}_n(\omega) \quad \text{for almost all } \omega \in \Omega,$$

where \tilde{f}_n is a function in the convex hull $co(\{f_l : l \ge n\})$.

Proof. Define a nonnegative measurable function F on Ω by

$$F(\omega) = \sup_{n \ge 1} \|f_n(\omega)\|_X \quad (\omega \in \Omega),$$

and put

$$\Omega_l = \{ \omega : F(\omega) \le l \} \quad (l = 1, 2, \ldots).$$

It follows that $\Omega_1 \subset \Omega_2 \subset \cdots$ and $\Omega = \lim_{l\to\infty} \Omega_l \pmod{\mu}$. Since $\{f_n : n \geq 1\}$ is uniformly bounded on Ω_l and since $L_2(\Omega_l; X)$ is reflexive by the reflexivity of X (cf. Corollary IV.1.2 of [3]), it follows that the set $\{f_n|_{\Omega_l} : n \geq 1\}$ is weakly sequentially compact in $L_2(\Omega_l; X)$. Thus, there exists a subsequence $(f_{n'})$ of (f_n) and a function $g_l \in L_2(\Omega_l; X)$ such that

$$f_{n'}|_{\Omega_l} \to g_l$$
 weakly in $L_2(\Omega_l; X)$ as $n' \to \infty$.

By the diagonal argument we see that there exists a subsequence (f_{n_k}) of (f_n) and a function $g \in M(\mu; X)$ such that for each $l \ge 1$,

$$f_{n_k}|_{\Omega_l} \to g|_{\Omega_l}$$
 weakly in $L_2(\Omega_l; X)$ as $k \to \infty$.

By Theorem 3.13 of [8], there exists $\tilde{f}_l \in co(\{f_{n_k} : k \ge l\})$ for each $l \ge 1$ such that

$$\sum_{k=l}^{\infty} \int_{\Omega_l} \|g(\omega) - \widetilde{f}_k(\omega)\|_X^2 \, d\mu < \sum_{k=l}^{\infty} 2^{-k} \le 1 \quad (l \ge 1).$$

Hence, $\lim_{k\to\infty} \widetilde{f}_k(\omega) = g(\omega)$ for almost all $\omega \in \Omega$, and the proof is complete.

Proof of Theorem 1. Let $f_n = \sum_{k=0}^{\infty} r_n^k T^k f$ for each $n \ge 1$. Since

$$\lim_{N \to \infty} d_0 \left(\sum_{k=0}^N r_n^k T^k f, f_n \right) = 0,$$

it follows that $\lim_{N\to\infty} d_0(r_n^N T^N f, 0) = 0$, i.e., $\lim_{N\to\infty} r_n^N T^N f = 0$ in

 $M(\mu; X)$. This together with the continuity of T implies

$$f_n - Tf_n = \lim_{N \to \infty} \left(\sum_{k=0}^{N} r_n^k T^k f - \sum_{k=0}^{N} r_n^k T^{k+1} f \right)$$

=
$$\lim_{N \to \infty} \left[f - (1 - r_n) T \left(\sum_{k=0}^{N-1} r_n^k T^k f \right) - r_n^N T^{N+1} f \right]$$

=
$$f - (1 - r_n) Tf_n \quad (\text{in } M(\mu; X)).$$

Here, since $\int_{\Omega} (1-r_n) \|f_n(\omega)\|_X v(\omega) d\mu \leq (1-r_n)C \to 0$ as $n \to \infty$, we may assume without loss of generality (if necessary, choose a subsequence of (f_n)) that

(4)
$$\lim_{n \to \infty} (1 - r_n) f_n(\omega) = 0 \quad \text{for almost all } \omega \in \Omega.$$

Thus

$$\lim_{n \to \infty} (1 - r_n) f_n = 0 \quad (\text{in } M(\mu; X)),$$

and so by the continuity of T,

$$\lim_{n \to \infty} (1 - r_n) T f_n = 0 \quad (\text{in } M(\mu; X))$$

Thus, choosing a further subsequence of (f_n) if necessary, we may again assume that

(5)
$$\lim_{n \to \infty} (1 - r_n) T f_n(\omega) = 0 \quad \text{for almost all } \omega \in \Omega.$$

Let then $h_n(\omega) = ||f_n(\omega)||_X$ for $n \ge 1$. By condition (1) we have

$$\sup_{n \ge 1} \int_{\Omega} h_n(\omega) v(\omega) \, d\mu = C < \infty,$$

and hence we may apply Komlós's theorem [4] to infer that there exists a subsequence (h_{n_k}) of (h_n) and a nonnegative function $H \in L_1(vd\mu)$ such that

$$H(\omega) = \lim_{N \to \infty} N^{-1} \sum_{k=1}^{N} h_{n_k}(\omega) \quad \text{for almost all } \omega \in \Omega.$$

In order to prove the theorem, we may assume without loss of generality that $n_k = k$ for all $k \ge 1$, i.e., $(h_{n_k}) = (h_k)$. Under this assumption

$$H(\omega) = \lim_{N \to \infty} N^{-1} \sum_{k=1}^{N} h_k(\omega) \quad \text{for almost all } \omega \in \Omega,$$

and thus

(6)
$$\sup_{N \ge 1} \left\| N^{-1} \sum_{k=1}^{N} f_k(\omega) \right\|_X \le \sup_{N \ge 1} N^{-1} \sum_{k=1}^{N} h_k(\omega) < \infty$$
 for almost all $\omega \in \Omega$.

Then, by Lemma 1 there exists a sequence (\widetilde{F}_n) of functions in $M(\mu; X)$

such that

(i)
$$\widetilde{F}_n \in \operatorname{co}(\{N^{-1}\sum_{k=1}^N f_k : N \ge n\})$$
 for every $n \ge 1$, and
(ii) the limit
(7) $G(\omega) = \lim_{n \to \infty} \widetilde{F}_n(\omega)$

exists for almost all $\omega \in \Omega$.

We then deduce by Fatou's lemma and (1) that

(8)
$$\int_{\Omega} \|G(\omega)\|_X v(\omega) \, d\mu \le \liminf_{n \to \infty} \int_{\Omega} \|\widetilde{F}_n(\omega)\|_X v(\omega) \, d\mu \le C$$

On the other hand, since

$$\widetilde{F}_n \in \operatorname{co}\left(\left\{N^{-1}\sum_{k=1}^N f_k : N \ge n\right\}\right) \text{ and } f_k - Tf_k = f - (1 - r_k)Tf_k,$$

(5) implies that

$$\lim_{n \to \infty} (\widetilde{F}_n(\omega) - T\widetilde{F}_n(\omega)) = f(\omega) \quad \text{for almost all } \omega \in \Omega,$$

and hence

$$G - TG = \lim_{n \to \infty} (\widetilde{F}_n - T\widetilde{F}_n) = f \quad (\text{in } M(\mu; X)),$$

which completes the proof.

COROLLARY 1 (cf. [2]). Let X be a reflexive Banach space and v be a strictly positive measurable function on Ω . Let $T : L_1(vd\mu; X) \to L_1(vd\mu; X)$ be a linear operator continuous with respect to the metric d_0 , and assume that $f \in L_1(vd\mu; X)$. Then the condition

(9)
$$C := \sup_{n \ge 1} \int_{\Omega} \left\| \sum_{k=0}^{n-1} T^k f(\omega) \right\|_X v(\omega) \, d\mu < \infty$$

implies that there exists $h \in L_1(vd\mu; X)$ with f = (T-I)h and $||h||_{L_1(vd\mu; X)} \leq C$.

Proof. For 0 < r < 1 we have (formally)

$$\sum_{k=0}^{\infty} r^k T^k f = (1-r) \Big(\sum_{k=0}^{\infty} r^k \Big) \sum_{k=0}^{\infty} r^k T^k f = (1-r) \sum_{k=0}^{\infty} r^k \Big(\sum_{j=0}^k T^j f \Big),$$

and (9) implies that $\|\sum_{j=0}^{k} T^{j} f\|_{L_{1}(vd\mu;X)} \leq C$ for all $k \geq 0$. Thus, the series $\sum_{k=0}^{\infty} r^{k} T^{k} f$ is summable in $L_{1}(vd\mu;X)$, and hence also in $M(\mu;X)$. Furthermore, we have

$$\sup_{0 < r < 1} \int_{\Omega} \left\| \left(\sum_{k=0}^{\infty} r^k T^k f \right)(\omega) \right\|_X v(\omega) \, d\mu \le C.$$

Hence, the desired conclusion follows from the proof of Theorem 1.

The following example, showing that the converse implications of Theorem 1 and Corollary 1 do not hold in general, may be interesting.

EXAMPLE 1. Let μ be the probability measure on the set \mathbb{Z} of all integers defined by

$$\mu(\{k\}) = (1/3)2^{-|k|} \text{ for } k \in \mathbb{Z}$$

Define a positive function v on \mathbb{Z} by

$$v(k) = \begin{cases} 3 \cdot 2^{-k} & \text{if } k \le 0, \\ 3(k+1) \cdot 2^k & \text{if } k \ge 1. \end{cases}$$

Thus, the measure $\lambda = v d\mu$ satisfies

$$\lambda(\{k\}) = \begin{cases} 1 & \text{if } k \le 0, \\ k+1 & \text{if } k \ge 1. \end{cases}$$

Define a continuous linear operator T on $M(\mu)$ by Tf(m) = f(m-1) for $m \in \mathbb{Z}$. Then, by an easy computation, the restriction of T to $L_1(vd\mu)$ is a continuous linear operator on $L_1(vd\mu)$ such that $||T^n||_{L_1(vd\mu)} = n+1$ for every $n \ge 0$. Let $h = \chi_{\{-1\}}$, and put f = (T-I)h. Then we have $f = \chi_{\{0\}} - \chi_{\{-1\}}$, and the series $\sum_{k=0}^{\infty} r^k T^k f$, where 0 < r < 1, is summable in $L_1(vd\mu)$ and hence also in $M(\mu)$. It is easy to see that

$$\left(\sum_{k=0}^{\infty} r^k T^k f\right)(k) = \begin{cases} 0 & \text{if } k \le -2, \\ -1 & \text{if } k = -1, \\ r^k - r^{k+1} & \text{if } k \ge 0. \end{cases}$$

Hence,

$$\left\|\sum_{k=0}^{\infty} r^{k} T^{k} f\right\|_{L_{1}(vd\mu)} = 1 + (1-r) \sum_{k=0}^{\infty} r^{k} (k+1)$$
$$= 1 + (1-r)^{-1} \to \infty \quad \text{as } r \uparrow 1$$

and condition (9) does not hold either.

THEOREM 2 (cf. [6]). Let X be a reflexive Banach space and τ be a conservative ergodic null-preserving transformation on Ω . Let $\xi \in M(\mu)$, and let $T = T_{\xi,\tau}$ be the continuous linear operator on $M(\mu; X)$ defined by $Tf(\omega) = T_{\xi,\tau}f(\omega) = \xi(\omega)f(\tau\omega)$ for $f \in M(\mu; X)$ and $\omega \in \Omega$. Then conditions (I) and (II) below satisfy (I) \Rightarrow (II) for $f \in M(\mu; X)$. If in addition $C := \sup_{n \geq 1} ||T^n||_{\infty} < \infty$, then (I) and (II) are equivalent.

(I) There exists $A \in \mathcal{A}$ with $\mu(A) > 0$ and an absolute constant K > 0such that if $\omega, \tau^n \omega \in A$ for some $n \ge 1$, then $\|S_n f(\omega)\|_X \le K$, where n-1

$$S_n f(\omega) := \sum_{k=0}^{n-1} T^k f(\omega) \quad \text{for } n \ge 1.$$

(II) There exists $h \in M(\mu; X)$ such that f = (T - I)h.

Proof. (I) \Rightarrow (II). Using the equality $T^n f(\omega) = \xi(\omega) \cdots \xi(\tau^{n-1}\omega) f(\tau^n \omega)$, we first notice that for any $n, m \ge 1$ and $\omega \in \Omega$,

(10)
$$S_{n+m}f(\omega) = S_nf(\omega) + S_m(T^nf)(\omega)$$
$$= S_nf(\omega) + S_m(\xi(\cdot)\cdots\xi(\tau^{n-1}\cdot)f(\tau^n\cdot))(\omega)$$
$$= S_nf(\omega) + [\xi(\omega)\cdots\xi(\tau^{n-1}\omega)]S_mf(\tau^n\omega).$$

Next, by the conservativity and ergodicity of τ we have

(11)
$$\Omega = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \tau^{-k} A \; (\operatorname{mod} \mu).$$

Thus, it may be assumed without loss of generality that for every $\omega \in \Omega$ the set $\{n \ge 1 : \tau^n \omega \in A\}$ is infinite. Then for every $\omega \in \Omega$ there exists a strictly increasing sequence $(r_j(\omega))_{j=1}^{\infty}$ of positive integers such that

$${r_j(\omega) : j \ge 1} = {n \ge 1 : \tau^n \omega \in A}.$$

By (10) we have

$$S_{r_j(\omega)}f(\omega) = S_{r_1(\omega)}f(\omega) + S_{r_j(\omega)-r_1(\omega)}(T^{r_1(\omega)}f)(\omega)$$

= $S_{r_1(\omega)}f(\omega) + [\xi(\omega)\cdots\xi(\tau^{r_1(\omega)-1}\omega)]S_{r_j(\omega)-r_1(\omega)}f(\tau^{r_1(\omega)}\omega).$

Since $\tau^{r_1(\omega)}\omega$ and $\tau^{r_j(\omega)-r_1(\omega)}(\tau^{r_1(\omega)}\omega)$ belong to A, it follows from (I) that

(12)
$$\|S_{r_j(\omega)-r_1(\omega)}f(\tau^{r_1(\omega)}\omega)\|_X \le K$$

Therefore,

(13)
$$\sup_{j\geq 1} \|S_{r_j(\omega)}f(\omega)\|_X \le \|S_{r_1(\omega)}f(\omega)\|_X + |\xi(\omega)\cdots\xi(\tau^{r_1(\omega)-1}\omega)|_K < \infty.$$

Hence, putting

(14)
$$f_n(\omega) := n^{-1} \sum_{j=1}^n S_{r_j(\omega)} f(\omega) \quad (n \ge 1),$$

we get

(15)
$$\sup_{n \ge 1} \|f_n\|_X < \infty \quad \text{for every } \omega \in \Omega,$$

so that by Lemma 1 there exists a strongly measurable X-valued function g on \varOmega such that

(16)
$$g(\omega) = \lim_{n \to \infty} \widetilde{f}_n(\omega)$$
 for almost all $\omega \in \Omega$,

where $\tilde{f}_n \in \operatorname{co}(\{f_k : k \ge n\})$. Thus, \tilde{f}_n has the form

$$\widetilde{f}_n = \sum_{j=1}^{j(n)} C_{n,j} f_{k_j},$$

where

$$C_{n,j} > 0, \quad \sum_{j=1}^{j(n)} C_{n,j} = 1, \quad k_j \ge n \text{ for } 1 \le j \le j(n).$$

And from (16) we may assume without loss of generality that

(17)
$$g(\omega) = \lim_{n \to \infty} \tilde{f}_n(\omega) \quad \text{for all } \omega \in \Omega.$$

CASE 1: $r_1(\omega) = 1$. Then, by the definition of $r_j(\omega)$ it follows that $r_j(\tau\omega) = r_{j+1}(\omega) - 1$ for every $j \ge 1$. Thus, using the equality

(18)
$$S_n f(\omega) - \xi(\omega) S_{n-1} f(\tau \omega) = f(\omega) \text{ for } n \ge 2 \text{ and } \omega \in \Omega$$

we get

$$\sum_{j=2}^{n} S_{r_j(\omega)} f(\omega) - \xi(\omega) \sum_{j=1}^{n-1} S_{r_j(\tau\omega)} f(\tau\omega) = (n-1)f(\omega).$$

From this, together with the fact that $S_{r_1(\omega)}f(\omega) = S_1f(\omega) = f(\omega)$, we have (cf. (14))

$$f_n(\omega) - \xi(\omega)f_n(\tau\omega) = \frac{n-1}{n}f(\omega) + \frac{1}{n}f(\omega) - \frac{1}{n}\xi(\omega)S_{r_n(\tau\omega)}f(\tau\omega)$$
$$= f(\omega) - \frac{1}{n}\xi(\omega)S_{r_n(\tau\omega)}f(\tau\omega),$$

and by (13),

$$\lim_{n \to \infty} n^{-1} |\xi(\omega)| \cdot ||S_{r_n(\tau\omega)} f(\tau\omega)||_X = 0.$$

Consequently,

$$(I-T)g(\omega) = g(\omega) - \xi(\omega)g(\tau\omega) = \lim_{n \to \infty} [\widetilde{f}_n(\omega) - \xi(\omega)\widetilde{f}_n(\tau\omega)] = f(\omega).$$

CASE 2: $r_1(\omega) \ge 2$. Then we have $r_j(\tau \omega) = r_j(\omega) - 1$, so that by (18),

$$\sum_{j=1}^{n} S_{r_j(\omega)} f(\omega) - \xi(\omega) \sum_{j=1}^{n} S_{r_j(\tau\omega)} f(\tau\omega) = n f(\omega).$$

Thus it follows that $f_n(\omega) - \xi(\omega)f_n(\tau\omega) = f(\omega)$ for every $n \ge 1$, and

$$(I-T)g(\omega) = g(\omega) - \xi(\omega)g(\tau\omega) = \lim_{n \to \infty} [\widetilde{f}_n(\omega) - \xi(\omega)\widetilde{f}_n(\tau\omega)] = f(\omega).$$

This completes the proof of $(I) \Rightarrow (II)$.

To prove the second half of Theorem 2, assume that $C := \sup_{n \ge 1} ||T^n||_{\infty} < \infty$, and that (II) holds. Then there exists a constant M > 0 such that the set $A = \{\omega : ||h(\omega)||_X \le M\}$ satisfies $\mu(A) > 0$. Since f = Th - h, we may assume without loss of generality that $f(\omega) = Th(\omega) - h(\omega)$ for all $\omega \in \Omega$. Then, for all $n \ge 1$ and $\omega \in \Omega$ we have

$$S_n f(\omega) = T^n h(\omega) - h(\omega) = \xi(\omega) \cdots \xi(\tau^{n-1}\omega) h(\tau^n \omega) - h(\omega).$$

Since $||T^n||_{\infty} = ||\xi(\cdot)\xi(\tau \cdot)\cdots\xi(\tau^{n-1}\cdot)||_{\infty} \leq C$ for all $n \geq 1$ by hypothesis, we may assume without loss of generality that $|\xi(\omega)\xi(\tau\omega)\cdots\xi(\tau^{n-1}\omega)| \leq C$ for all $n \geq 1$ and $\omega \in \Omega$. Then

$$||S_n f(\omega)||_X \le C ||h(\tau^n \omega)||_X + ||h(\omega)||_X \quad \text{ for all } n \ge 1 \text{ and } \omega \in \Omega,$$

and so $\omega, \tau^n \omega \in A$ for some $n \geq 1$ implies that $||S_n f(\omega)||_X \leq CM + M$. Therefore, (I) holds with K := CM + M, and the proof is complete.

PROPOSITION 1. Let τ be an invertible null-preserving transformation on Ω , and $\xi \in M(\mu)$. Let $T = T_{\xi,\tau}$ be as in Theorem 2. Then the following conditions are equivalent:

- (I) The restriction of T to $L_{\infty}(\mu; X)$ is an invertible operator on $L_{\infty}(\mu; X)$ such that $C := \sup \{ \|T^n\|_{\infty} : n \in \mathbb{Z} \} < \infty.$
- (II) There exists $\zeta \in L^+_{\infty}(\mu)$, with $1/\zeta \in L^+_{\infty}(\mu)$, such that $|\xi(\omega)| = \zeta(\tau\omega)/\zeta(\omega)$ for almost all $\omega \in \Omega$.

Proof. (I) \Rightarrow (II). Since the restriction of T to $L_{\infty}(\mu; X)$ is an invertible operator on $L_{\infty}(\mu; X)$ by hypothesis, it follows that $|\xi(\omega)| > 0$ for almost all $\omega \in \Omega$, and for every $n \ge 1$ we have

(19)
$$\begin{cases} T^n f(\omega) = \xi(\omega) \cdots \xi(\tau^{n-1}\omega) f(\tau^n \omega), \\ T^{-n} f(\omega) = \frac{1}{\xi(\tau^{-1}\omega) \cdots \xi(\tau^{-n}\omega)} f(\tau^{-n}\omega). \end{cases}$$

Thus, by the inequalities $||T^n||_{\infty} \leq C$ and $||T^{-n}||_{\infty} \leq C$,

$$|\xi(\omega)\cdots\xi(\tau^{n-1}\omega)| \le C, \quad \frac{1}{|\xi(\tau^{-1}\omega)\cdots\xi(\tau^{-n}\omega)|} \le C \quad \text{for almost all } \omega \in \Omega,$$

and since τ is invertible,

$$\frac{1}{|\xi(\omega)\cdots\xi(\tau^{n-1}\omega)|} \le C \quad \text{for almost all } \omega \in \Omega \ (n \ge 1).$$

It follows that

(20)
$$-\log C \le \sum_{j=0}^{n-1} \log |\xi(\tau^j \omega)| \le \log C$$
 for almost all $\omega \in \Omega$ $(n \ge 1)$.

Now, we apply Corollary 6 of [7] to infer that there exists $g \in L_{\infty}(\mu)$ such that $\log |\xi(\omega)| = g(\tau\omega) - g(\omega)$ for almost all $\omega \in \Omega$. Since $|\xi(\omega)| = e^{g(\tau\omega)}/e^{g(\omega)}$, the function $\zeta(\omega) := e^{g(\omega)}$ ($\omega \in \Omega$) satisfies $|\xi(\omega)| = \zeta(\tau\omega)/\zeta(\omega)$ for almost all $\omega \in \Omega$, and furthermore by the fact that $g \in L_{\infty}(\mu)$ we have $\zeta, 1/\zeta \in L_{\infty}^{+}(\mu)$.

 $(II) \Rightarrow (I)$. Condition (II) implies that

$$\begin{aligned} \|1/\zeta\|_{\infty}^{-1} \|\zeta\|_{\infty}^{-1} &\leq |\xi(\omega)| = \zeta(\tau\omega)/\zeta(\omega) \\ &\leq \|\zeta\|_{\infty} \|1/\zeta\|_{\infty} \quad \text{for almost all } \omega \in \Omega. \end{aligned}$$

It follows that the restriction of T to $L_{\infty}(\mu; X)$ is an invertible operator on $L_{\infty}(\mu; X)$, and for every $n \in \mathbb{Z}$ and $f \in L_{\infty}(\mu; X)$ we have

$$||T^n f(\omega)||_X = \frac{\zeta(\tau^n \omega)}{\zeta(\omega)} ||f(\tau^n \omega)||_X$$
 for almost all $\omega \in \Omega$.

Thus

 $||T^n||_{\infty} \le ||\zeta||_{\infty} ||1/\zeta||_{\infty} \quad (n \in \mathbb{Z}),$

and this completes the proof.

From now on we restrict ourselves to the case where τ is a measurepreserving transformation in order to discuss the solvability problem in $L_p(\mu; X)$, with 0 .

PROPOSITION 2. Let τ be an invertible measure-preserving transformation on Ω , and $\xi \in M(\mu)$. Let $T = T_{\xi,\tau}$ be as in Theorem 2. If 0 ,then the following conditions are equivalent:

- (I) The restriction of T to $L_p(\mu; X)$ is an invertible operator on $L_p(\mu; X)$ such that $\sup\{||T^n||_p : n \in \mathbb{Z}\} < \infty$, where $||T^n||_p := \sup\{||T^nf||_p : ||f||_p = 1, f \in L_p(\mu; X)\}.$
- (II) There exists $\zeta \in L^+_{\infty}(\mu)$, with $1/\zeta \in L^+_{\infty}(\mu)$, such that $|\xi(\omega)| = \zeta(\tau\omega)/\zeta(\omega)$ for almost all $\omega \in \Omega$.

Proof. (I) \Rightarrow (II). Since the restriction of T to $L_p(\mu; X)$ is an invertible operator on $L_p(\mu; X)$ by hypothesis, it follows as above that $|\xi(\omega)| > 0$ for almost all $\omega \in \Omega$. Hence, (19) holds for every $n \ge 1$, and since τ is measure-preserving, we then have

$$||T^{n}||_{p} = ||\xi(\cdot)\cdots\xi(\tau^{n-1}\cdot)||_{\infty}, \quad ||T^{-n}||_{p} = \left\|\frac{1}{\xi(\tau^{-1}\cdot)\cdots\xi(\tau^{-n}\cdot)}\right\|_{\infty}$$

Thus, we can apply the proof of (I) \Rightarrow (II) of Proposition 1 to obtain the present implication.

 $(II) \Rightarrow (I)$. The proof is the same as that of $(II) \Rightarrow (I)$ of Proposition 1, and we omit the details.

REMARK 1. It follows from the above propositions that if τ is an invertible measure-preserving transformation on Ω , then $\sup\{||T^n||_{\infty} : n \in \mathbb{Z}\} = \sup\{||T^n||_p : n \in \mathbb{Z}\}$ for every p with 0 .

THEOREM 3 (cf. [1], [10]). Let X be a reflexive Banach space and τ be an invertible measure-preserving transformation on Ω . Let $\xi \in M(\mu)$, and $T = T_{\xi,\tau}$ be as in Theorem 2. Assume that 0 , and that the $restriction of T to <math>L_p(\mu; X)$ is an invertible operator on $L_p(\mu; X)$ such that $\sup\{||T^n||_p : n \in \mathbb{Z}\} < \infty$. Then the following conditions are equivalent for $f \in M(\mu; X)$:

- (I) There exists $A \in \mathcal{A}$ with $\mu(A) > 0$ and an absolute constant K > 0such that
 - (i) if $\omega, \tau^n \omega \in A$ for some $n \ge 1$, then $\|S_n f(\omega)\|_X \le K$, (ii) $\liminf_{n\to\infty} n^{-1} \sum_{j=0}^{n-1} \int_A \|S_j f(\omega)\|_X^p d\mu < \infty$.
- (II) There exists $h \in L_p(\mu; X)$ such that f = (T I)h.

Proof. (I) \Rightarrow (II). By Proposition 2 there exists $\zeta \in L^+_{\infty}$, with $1/\zeta \in$ $L^+_{\infty}(\mu)$, such that $|\xi(\omega)| = \zeta(\tau\omega)/\zeta(\omega)$ for almost all $\omega \in \Omega$. Thus, there exists a constant D > 0 such that for every $n \ge 1$,

(21)
$$D^{-1} \leq |\xi(\omega)\xi(\tau\omega)\cdots\xi(\tau^{n-1}\omega)| \leq D$$
 for almost all $\omega \in \Omega$.

Furthermore, by Theorem 2 there exists $h \in M(\mu; X)$ such that f = (T-I)h. Hence, $S_j f = T^j h - h$ for every $j \ge 1$, and

$$\|h(\omega) + S_j f(\omega)\|_X = \|T^j h(\omega)\|_X = |\xi(\omega) \cdots \xi(\tau^{j-1}\omega)| \cdot \|h(\tau^j \omega)\|_X$$

for almost all $\omega \in \Omega$

Thus, by (21) we have

(22)
$$||h(\tau^{j}\omega)||_{X}^{p} \leq D^{p}||h(\omega) + S_{j}f(\omega)||_{X}^{p}$$
 for almost all $\omega \in \Omega$.

Now, define a nonnegative measurable function F on Ω by

$$F(\omega) = \liminf_{n \to \infty} n^{-1} \sum_{j=1}^{n} \|S_j f(\omega)\|_X^p \quad (\omega \in \Omega).$$

Then, by Fatou's lemma,

$$\int_{A} F(\omega) \, d\mu \leq \liminf_{n \to \infty} n^{-1} \sum_{j=1}^{n} \int_{A} \|S_j f(\omega)\|_X^p \, d\mu < \infty,$$

so that $F(\omega) < \infty$ for almost all $\omega \in A$. Since the function

$$G(\omega) = \liminf_{n \to \infty} n^{-1} \sum_{j=1}^{n} \|h(\omega) + S_j f(\omega)\|_X^p \quad (\omega \in \Omega)$$

satisfies $G(\omega) < \infty$ whenever $F(\omega) < \infty$, it follows from (22) that

(23)
$$\liminf_{n \to \infty} n^{-1} \sum_{j=1}^{n} \|h(\tau^{j}\omega)\|_{X}^{p} \le D^{p}G(\omega) < \infty \quad \text{for almost all } \omega \in A.$$

On the other hand, since τ is ergodic and measure-preserving by hypothesis, the Birkhoff pointwise ergodic theorem implies that

$$\lim_{n \to \infty} n^{-1} \sum_{j=1}^{n} \|h(\tau^{j}\omega)\|_{X}^{p} = \int_{\Omega} \|h(\omega)\|_{X}^{p} d\mu \quad \text{for almost all } \omega \in \Omega.$$

Therefore, by (23) we have $h \in L_p(\mu; X)$.

 \boldsymbol{n}

(II) \Rightarrow (I). Since $\sup_{n\geq 1} ||T^n||_{\infty} = \sup_{n\geq 1} ||T^n||_p < \infty$, this implication follows immediately from Theorem 2, and the proof is complete.

THEOREM 4 (cf. [9]). Let X be a reflexive Banach space and τ be an invertible measure-preserving transformation on Ω . Let $\xi \in M(\mu)$, and $T = T_{\xi,\tau}$ be as in Theorem 2. Assume that the restriction of T to $L_{\infty}(\mu; X)$ is an invertible operator on $L_{\infty}(\mu; X)$ such that $\sup \{ \|T^n\|_{\infty} : n \in \mathbb{Z} \} < \infty$. Then the following conditions are equivalent for $f \in M(\mu; X)$:

- (I) There exists $A \in \mathcal{A}$ with $\mu(A) > 0$ and an absolute constant K > 0 such that
 - (i) if $\omega, \tau^n \omega \in A$ for some $n \ge 1$, then $||S_n f(\omega)||_X \le K$,
 - (ii) $\lim \inf_{n \to \infty} n^{-1} \sum_{j=1}^{n} \|\chi_A \cdot S_j f\|_{\infty} < \infty.$
- (II) There exists $h \in L_{\infty}(\mu; X)$ such that f = (T I)h.

Proof. (I) \Rightarrow (II). By Proposition 1 there exists a constant D > 0 such that for every $n \geq 1$ we have $D^{-1} \leq |\xi(\omega)\xi(\tau\omega)\cdots\xi(\tau^{n-1}\omega)| \leq D$ for almost all $\omega \in \Omega$. And by Theorem 2 there exists $h \in M(\mu; X)$ such that f = (T - I)h. Thus, $h + S_j f = T^j h$ for every $j \geq 1$, and we deduce by (19) applied to h in place of f that

$$\|h(\omega)\|_X + \|S_j f(\omega)\|_X \ge \|T^j h(\omega)\|_X \ge D^{-1} \|h(\tau^j \omega)\|_X$$

for almost all $\omega \in \Omega$.

It follows that

$$D\Big(\|\chi_A \cdot h\|_{\infty} + n^{-1} \sum_{j=1}^n \|\chi_A \cdot (S_j f)\|_{\infty}\Big) \ge n^{-1} \sum_{j=1}^n \|\chi_A \cdot (h \circ \tau^j)\|_{\infty}$$
$$= n^{-1} \sum_{j=1}^n \|(\chi_A \circ \tau^{-j}) \cdot h\|_{\infty} \ge \Big\|\Big(n^{-1} \sum_{j=1}^n \chi_A \circ \tau^{-j}\Big) \cdot h\Big\|_{\infty}.$$

Here, considering the set $A \cap \{\omega : ||h(\omega)||_X \leq N\}$ for a sufficiently large N > 0 instead of A (if necessary), we may assume from the start that $\chi_A \cdot h \in L_{\infty}(\mu; X)$. Then we find by condition (ii) of (I) that

(24)
$$\liminf_{n \to \infty} \left\| \left(n^{-1} \sum_{j=1}^{n} \chi_A \circ \tau^{-j} \right) \cdot h \right\|_{\infty} < \infty.$$

On the other hand, by the Birkhoff pointwise ergodic theorem we have

$$\lim_{n \to \infty} n^{-1} \sum_{j=1}^n \chi_A(\tau^{-j}\omega) = \mu(A) > 0 \quad \text{for almost all } \omega \in \Omega.$$

Hence, (24) implies that $h \in L_{\infty}(\mu; X)$.

(II) \Rightarrow (I). This follows immediately from Theorem 2, and hence the proof is complete.

REMARK 2. One may wonder whether condition (i) of (I) can be omitted in Theorems 3 and 4. The author thinks that this is not known even if X =the scalars. On the other hand, if X = the scalars and $\xi \equiv 1$ on Ω , then it is known that condition (i) of (I) can be omitted in Theorems 3 and 4. See [1], [9] and [10].

REFERENCES

- A. I. Alonso, J. Hong and R. Obaya, Absolutely continuous dynamics and real coboundary cocycles in L^p-spaces, 0
- [2] I. Assani, A note on the equation y = (I T)x in L^1 , Illinois J. Math. 43 (1999), 540–541.
- [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, 1977.
- [4] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229.
- [5] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
- [6] K. Krzyżewski, A note on a generalized cohomology equation, Colloq. Math. 84/85 (2000), part 2, 279–283.
- [7] M. Lin and R. Sine, Ergodic theory and the functional equation (I T)x = y, J. Operator Theory 10 (1983), 153–166.
- [8] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- [9] R. Sato, A remark on real coboundary cocycles in L[∞]-space, Proc. Amer. Math. Soc. 131 (2003), 231–233.
- [10] —, On solvability of the cohomology equation in function spaces, Studia Math. 156 (2003), 277–293.

Department of Mathematics Okayama University Okayama, 700-8530 Japan E-mail: satoryot@math.okayama-u.ac.jp

Received 6 January 2004 (4413)