COLLO Q UIUM MATHEMATICUM

SOLVABILITY OF THE FUNCTIONAL EQUATION $f=(T-I) h$ FOR VECTOR-VALUED FUNCTIONS

BY
RYOTARO SATO (Okayama)

Abstract

Let X be a reflexive Banach space and $(\Omega, \mathcal{A}, \mu)$ be a probability measure space. Let $T: M(\mu ; X) \rightarrow M(\mu ; X)$ be a linear operator, where $M(\mu ; X)$ is the space of all X-valued strongly measurable functions on $(\Omega, \mathcal{A}, \mu)$. We assume that T is continuous in the sense that if $\left(f_{n}\right)$ is a sequence in $M(\mu ; X)$ and $\lim _{n \rightarrow \infty} f_{n}=f$ in measure for some $f \in M(\mu ; X)$, then also $\lim _{n \rightarrow \infty} T f_{n}=T f$ in measure. Then we consider the functional equation $f=(T-I) h$, where $f \in M(\mu ; X)$ is given. We obtain several conditions for the existence of $h \in M(\mu ; X)$ satisfying $f=(T-I) h$.

1. Introduction. Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space and $(\Omega, \mathcal{A}, \mu)$ be a probability measure space. Let $M(\mu ; X)$ denote the linear space of all X-valued strongly measurable functions on Ω under pointwise operations. Two functions f and g in $M(\mu ; X)$ are not distinguished provided that $f(\omega)=g(\omega)$ for almost all $\omega \in \Omega$. We define a metric d_{0} on $M(\mu ; X)$ by

$$
d_{0}(f, g):=\int_{\Omega} \frac{\|f(\omega)-g(\omega)\|_{X}}{1+\|f(\omega)-g(\omega)\|_{X}} d \mu .
$$

It is known that under this metric $M(\mu ; X)$ becomes an F-space (see p. 8 of [8] for the definition of an F-space). It is easily checked that if $\left(f_{n}\right)$ is a sequence in $M(\mu ; X)$, then $\lim _{n \rightarrow \infty} d_{0}\left(f_{n}, f\right)=0$ for some $f \in M(\mu ; X)$ is equivalent to the convergence of f_{n} to f in measure as $n \rightarrow \infty$.

For $0<p<\infty$, let $L_{p}(\mu ; X)$ denote the set of all functions f in $M(\mu ; X)$ such that $\int_{\Omega}\|f(\omega)\|_{X}^{p} d \mu<\infty$. If $0<p<1$, then under the metric

$$
d_{p}(f, g):=\int_{\Omega}\|f(\omega)-g(\omega)\|_{X}^{p} d \mu \quad\left(=\|f-g\|_{p}^{p}\right)
$$

$L_{p}(\mu ; X)$ becomes an F-space, and if $1 \leq p<\infty$, then under the norm

[^0]$$
\|f\|_{p}:=\left(\int_{\Omega}\|f(\omega)\|_{X}^{p} d \mu\right)^{1 / p}
$$
$L_{p}(\mu ; X)$ becomes a Banach space. For $p=\infty$, let $L_{\infty}(\mu ; X)$ denote the set of all functions f in $M(\mu ; X)$ such that $\|f\|_{\infty}:=\operatorname{ess} \sup \left\{\|f(\omega)\|_{X}\right.$: $\omega \in \Omega\}<\infty$. Then $L_{\infty}(\mu ; X)$ becomes a Banach space under the norm $\|\cdot\|_{\infty}$. The symbols $M(\mu)$ and $L_{p}(\mu)(0<p \leq \infty)$ mean $M(\mu ; X)$ and $L_{p}(\mu ; X)$, respectively, for $X=$ the scalars.

Let $T: M(\mu ; X) \rightarrow M(\mu ; X)$ be a linear operator continuous with respect to the metric d_{0}, and let $f \in M(\mu ; X)$ be given. We consider the solvability of the cohomology equation $f=(T-I) h$. We first prove that if $0<r_{n}<1$ and $\lim _{n \rightarrow \infty} r_{n}=1$, and the series $\sum_{k=0}^{\infty} r_{n}^{k} T^{k} f$ is summable in $M(\mu ; X)$ for every $n \geq 1$, then the condition

$$
\sup _{n \geq 1} \int_{\Omega}\left\|\left(\sum_{k=0}^{\infty} r_{n}^{k} T^{k} f\right)(\omega)\right\|_{X} d \lambda<\infty,
$$

where λ is a σ-finite measure equivalent to μ, implies that there exists $h \in$ $L_{1}(\lambda ; X)$ such that $f=(T-I) h$. Applying this, we then extend Assani's result [2] to vector-valued functions. Next, we consider a Lamperti-type operator $T=T_{\xi, \tau}$ (i.e., T has the form $T f(\omega)=\xi(\omega) f(\tau \omega)$ for $f \in M(\mu ; X)$ and $\omega \in \Omega$, where $\xi \in M(\mu)$ and τ is a null-preserving transformation on $(\Omega, \mathcal{A}, \mu)$). We extend Krzyżewski's result [6] to vector-valued functions. Lastly, we consider a Lamperti-type operator $T=T_{\xi, \tau}$, where τ is a measurepreserving transformation on $(\Omega, \mathcal{A}, \mu)$. Under this assumption, we extend Alonso, Hong and Obaya's result [1] and the author's result [9] to vectorvalued functions.

For general notions and definitions in ergodic theory we follow Krengel's book [5].
2. Results. Our main result is the following theorem.

Theorem 1. Let X be a reflexive Banach space and v be a strictly positive measurable function on Ω. Let T be a continuous linear operator on $M(\mu ; X)$, and $f \in M(\mu ; X)$. Assume that $\left(r_{n}\right)$ is a sequence of positive numbers such that $0<r_{n}<1, \lim _{n \rightarrow \infty} r_{n}=1$, and the series $\sum_{k=0}^{\infty} r_{n}^{k} T^{k} f$ is summable in $M(\mu ; X)$ for every $n \geq 1$. Then the condition

$$
\begin{equation*}
C:=\sup _{n \geq 1} \int_{\Omega}\left\|\left(\sum_{k=0}^{\infty} r_{n}^{k} T^{k} f\right)(\omega)\right\|_{X} v(\omega) d \mu<\infty \tag{1}
\end{equation*}
$$

implies that there exists $h \in M(\mu ; X)$ satisfying $f=(T-I) h$ and $\int_{\Omega}\|h(\omega)\|_{X} v(\omega) d \mu \leq C$.

For the proof of Theorem 1 we need the following key lemma.

Lemma 1 (cf. [6]). Let X be a reflexive Banach space and $\left(f_{n}\right)$ be a sequence in $M(\mu ; X)$ such that

$$
\begin{equation*}
\sup _{n \geq 1}\left\|f_{n}(\omega)\right\|_{X}<\infty \quad \text { for almost all } \omega \in \Omega \tag{2}
\end{equation*}
$$

Then there exists a function $g \in M(\mu ; X)$ satisfying

$$
\begin{equation*}
g(\omega)=\lim _{n \rightarrow \infty} \widetilde{f}_{n}(\omega) \quad \text { for almost all } \omega \in \Omega \tag{3}
\end{equation*}
$$

where \widetilde{f}_{n} is a function in the convex hull $\operatorname{co}\left(\left\{f_{l}: l \geq n\right\}\right)$.
Proof. Define a nonnegative measurable function F on Ω by

$$
F(\omega)=\sup _{n \geq 1}\left\|f_{n}(\omega)\right\|_{X} \quad(\omega \in \Omega)
$$

and put

$$
\Omega_{l}=\{\omega: F(\omega) \leq l\} \quad(l=1,2, \ldots)
$$

It follows that $\Omega_{1} \subset \Omega_{2} \subset \cdots$ and $\Omega=\lim _{l \rightarrow \infty} \Omega_{l}(\bmod \mu)$. Since $\left\{f_{n}: n \geq 1\right\}$ is uniformly bounded on Ω_{l} and since $L_{2}\left(\Omega_{l} ; X\right)$ is reflexive by the reflexivity of X (cf. Corollary IV.1.2 of [3]), it follows that the set $\left\{\left.f_{n}\right|_{\Omega_{l}}: n \geq 1\right\}$ is weakly sequentially compact in $L_{2}\left(\Omega_{l} ; X\right)$. Thus, there exists a subsequence $\left(f_{n^{\prime}}\right)$ of $\left(f_{n}\right)$ and a function $g_{l} \in L_{2}\left(\Omega_{l} ; X\right)$ such that

$$
\left.f_{n^{\prime}}\right|_{\Omega_{l}} \rightarrow g_{l} \quad \text { weakly in } L_{2}\left(\Omega_{l} ; X\right) \text { as } n^{\prime} \rightarrow \infty
$$

By the diagonal argument we see that there exists a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ and a function $g \in M(\mu ; X)$ such that for each $l \geq 1$,

$$
\left.\left.f_{n_{k}}\right|_{\Omega_{l}} \rightarrow g\right|_{\Omega_{l}} \quad \text { weakly in } L_{2}\left(\Omega_{l} ; X\right) \text { as } k \rightarrow \infty
$$

By Theorem 3.13 of [8], there exists $\widetilde{f}_{l} \in \operatorname{co}\left(\left\{f_{n_{k}}: k \geq l\right\}\right)$ for each $l \geq 1$ such that

$$
\sum_{k=l}^{\infty} \int_{\Omega_{l}}\left\|g(\omega)-\widetilde{f}_{k}(\omega)\right\|_{X}^{2} d \mu<\sum_{k=l}^{\infty} 2^{-k} \leq 1 \quad(l \geq 1)
$$

Hence, $\lim _{k \rightarrow \infty} \widetilde{f}_{k}(\omega)=g(\omega)$ for almost all $\omega \in \Omega$, and the proof is complete.
Proof of Theorem 1. Let $f_{n}=\sum_{k=0}^{\infty} r_{n}^{k} T^{k} f$ for each $n \geq 1$. Since

$$
\lim _{N \rightarrow \infty} d_{0}\left(\sum_{k=0}^{N} r_{n}^{k} T^{k} f, f_{n}\right)=0
$$

it follows that $\lim _{N \rightarrow \infty} d_{0}\left(r_{n}^{N} T^{N} f, 0\right)=0$, i.e., $\lim _{N \rightarrow \infty} r_{n}^{N} T^{N} f=0$ in
$M(\mu ; X)$. This together with the continuity of T implies

$$
\begin{aligned}
f_{n}-T f_{n} & =\lim _{N \rightarrow \infty}\left(\sum_{k=0}^{N} r_{n}^{k} T^{k} f-\sum_{k=0}^{N} r_{n}^{k} T^{k+1} f\right) \\
& =\lim _{N \rightarrow \infty}\left[f-\left(1-r_{n}\right) T\left(\sum_{k=0}^{N-1} r_{n}^{k} T^{k} f\right)-r_{n}^{N} T^{N+1} f\right] \\
& =f-\left(1-r_{n}\right) T f_{n} \quad(\text { in } M(\mu ; X))
\end{aligned}
$$

Here, since $\int_{\Omega}\left(1-r_{n}\right)\left\|f_{n}(\omega)\right\|_{X} v(\omega) d \mu \leq\left(1-r_{n}\right) C \rightarrow 0$ as $n \rightarrow \infty$, we may assume without loss of generality (if necessary, choose a subsequence of $\left(f_{n}\right)$) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-r_{n}\right) f_{n}(\omega)=0 \quad \text { for almost all } \omega \in \Omega \tag{4}
\end{equation*}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left(1-r_{n}\right) f_{n}=0 \quad(\text { in } M(\mu ; X))
$$

and so by the continuity of T,

$$
\lim _{n \rightarrow \infty}\left(1-r_{n}\right) T f_{n}=0 \quad(\text { in } M(\mu ; X))
$$

Thus, choosing a further subsequence of $\left(f_{n}\right)$ if necessary, we may again assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-r_{n}\right) T f_{n}(\omega)=0 \quad \text { for almost all } \omega \in \Omega \tag{5}
\end{equation*}
$$

Let then $h_{n}(\omega)=\left\|f_{n}(\omega)\right\|_{X}$ for $n \geq 1$. By condition (1) we have

$$
\sup _{n \geq 1} \int_{\Omega} h_{n}(\omega) v(\omega) d \mu=C<\infty
$$

and hence we may apply Komlós's theorem [4] to infer that there exists a subsequence $\left(h_{n_{k}}\right)$ of $\left(h_{n}\right)$ and a nonnegative function $H \in L_{1}(v d \mu)$ such that

$$
H(\omega)=\lim _{N \rightarrow \infty} N^{-1} \sum_{k=1}^{N} h_{n_{k}}(\omega) \quad \text { for almost all } \omega \in \Omega .
$$

In order to prove the theorem, we may assume without loss of generality that $n_{k}=k$ for all $k \geq 1$, i.e., $\left(h_{n_{k}}\right)=\left(h_{k}\right)$. Under this assumption

$$
H(\omega)=\lim _{N \rightarrow \infty} N^{-1} \sum_{k=1}^{N} h_{k}(\omega) \quad \text { for almost all } \omega \in \Omega
$$

and thus

$$
\begin{equation*}
\sup _{N \geq 1}\left\|N^{-1} \sum_{k=1}^{N} f_{k}(\omega)\right\|_{X} \leq \sup _{N \geq 1} N^{-1} \sum_{k=1}^{N} h_{k}(\omega)<\infty \tag{6}
\end{equation*}
$$

for almost all $\omega \in \Omega$.
Then, by Lemma 1 there exists a sequence $\left(\widetilde{F}_{n}\right)$ of functions in $M(\mu ; X)$
such that
(i) $\widetilde{F}_{n} \in \operatorname{co}\left(\left\{N^{-1} \sum_{k=1}^{N} f_{k}: N \geq n\right\}\right)$ for every $n \geq 1$, and
(ii) the limit

$$
\begin{equation*}
G(\omega)=\lim _{n \rightarrow \infty} \widetilde{F}_{n}(\omega) \tag{7}
\end{equation*}
$$

exists for almost all $\omega \in \Omega$.
We then deduce by Fatou's lemma and (1) that

$$
\begin{equation*}
\int_{\Omega}\|G(\omega)\|_{X} v(\omega) d \mu \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left\|\widetilde{F}_{n}(\omega)\right\|_{X} v(\omega) d \mu \leq C . \tag{8}
\end{equation*}
$$

On the other hand, since

$$
\widetilde{F}_{n} \in \operatorname{co}\left(\left\{N^{-1} \sum_{k=1}^{N} f_{k}: N \geq n\right\}\right) \quad \text { and } \quad f_{k}-T f_{k}=f-\left(1-r_{k}\right) T f_{k}
$$

(5) implies that

$$
\lim _{n \rightarrow \infty}\left(\widetilde{F}_{n}(\omega)-T \widetilde{F}_{n}(\omega)\right)=f(\omega) \quad \text { for almost all } \omega \in \Omega
$$

and hence

$$
G-T G=\lim _{n \rightarrow \infty}\left(\widetilde{F}_{n}-T \widetilde{F}_{n}\right)=f \quad(\text { in } M(\mu ; X)),
$$

which completes the proof.
Corollary 1 (cf. [2]). Let X be a reflexive Banach space and v be a strictly positive measurable function on Ω. Let $T: L_{1}(v d \mu ; X) \rightarrow L_{1}(v d \mu ; X)$ be a linear operator continuous with respect to the metric d_{0}, and assume that $f \in L_{1}(v d \mu ; X)$. Then the condition

$$
\begin{equation*}
C:=\sup _{n \geq 1} \int_{\Omega}\left\|\sum_{k=0}^{n-1} T^{k} f(\omega)\right\|_{X} v(\omega) d \mu<\infty \tag{9}
\end{equation*}
$$

implies that there exists $h \in L_{1}(v d \mu ; X)$ with $f=(T-I) h$ and $\|h\|_{L_{1}(v d \mu ; X)}$ $\leq C$.

Proof. For $0<r<1$ we have (formally)

$$
\sum_{k=0}^{\infty} r^{k} T^{k} f=(1-r)\left(\sum_{k=0}^{\infty} r^{k}\right) \sum_{k=0}^{\infty} r^{k} T^{k} f=(1-r) \sum_{k=0}^{\infty} r^{k}\left(\sum_{j=0}^{k} T^{j} f\right)
$$

and (9) implies that $\left\|\sum_{j=0}^{k} T^{j} f\right\|_{L_{1}(v d \mu ; X)} \leq C$ for all $k \geq 0$. Thus, the series $\sum_{k=0}^{\infty} r^{k} T^{k} f$ is summable in $L_{1}(v d \mu ; X)$, and hence also in $M(\mu ; X)$. Furthermore, we have

$$
\sup _{0<r<1} \int_{\Omega}\left\|\left(\sum_{k=0}^{\infty} r^{k} T^{k} f\right)(\omega)\right\|_{X} v(\omega) d \mu \leq C .
$$

Hence, the desired conclusion follows from the proof of Theorem 1.

The following example, showing that the converse implications of Theorem 1 and Corollary 1 do not hold in general, may be interesting.

Example 1. Let μ be the probability measure on the set \mathbb{Z} of all integers defined by

$$
\mu(\{k\})=(1 / 3) 2^{-|k|} \quad \text { for } k \in \mathbb{Z}
$$

Define a positive function v on \mathbb{Z} by

$$
v(k)= \begin{cases}3 \cdot 2^{-k} & \text { if } k \leq 0 \\ 3(k+1) \cdot 2^{k} & \text { if } k \geq 1\end{cases}
$$

Thus, the measure $\lambda=v d \mu$ satisfies

$$
\lambda(\{k\})= \begin{cases}1 & \text { if } k \leq 0 \\ k+1 & \text { if } k \geq 1\end{cases}
$$

Define a continuous linear operator T on $M(\mu)$ by $T f(m)=f(m-1)$ for $m \in \mathbb{Z}$. Then, by an easy computation, the restriction of T to $L_{1}(v d \mu)$ is a continuous linear operator on $L_{1}(v d \mu)$ such that $\left\|T^{n}\right\|_{L_{1}(v d \mu)}=n+1$ for every $n \geq 0$. Let $h=\chi_{\{-1\}}$, and put $f=(T-I) h$. Then we have $f=\chi_{\{0\}}-\chi_{\{-1\}}$, and the series $\sum_{k=0}^{\infty} r^{k} T^{k} f$, where $0<r<1$, is summable in $L_{1}(v d \mu)$ and hence also in $M(\mu)$. It is easy to see that

$$
\left(\sum_{k=0}^{\infty} r^{k} T^{k} f\right)(k)= \begin{cases}0 & \text { if } k \leq-2 \\ -1 & \text { if } k=-1 \\ r^{k}-r^{k+1} & \text { if } k \geq 0\end{cases}
$$

Hence,

$$
\begin{aligned}
\left\|\sum_{k=0}^{\infty} r^{k} T^{k} f\right\|_{L_{1}(v d \mu)} & =1+(1-r) \sum_{k=0}^{\infty} r^{k}(k+1) \\
& =1+(1-r)^{-1} \rightarrow \infty \quad \text { as } r \uparrow 1
\end{aligned}
$$

and condition (9) does not hold either.
Theorem 2 (cf. [6]). Let X be a reflexive Banach space and τ be a conservative ergodic null-preserving transformation on Ω. Let $\xi \in M(\mu)$, and let $T=T_{\xi, \tau}$ be the continuous linear operator on $M(\mu ; X)$ defined by $T f(\omega)=T_{\xi, \tau} f(\omega)=\xi(\omega) f(\tau \omega)$ for $f \in M(\mu ; X)$ and $\omega \in \Omega$. Then conditions (I) and (II) below satisfy (I) \Rightarrow (II) for $f \in M(\mu ; X)$. If in addition $C:=\sup _{n \geq 1}\left\|T^{n}\right\|_{\infty}<\infty$, then (I) and (II) are equivalent.
(I) There exists $A \in \mathcal{A}$ with $\mu(A)>0$ and an absolute constant $K>0$ such that if $\omega, \tau^{n} \omega \in A$ for some $n \geq 1$, then $\left\|S_{n} f(\omega)\right\|_{X} \leq K$, where

$$
S_{n} f(\omega):=\sum_{k=0}^{n-1} T^{k} f(\omega) \quad \text { for } n \geq 1
$$

(II) There exists $h \in M(\mu ; X)$ such that $f=(T-I) h$.

Proof. (I) \Rightarrow (II). Using the equality $T^{n} f(\omega)=\xi(\omega) \cdots \xi\left(\tau^{n-1} \omega\right) f\left(\tau^{n} \omega\right)$, we first notice that for any $n, m \geq 1$ and $\omega \in \Omega$,

$$
\begin{align*}
S_{n+m} f(\omega) & =S_{n} f(\omega)+S_{m}\left(T^{n} f\right)(\omega) \tag{10}\\
& =S_{n} f(\omega)+S_{m}\left(\xi(\cdot) \cdots \xi\left(\tau^{n-1} \cdot\right) f\left(\tau^{n} \cdot\right)\right)(\omega) \\
& =S_{n} f(\omega)+\left[\xi(\omega) \cdots \xi\left(\tau^{n-1} \omega\right)\right] S_{m} f\left(\tau^{n} \omega\right) .
\end{align*}
$$

Next, by the conservativity and ergodicity of τ we have

$$
\begin{equation*}
\Omega=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \tau^{-k} A(\bmod \mu) \tag{11}
\end{equation*}
$$

Thus, it may be assumed without loss of generality that for every $\omega \in \Omega$ the set $\left\{n \geq 1: \tau^{n} \omega \in A\right\}$ is infinite. Then for every $\omega \in \Omega$ there exists a strictly increasing sequence $\left(r_{j}(\omega)\right)_{j=1}^{\infty}$ of positive integers such that

$$
\left\{r_{j}(\omega): j \geq 1\right\}=\left\{n \geq 1: \tau^{n} \omega \in A\right\}
$$

By (10) we have

$$
\begin{aligned}
S_{r_{j}(\omega)} f(\omega) & =S_{r_{1}(\omega)} f(\omega)+S_{r_{j}(\omega)-r_{1}(\omega)}\left(T^{r_{1}(\omega)} f\right)(\omega) \\
& =S_{r_{1}(\omega)} f(\omega)+\left[\xi(\omega) \cdots \xi\left(\tau^{r_{1}(\omega)-1} \omega\right)\right] S_{r_{j}(\omega)-r_{1}(\omega)} f\left(\tau^{r_{1}(\omega)} \omega\right) .
\end{aligned}
$$

Since $\tau^{r_{1}(\omega)} \omega$ and $\tau^{r_{j}(\omega)-r_{1}(\omega)}\left(\tau^{r_{1}(\omega)} \omega\right)$ belong to A, it follows from (I) that

$$
\begin{equation*}
\left\|S_{r_{j}(\omega)-r_{1}(\omega)} f\left(\tau^{r_{1}(\omega)} \omega\right)\right\|_{X} \leq K . \tag{12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sup _{j \geq 1}\left\|S_{r_{j}(\omega)} f(\omega)\right\|_{X} \leq\left\|S_{r_{1}(\omega)} f(\omega)\right\|_{X}+\left|\xi(\omega) \cdots \xi\left(\tau^{r_{1}(\omega)-1} \omega\right)\right| K<\infty \tag{13}
\end{equation*}
$$

Hence, putting

$$
\begin{equation*}
f_{n}(\omega):=n^{-1} \sum_{j=1}^{n} S_{r_{j}(\omega)} f(\omega) \quad(n \geq 1) \tag{14}
\end{equation*}
$$

we get

$$
\begin{equation*}
\sup _{n \geq 1}\left\|f_{n}\right\|_{X}<\infty \quad \text { for every } \omega \in \Omega \tag{15}
\end{equation*}
$$

so that by Lemma 1 there exists a strongly measurable X-valued function g on Ω such that

$$
\begin{equation*}
g(\omega)=\lim _{n \rightarrow \infty} \widetilde{f}_{n}(\omega) \quad \text { for almost all } \omega \in \Omega, \tag{16}
\end{equation*}
$$

where $\widetilde{f}_{n} \in \operatorname{co}\left(\left\{f_{k}: k \geq n\right\}\right)$. Thus, \widetilde{f}_{n} has the form

$$
\widetilde{f}_{n}=\sum_{j=1}^{j(n)} C_{n, j} f_{k_{j}},
$$

where

$$
C_{n, j}>0, \quad \sum_{j=1}^{j(n)} C_{n, j}=1, \quad k_{j} \geq n \quad \text { for } 1 \leq j \leq j(n)
$$

And from (16) we may assume without loss of generality that

$$
\begin{equation*}
g(\omega)=\lim _{n \rightarrow \infty} \tilde{f}_{n}(\omega) \quad \text { for all } \omega \in \Omega \tag{17}
\end{equation*}
$$

CASE 1: $r_{1}(\omega)=1$. Then, by the definition of $r_{j}(\omega)$ it follows that $r_{j}(\tau \omega)=r_{j+1}(\omega)-1$ for every $j \geq 1$. Thus, using the equality

$$
\begin{equation*}
S_{n} f(\omega)-\xi(\omega) S_{n-1} f(\tau \omega)=f(\omega) \quad \text { for } n \geq 2 \text { and } \omega \in \Omega \tag{18}
\end{equation*}
$$

we get

$$
\sum_{j=2}^{n} S_{r_{j}(\omega)} f(\omega)-\xi(\omega) \sum_{j=1}^{n-1} S_{r_{j}(\tau \omega)} f(\tau \omega)=(n-1) f(\omega)
$$

From this, together with the fact that $S_{r_{1}(\omega)} f(\omega)=S_{1} f(\omega)=f(\omega)$, we have (cf. (14))

$$
\begin{aligned}
f_{n}(\omega)-\xi(\omega) f_{n}(\tau \omega) & =\frac{n-1}{n} f(\omega)+\frac{1}{n} f(\omega)-\frac{1}{n} \xi(\omega) S_{r_{n}(\tau \omega)} f(\tau \omega) \\
& =f(\omega)-\frac{1}{n} \xi(\omega) S_{r_{n}(\tau \omega)} f(\tau \omega)
\end{aligned}
$$

and by (13),

$$
\lim _{n \rightarrow \infty} n^{-1}|\xi(\omega)| \cdot\left\|S_{r_{n}(\tau \omega)} f(\tau \omega)\right\|_{X}=0
$$

Consequently,

$$
(I-T) g(\omega)=g(\omega)-\xi(\omega) g(\tau \omega)=\lim _{n \rightarrow \infty}\left[\widetilde{f}_{n}(\omega)-\xi(\omega) \tilde{f}_{n}(\tau \omega)\right]=f(\omega)
$$

CASE 2: $r_{1}(\omega) \geq 2$. Then we have $r_{j}(\tau \omega)=r_{j}(\omega)-1$, so that by (18),

$$
\sum_{j=1}^{n} S_{r_{j}(\omega)} f(\omega)-\xi(\omega) \sum_{j=1}^{n} S_{r_{j}(\tau \omega)} f(\tau \omega)=n f(\omega)
$$

Thus it follows that $f_{n}(\omega)-\xi(\omega) f_{n}(\tau \omega)=f(\omega)$ for every $n \geq 1$, and

$$
(I-T) g(\omega)=g(\omega)-\xi(\omega) g(\tau \omega)=\lim _{n \rightarrow \infty}\left[\widetilde{f}_{n}(\omega)-\xi(\omega) \widetilde{f}_{n}(\tau \omega)\right]=f(\omega)
$$

This completes the proof of $(\mathrm{I}) \Rightarrow(\mathrm{II})$.
To prove the second half of Theorem 2, assume that $C:=\sup _{n \geq 1}\left\|T^{n}\right\|_{\infty}$ $<\infty$, and that (II) holds. Then there exists a constant $M>0$ such that the set $A=\left\{\omega:\|h(\omega)\|_{X} \leq M\right\}$ satisfies $\mu(A)>0$. Since $f=T h-h$, we may assume without loss of generality that $f(\omega)=T h(\omega)-h(\omega)$ for all $\omega \in \Omega$. Then, for all $n \geq 1$ and $\omega \in \Omega$ we have

$$
S_{n} f(\omega)=T^{n} h(\omega)-h(\omega)=\xi(\omega) \cdots \xi\left(\tau^{n-1} \omega\right) h\left(\tau^{n} \omega\right)-h(\omega)
$$

Since $\left\|T^{n}\right\|_{\infty}=\left\|\xi(\cdot) \xi(\tau \cdot) \cdots \xi\left(\tau^{n-1} \cdot\right)\right\|_{\infty} \leq C$ for all $n \geq 1$ by hypothesis, we may assume without loss of generality that $\left|\xi(\omega) \xi(\tau \omega) \cdots \xi\left(\tau^{n-1} \omega\right)\right| \leq C$ for all $n \geq 1$ and $\omega \in \Omega$. Then

$$
\left\|S_{n} f(\omega)\right\|_{X} \leq C\left\|h\left(\tau^{n} \omega\right)\right\|_{X}+\|h(\omega)\|_{X} \quad \text { for all } n \geq 1 \text { and } \omega \in \Omega
$$

and so $\omega, \tau^{n} \omega \in A$ for some $n \geq 1$ implies that $\left\|S_{n} f(\omega)\right\|_{X} \leq C M+M$. Therefore, (I) holds with $K:=C M+M$, and the proof is complete.

Proposition 1. Let τ be an invertible null-preserving transformation on Ω, and $\xi \in M(\mu)$. Let $T=T_{\xi, \tau}$ be as in Theorem 2. Then the following conditions are equivalent:
(I) The restriction of T to $L_{\infty}(\mu ; X)$ is an invertible operator on $L_{\infty}(\mu ; X)$ such that $C:=\sup \left\{\left\|T^{n}\right\|_{\infty}: n \in \mathbb{Z}\right\}<\infty$.
(II) There exists $\zeta \in L_{\infty}^{+}(\mu)$, with $1 / \zeta \in L_{\infty}^{+}(\mu)$, such that $|\xi(\omega)|=$ $\zeta(\tau \omega) / \zeta(\omega)$ for almost all $\omega \in \Omega$.
Proof. (I) \Rightarrow (II). Since the restriction of T to $L_{\infty}(\mu ; X)$ is an invertible operator on $L_{\infty}(\mu ; X)$ by hypothesis, it follows that $|\xi(\omega)|>0$ for almost all $\omega \in \Omega$, and for every $n \geq 1$ we have

$$
\left\{\begin{array}{l}
T^{n} f(\omega)=\xi(\omega) \cdots \xi\left(\tau^{n-1} \omega\right) f\left(\tau^{n} \omega\right) \tag{19}\\
T^{-n} f(\omega)=\frac{1}{\xi\left(\tau^{-1} \omega\right) \cdots \xi\left(\tau^{-n} \omega\right)} f\left(\tau^{-n} \omega\right)
\end{array}\right.
$$

Thus, by the inequalities $\left\|T^{n}\right\|_{\infty} \leq C$ and $\left\|T^{-n}\right\|_{\infty} \leq C$, $\left|\xi(\omega) \cdots \xi\left(\tau^{n-1} \omega\right)\right| \leq C, \quad \frac{1}{\left|\xi\left(\tau^{-1} \omega\right) \cdots \xi\left(\tau^{-n} \omega\right)\right|} \leq C \quad$ for almost all $\omega \in \Omega$, and since τ is invertible,

$$
\frac{1}{\left|\xi(\omega) \cdots \xi\left(\tau^{n-1} \omega\right)\right|} \leq C \quad \text { for almost all } \omega \in \Omega(n \geq 1)
$$

It follows that

$$
\begin{equation*}
-\log C \leq \sum_{j=0}^{n-1} \log \left|\xi\left(\tau^{j} \omega\right)\right| \leq \log C \quad \text { for almost all } \omega \in \Omega(n \geq 1) \tag{20}
\end{equation*}
$$

Now, we apply Corollary 6 of [7] to infer that there exists $g \in L_{\infty}(\mu)$ such that $\log |\xi(\omega)|=g(\tau \omega)-g(\omega)$ for almost all $\omega \in \Omega$. Since $|\xi(\omega)|=$ $e^{g(\tau \omega)} / e^{g(\omega)}$, the function $\zeta(\omega):=e^{g(\omega)}(\omega \in \Omega)$ satisfies $|\xi(\omega)|=\zeta(\tau \omega) / \zeta(\omega)$ for almost all $\omega \in \Omega$, and furthermore by the fact that $g \in L_{\infty}(\mu)$ we have $\zeta, 1 / \zeta \in L_{\infty}^{+}(\mu)$.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$. Condition (II) implies that

$$
\begin{aligned}
\|1 / \zeta\|_{\infty}^{-1}\|\zeta\|_{\infty}^{-1} & \leq|\xi(\omega)|=\zeta(\tau \omega) / \zeta(\omega) \\
& \leq\|\zeta\|_{\infty}\|1 / \zeta\|_{\infty} \quad \text { for almost all } \omega \in \Omega
\end{aligned}
$$

It follows that the restriction of T to $L_{\infty}(\mu ; X)$ is an invertible operator on $L_{\infty}(\mu ; X)$, and for every $n \in \mathbb{Z}$ and $f \in L_{\infty}(\mu ; X)$ we have

$$
\left\|T^{n} f(\omega)\right\|_{X}=\frac{\zeta\left(\tau^{n} \omega\right)}{\zeta(\omega)}\left\|f\left(\tau^{n} \omega\right)\right\|_{X} \quad \text { for almost all } \omega \in \Omega
$$

Thus

$$
\left\|T^{n}\right\|_{\infty} \leq\|\zeta\|_{\infty}\|1 / \zeta\|_{\infty} \quad(n \in \mathbb{Z})
$$

and this completes the proof.
From now on we restrict ourselves to the case where τ is a measurepreserving transformation in order to discuss the solvability problem in $L_{p}(\mu ; X)$, with $0<p \leq \infty$.

Proposition 2. Let τ be an invertible measure-preserving transformation on Ω, and $\xi \in M(\mu)$. Let $T=T_{\xi, \tau}$ be as in Theorem 2. If $0<p<\infty$, then the following conditions are equivalent:
(I) The restriction of T to $L_{p}(\mu ; X)$ is an invertible operator on $L_{p}(\mu ; X)$ such that $\sup \left\{\left\|T^{n}\right\|_{p}: n \in \mathbb{Z}\right\}<\infty$, where $\left\|T^{n}\right\|_{p}:=$ $\sup \left\{\left\|T^{n} f\right\|_{p}:\|f\|_{p}=1, f \in L_{p}(\mu ; X)\right\}$.
(II) There exists $\zeta \in L_{\infty}^{+}(\mu)$, with $1 / \zeta \in L_{\infty}^{+}(\mu)$, such that $|\xi(\omega)|=$ $\zeta(\tau \omega) / \zeta(\omega)$ for almost all $\omega \in \Omega$.

Proof. $(\mathrm{I}) \Rightarrow(\mathrm{II})$. Since the restriction of T to $L_{p}(\mu ; X)$ is an invertible operator on $L_{p}(\mu ; X)$ by hypothesis, it follows as above that $|\xi(\omega)|>0$ for almost all $\omega \in \Omega$. Hence, (19) holds for every $n \geq 1$, and since τ is measure-preserving, we then have

$$
\left\|T^{n}\right\|_{p}=\left\|\xi(\cdot) \cdots \xi\left(\tau^{n-1} \cdot\right)\right\|_{\infty}, \quad\left\|T^{-n}\right\|_{p}=\left\|\frac{1}{\xi\left(\tau^{-1} \cdot\right) \cdots \xi\left(\tau^{-n}\right)}\right\|_{\infty}
$$

Thus, we can apply the proof of $(\mathrm{I}) \Rightarrow(\mathrm{II})$ of Proposition 1 to obtain the present implication.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$. The proof is the same as that of $(\mathrm{II}) \Rightarrow(\mathrm{I})$ of Proposition 1, and we omit the details.

REMARK 1. It follows from the above propositions that if τ is an invertible measure-preserving transformation on Ω, then $\sup \left\{\left\|T^{n}\right\|_{\infty}: n \in \mathbb{Z}\right\}=$ $\sup \left\{\left\|T^{n}\right\|_{p}: n \in \mathbb{Z}\right\}$ for every p with $0<p<\infty$.

Theorem 3 (cf. [1], [10]). Let X be a reflexive Banach space and τ be an invertible measure-preserving transformation on Ω. Let $\xi \in M(\mu)$, and $T=T_{\xi, \tau}$ be as in Theorem 2. Assume that $0<p<\infty$, and that the restriction of T to $L_{p}(\mu ; X)$ is an invertible operator on $L_{p}(\mu ; X)$ such that $\sup \left\{\left\|T^{n}\right\|_{p}: n \in \mathbb{Z}\right\}<\infty$. Then the following conditions are equivalent for $f \in M(\mu ; X)$:
(I) There exists $A \in \mathcal{A}$ with $\mu(A)>0$ and an absolute constant $K>0$ such that
(i) if $\omega, \tau^{n} \omega \in A$ for some $n \geq 1$, then $\left\|S_{n} f(\omega)\right\|_{X} \leq K$,
(ii) $\liminf _{n \rightarrow \infty} n^{-1} \sum_{j=0}^{n-1} \int_{A}\left\|S_{j} f(\omega)\right\|_{X}^{p} d \mu<\infty$.
(II) There exists $h \in L_{p}(\mu ; X)$ such that $f=(T-I) h$.

Proof. (I) \Rightarrow (II). By Proposition 2 there exists $\zeta \in L_{\infty}^{+}$, with $1 / \zeta \in$ $L_{\infty}^{+}(\mu)$, such that $|\xi(\omega)|=\zeta(\tau \omega) / \zeta(\omega)$ for almost all $\omega \in \Omega$. Thus, there exists a constant $D>0$ such that for every $n \geq 1$,

$$
\begin{equation*}
D^{-1} \leq\left|\xi(\omega) \xi(\tau \omega) \cdots \xi\left(\tau^{n-1} \omega\right)\right| \leq D \quad \text { for almost all } \omega \in \Omega \tag{21}
\end{equation*}
$$

Furthermore, by Theorem 2 there exists $h \in M(\mu ; X)$ such that $f=(T-I) h$. Hence, $S_{j} f=T^{j} h-h$ for every $j \geq 1$, and

$$
\begin{array}{r}
\left\|h(\omega)+S_{j} f(\omega)\right\|_{X}=\left\|T^{j} h(\omega)\right\|_{X}=\left|\xi(\omega) \cdots \xi\left(\tau^{j-1} \omega\right)\right| \cdot\left\|h\left(\tau^{j} \omega\right)\right\|_{X} \\
\text { for almost all } \omega \in \Omega .
\end{array}
$$

Thus, by (21) we have

$$
\begin{equation*}
\left\|h\left(\tau^{j} \omega\right)\right\|_{X}^{p} \leq D^{p}\left\|h(\omega)+S_{j} f(\omega)\right\|_{X}^{p} \quad \text { for almost all } \omega \in \Omega \tag{22}
\end{equation*}
$$

Now, define a nonnegative measurable function F on Ω by

$$
F(\omega)=\liminf _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n}\left\|S_{j} f(\omega)\right\|_{X}^{p} \quad(\omega \in \Omega)
$$

Then, by Fatou's lemma,

$$
\int_{A} F(\omega) d \mu \leq \liminf _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \int_{A}\left\|S_{j} f(\omega)\right\|_{X}^{p} d \mu<\infty,
$$

so that $F(\omega)<\infty$ for almost all $\omega \in A$. Since the function

$$
G(\omega)=\liminf _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n}\left\|h(\omega)+S_{j} f(\omega)\right\|_{X}^{p} \quad(\omega \in \Omega)
$$

satisfies $G(\omega)<\infty$ whenever $F(\omega)<\infty$, it follows from (22) that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n}\left\|h\left(\tau^{j} \omega\right)\right\|_{X}^{p} \leq D^{p} G(\omega)<\infty \quad \text { for almost all } \omega \in A . \tag{23}
\end{equation*}
$$

On the other hand, since τ is ergodic and measure-preserving by hypothesis, the Birkhoff pointwise ergodic theorem implies that

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n}\left\|h\left(\tau^{j} \omega\right)\right\|_{X}^{p}=\int_{\Omega}\|h(\omega)\|_{X}^{p} d \mu \quad \text { for almost all } \omega \in \Omega .
$$

Therefore, by (23) we have $h \in L_{p}(\mu ; X)$.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$. Since $\sup _{n \geq 1}\left\|T^{n}\right\|_{\infty}=\sup _{n \geq 1}\left\|T^{n}\right\|_{p}<\infty$, this implication follows immediately from Theorem 2, and the proof is complete.

Theorem 4 (cf. [9]). Let X be a reflexive Banach space and τ be an invertible measure-preserving transformation on Ω. Let $\xi \in M(\mu)$, and $T=T_{\xi, \tau}$ be as in Theorem 2. Assume that the restriction of T to $L_{\infty}(\mu ; X)$ is an invertible operator on $L_{\infty}(\mu ; X)$ such that $\sup \left\{\left\|T^{n}\right\|_{\infty}: n \in \mathbb{Z}\right\}<\infty$. Then the following conditions are equivalent for $f \in M(\mu ; X)$:
(I) There exists $A \in \mathcal{A}$ with $\mu(A)>0$ and an absolute constant $K>0$ such that
(i) if $\omega, \tau^{n} \omega \in A$ for some $n \geq 1$, then $\left\|S_{n} f(\omega)\right\|_{X} \leq K$,
(ii) $\liminf _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n}\left\|\chi_{A} \cdot S_{j} f\right\|_{\infty}<\infty$.
(II) There exists $h \in L_{\infty}(\mu ; X)$ such that $f=(T-I) h$.

Proof. $(\mathrm{I}) \Rightarrow(\mathrm{II})$. By Proposition 1 there exists a constant $D>0$ such that for every $n \geq 1$ we have $D^{-1} \leq\left|\xi(\omega) \xi(\tau \omega) \cdots \xi\left(\tau^{n-1} \omega\right)\right| \leq D$ for almost all $\omega \in \Omega$. And by Theorem 2 there exists $h \in M(\mu ; X)$ such that $f=(T-I) h$. Thus, $h+S_{j} f=T^{j} h$ for every $j \geq 1$, and we deduce by (19) applied to h in place of f that

$$
\begin{array}{r}
\|h(\omega)\|_{X}+\left\|S_{j} f(\omega)\right\|_{X} \geq\left\|T^{j} h(\omega)\right\|_{X} \geq D^{-1}\left\|h\left(\tau^{j} \omega\right)\right\|_{X} \\
\quad \text { for almost all } \omega \in \Omega .
\end{array}
$$

It follows that

$$
\begin{aligned}
& D\left(\left\|\chi_{A} \cdot h\right\|_{\infty}+n^{-1} \sum_{j=1}^{n}\left\|\chi_{A} \cdot\left(S_{j} f\right)\right\|_{\infty}\right) \geq n^{-1} \sum_{j=1}^{n}\left\|\chi_{A} \cdot\left(h \circ \tau^{j}\right)\right\|_{\infty} \\
&=n^{-1} \sum_{j=1}^{n}\left\|\left(\chi_{A} \circ \tau^{-j}\right) \cdot h\right\|_{\infty} \geq\left\|\left(n^{-1} \sum_{j=1}^{n} \chi_{A} \circ \tau^{-j}\right) \cdot h\right\|_{\infty}
\end{aligned}
$$

Here, considering the set $A \cap\left\{\omega:\|h(\omega)\|_{X} \leq N\right\}$ for a sufficiently large $N>0$ instead of A (if necessary), we may assume from the start that $\chi_{A} \cdot h \in L_{\infty}(\mu ; X)$. Then we find by condition (ii) of (I) that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|\left(n^{-1} \sum_{j=1}^{n} \chi_{A} \circ \tau^{-j}\right) \cdot h\right\|_{\infty}<\infty \tag{24}
\end{equation*}
$$

On the other hand, by the Birkhoff pointwise ergodic theorem we have

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \chi_{A}\left(\tau^{-j} \omega\right)=\mu(A)>0 \quad \text { for almost all } \omega \in \Omega
$$

Hence, (24) implies that $h \in L_{\infty}(\mu ; X)$.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$. This follows immediately from Theorem 2 , and hence the proof is complete.

Remark 2. One may wonder whether condition (i) of (I) can be omitted in Theorems 3 and 4. The author thinks that this is not known even if $X=$ the scalars. On the other hand, if $X=$ the scalars and $\xi \equiv 1$ on Ω, then it is known that condition (i) of (I) can be omitted in Theorems 3 and 4 . See [1], [9] and [10].

REFERENCES

[1] A. I. Alonso, J. Hong and R. Obaya, Absolutely continuous dynamics and real coboundary cocycles in L^{p}-spaces, $0<p<\infty$, Studia Math. 138 (2000), 121-134.
[2] I. Assani, A note on the equation $y=(I-T) x$ in L^{1}, Illinois J. Math. 43 (1999), 540-541.
[3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, 1977.
[4] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229.
[5] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[6] K. Krzyżewski, A note on a generalized cohomology equation, Colloq. Math. 84/85 (2000), part 2, 279-283.
[7] M. Lin and R. Sine, Ergodic theory and the functional equation $(I-T) x=y$, J. Operator Theory 10 (1983), 153-166.
[8] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[9] R. Sato, A remark on real coboundary cocycles in L^{∞}-space, Proc. Amer. Math. Soc. 131 (2003), 231-233.
[10] -, On solvability of the cohomology equation in function spaces, Studia Math. 156 (2003), 277-293.

Department of Mathematics
Okayama University
Okayama, 700-8530 Japan
E-mail: satoryot@math.okayama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 47A35, 28D05, 37A20.
 Key words and phrases: reflexive Banach space, probability measure space, vectorvalued function, null-preserving transformation, measure-preserving transformation, Lamperti-type operator, conservative, ergodic, cohomology equation, coboundary.

