VOL. 99

2004

NO. 2

SPACES OF MULTIPLIERS AND THEIR PREDUALS FOR THE ORDER MULTIPLICATION ON [0, 1]. II

BҮ

SAVITA BHATNAGAR (Chandigarh)

Abstract. Consider I = [0, 1] as a compact topological semigroup with max multiplication and usual topology, and let $C(I), L^p(I), 1 \le p \le \infty$, be the associated algebras. The aim of this paper is to study the spaces $\operatorname{Hom}_{C(I)}(L^r(I), L^p(I)), r > p$, and their preduals.

1. Introduction. The multipliers from $L^r(I)$ to $L^p(I)$, $1 \le r, p \le \infty$, where I denotes the topological semigroup [0, 1] with max multiplication and the usual topology, have been studied by Baker, Pym and Vasudeva [1]. The identification of multiplier spaces and their preduals from $L^r(I)$ to $L^p(I), 1 \le r \le p \le \infty$, has been carried out by Bhatnagar and Vasudeva [2]. The case when r > p has evaded the authors. The present study does not close this gap completely; however, it provides a set of necessary conditions and another set of sufficient conditions for a linear operator to be a multiplier from $L^r(I)$ to $L^p(I), r > p$. As a natural outcome of the methods employed, we find that a multiplier from $L^r(I)$ to $L^p(I), r > p$, need not be bounded as was assumed in [1]. As there is substantial overlap between the arguments presented in [2] and the present note, we have tried to be as brief as possible. For details, the reader may refer to [2].

2. Preliminaries. The set I = [0, 1] equipped with max multiplication and usual topology is a compact topological semigroup. Let C(I) and $L^{p}(I), 1 \leq p \leq \infty$, have their usual meanings. $L^{p}(I)$ is a left Banach C(I)-module under convolution * defined by

$$\varphi * g(t) = \varphi(t) \int_{0}^{t} g(s) \, ds + g(t) \int_{0}^{t} \varphi(s) \, ds$$

for almost all $t \in I$, where $\varphi \in C(I)$ and $g \in L^p(I)$. We denote this left Banach C(I)-module by L^p_* . The adjoint action \circ of an element $\varphi \in C(I)$ on $L^{p'}(I)$, 1/p + 1/p' = 1, under which $L^{p'}(I)$ becomes a right Banach

²⁰⁰⁰ Mathematics Subject Classification: Primary 43A22.

C(I)-module is defined by

$$g \circ \varphi(s) = g(s) \int_{0}^{s} \varphi(t) dt + \int_{s}^{1} \varphi(t)g(t) dt, \quad g \in L^{p'}(I).$$

The right Banach C(I)-module $L^{p'}(I)$ with the adjoint action defined above is denoted by $L^{p'}_{\circ}$. The above definitions can be extended to $\varphi \in L^{r}(I)$, r > p, by denseness of C(I) in $L^{r}(I)$.

Let $M^{r,p}_{\circ}$ denote $\operatorname{Hom}_{C(I)}(L^{r}_{*}, L^{p}_{*})$ and $M^{r,p}_{*}$ denote $\operatorname{Hom}_{C(I)}(L^{r}_{*}, L^{p}_{\circ})$ for $1 \leq r, p \leq \infty$. If

$$A_*^{r,p} = L_*^r \,\hat{\otimes}_{C(I)} \, L_*^{p'}, \quad A_\circ^{r,p} = L_*^r \,\hat{\otimes}_{C(I)} \, L_\circ^{p'},$$

where the tensor product is the projective tensor product of Banach modules, then it follows, using a theorem of Rieffel [5], that $(A_*^{r,p})^* = M_*^{r,p}$ and $(A_{\circ}^{r,p})^* = M_{\circ}^{r,p}$.

3. Description of preduals. We define an operator

$$B: L^{r}(I) \hat{\otimes} L^{p'}(I) \to L^{p'}(I),$$

where $1 \leq r, p' < \infty$, by

$$B(f \otimes g)(s) = g(s) \int_{0}^{s} f(t) \, dt.$$

The image of B in $L^{p'}(I)$ will be called $B^{r,p}$ if $1 < r, p < \infty$, and B^{∞} in L^{∞} if $r = p' = \infty$. Let $I_n = [0, 2^{-n}]$ and $J_n = [2^{-n}, 2^{-n+1}]$, $n = 1, 2, \ldots$ For a measurable function φ on I, let $P_n \varphi$ denote the function $\chi_{J_n} \varphi$, $n = 1, 2, \ldots$. For a Define $e_n = 2^n \chi_{I_n}$, $n = 1, 2, \ldots$. Since $\int_0^1 e_n(s) \, ds = 1$ for each n, we can easily see that if $f \equiv 0$ on I_n then $B(e_n \otimes f) = f$. As $f = \sum_{n=1}^{\infty} P_n f$, we obtain

$$f = \sum_{n=1}^{\infty} B(e_n \otimes P_n f) = \sum_{n=1}^{\infty} e_n \circ P_n f = \sum_{n=1}^{\infty} e_n * P_n f.$$

Let

$$C^{r,p} = \left\{ \varphi : \varphi \text{ is measurable and } \sum_{n=1}^{\infty} 2^{n/r'} \|P_n\varphi\|_{p'} < \infty \right\},$$
$$C_u^{r,p} = \left\{ \varphi : \varphi \text{ is measurable and } \sum_{n=1}^{\infty} (2^{n/r'} \|P_n\varphi\|_{p'})^u < \infty \right\},$$

where 1/u = 1/r + 1/p'. It may be noted that for r = p, $C^{p,p} = C^{p,p}_u$. We first characterize B^{∞} .

PROPOSITION 1. $B^{\infty} = \{\varphi : \varphi \text{ is measurable and } \varphi(s)/s \text{ is essentially bounded}\}.$

Proof. If φ is measurable and $\varphi(s)/s$ is essentially bounded then φ can be written as $\varphi(s) = (\varphi(s)/s) \int_0^s 1 dt$. Consequently, $\varphi = B(\psi)$, where $\psi(s) = 1 \otimes \varphi(s)/s$. On the other hand, if $\varphi = B(f \otimes g)$, where $f, g \in L^\infty$, then $\varphi(s) = g(s) \int_0^s f(t) dt$, $s \in I$, is measurable. Moreover,

$$\left|\frac{\varphi(s)}{s}\right| = \left|\frac{g(s)}{s}\int_{0}^{s} f(t) dt\right| \le \|g\|_{\infty} \|f\|_{\infty}.$$

REMARK. It is not difficult to see that the requirement that $\varphi(s)/s$ be essentially bounded is equivalent to $\sup_n 2^n \|P_n\varphi\|_{\infty} < \infty$.

THEOREM 1. For r > p, $C^{r,p} \subseteq B^{r,p} \subseteq C_u^{r,p}$, where 1/u = 1/r + 1/p'.

Proof. If $\varphi \in C^{r,p}$, then $\sum_{n=1}^{\infty} 2^{n/r'} \|P_n\varphi\|_{p'} < \infty$, so that $\varphi = \sum_{n=1}^{\infty} B(e_n \otimes P_n \varphi)$ and $\sum_{n=1}^{\infty} \|e_n\|_r \|P_n\varphi\|_{p'} < \infty$. Thus $\psi = \sum_{n=1}^{\infty} e_n \otimes P_n \varphi \in L^r \otimes L^{p'}$ and $B(\psi) = \varphi$.

To prove the other inclusion, fix r and p and let q = 1 + r/p', so that q' = 1 + p'/r. Let $\alpha = q/r$. Then

$$\alpha \cdot \frac{1}{q} + (1-\alpha) \cdot \frac{1}{\infty} = \frac{1}{r}, \qquad \alpha \cdot \frac{1}{q'} + (1-\alpha) \cdot \frac{1}{\infty} = \frac{1}{p'}.$$

Since $B(L^q \otimes L^{q'}) \subset B^{q,q}$ and $B(L^{\infty} \otimes L^{\infty}) \subset B^{\infty}$, it follows by interpolation, using Calderón [3], that B maps $L^r \otimes L^{p'}$ into a suitable intermediate space between $B^{q,q}$ and B^{∞} . (It may be observed that $B^{q,q} = C^{q,q}$). To see this, note that $B^{q,q}$ may be regarded as a mixed L^p space, viz., $L^1(\mathbb{N}, \nu, L^{q'}(I))$, where ν is the measure on \mathbb{N} assigning mass 2^{-n} to the element $\{n\}$, and B^{∞} may be regarded as $L^{\infty}(\mathbb{N}, \nu, L^{\infty}(I))$. These identifications are obtained by associating with $\varphi \in B^{q,q}$ (or B^{∞}) the function $f: \mathbb{N} \times I \to \mathbb{C}$ given by

(1)
$$f(n,t) = 2^n \varphi\left(\frac{t+1}{2^n}\right), \quad n \in \mathbb{N}, t \in I.$$

By Calderón [3], the intermediate space with index α between $L^1(\mathbb{N}, \nu, L^{q'}(I))$ and $L^{\infty}(\mathbb{N}, \nu, L^{\infty}(I))$ is contained in $L^u(\mathbb{N}, \nu, L^v(I))$, where

$$\alpha \cdot \frac{1}{1} + (1-\alpha) \cdot \frac{1}{\infty} = \frac{1}{u}, \qquad \alpha \cdot \frac{1}{q'} + (1-\alpha) \cdot \frac{1}{\infty} = \frac{1}{v}.$$

Thus 1/u = 1/r + 1/p', and v = p'. It follows that B maps $L^r \otimes L^{p'}$ into $L^u(\mathbb{N}, \nu, L^{p'}(I))$ and by identification (1) this corresponds to measurable functions φ on I such that $\sum_{n=1}^{\infty} (2^{n/r'} || P_n \varphi ||_{p'})^u < \infty$. Thus $\varphi \in C_u^{r,p}$. This completes the proof.

We next characterize the predual $A_{\circ}^{r,p}$ of the multiplier space $M_{\circ}^{r,p}$. Let $AC_{u}^{\circ}(u \geq 1)$ be the space of absolutely continuous functions on [0, 1] whose derivative belongs to $L^{u}(I)$ and which vanish at 1.

THEOREM 2. For $r \ge p$, $C^{r,p} \subseteq A^{r,p}_{\circ} \subseteq B^{r,p} + AC^{\circ}_{u}$, where 1/r + 1/p' =1/u.

Proof. If $\varphi \in C^{r,p}$, we can write $\varphi = \sum_{n=1}^{\infty} e_n \circ P_n \varphi$ and by definition of $C^{r,p}$, $\sum_{n=1}^{\infty} \|e_n\|_r \|P_n \varphi\|_{p'} < \infty$ so that $\varphi \in A_{\circ}^{r,p}$.

Clearly, every element of $A_{\circ}^{r,p}$ is a sum of the form $\varphi + \psi$, where $\varphi \in B^{r,p}$ and $\psi \in AC_u^{\circ}$, so that we have the required result.

THEOREM 3. (a) $A_*^{r,p}$ is a semisimple commutative Banach algebra under convolution. It has an approximate identity. The maximal ideal space of $A_*^{r,p}$ is the interval (0,1] with the interval topology.

- (b) $C^{r,p} + C^{p',r'} \subseteq A^{r,p}_* \subseteq B^{r,p} + B^{p',r'}$ for $1 \le r, p \le \infty$. (c) $C^{p',r'} \subseteq C^{r,p}$ if $r \ge p'$, and $C^{r,p} \subseteq C^{p',r'}$ if $r \le p'$,

- (c) $\subseteq C^{p',r'} \subseteq C^{r,p}_{u}$ if $r \ge p'$, and $C^{r,p} \subseteq C^{p',r'}_{u}$ if $r \le p'$. (d) $C^{r,p} \subseteq A^{r,p}_{*} \subseteq C^{r,p}_{u}$ if $r \ge p'$, and $C^{p',r'}_{u} \subseteq A^{r,p}_{*} \subseteq C^{p',r'}_{u}$ if $r \le p'$.

Proof. (a) $A^{r,p}_* = L^r \otimes_{C(I)} L^{p'}$, being the projective tensor product of two Banach algebras, is a Banach algebra. For the detailed proof, consult Theorem 7 of [2].

(b) If $\varphi \in C^{r,p}$, then $\sum_{n=1}^{\infty} 2^{n/r'} ||P_n \varphi||_{p'} < \infty$ and $\varphi = \sum_{n=1}^{\infty} e_n * P_n \varphi \in A_*^{r,p}$. Similarly for $C^{p',r'}$. It is clear that every element of $A_*^{r,p}$ is a sum $\varphi + \psi$, where $\varphi \in B^{r,p}$ and $\psi \in B^{p',r'}$, so that $A_*^{r,p} \subseteq B^{r,p} + B^{p',r'}$.

(c) We show that $C^{p',r'} \subseteq C^{r,p}$ if $r \ge p'$, the other proofs are similar. If $\varphi \in C^{p',r'}$, then $\sum_{n=1}^{\infty} 2^{n/p} \|P_n \varphi\|_r < \infty$ and

$$\sum_{n=1}^{\infty} 2^{n/r'} \|P_n\varphi\|_{p'} \le \sum_{n=1}^{\infty} 2^{n/r'} \|P_n\varphi\|_r (2^{-n})^{1/p'-1/r} = \sum_{n=1}^{\infty} 2^{n/p} \|P_n\varphi\|_r < \infty$$

so that $\varphi \in C^{r,p}$.

(d) is clear in view of (c).

4. Multipliers. In this section we study the multipliers, namely, $M_*^{r,p} =$ $\operatorname{Hom}_{C(I)}(L_*^r, L_\circ^p)$ and $M_\circ^{r,p} = \operatorname{Hom}_{C(I)}(L_*^r, L_*^p)$. We have $M_*^{r,p} = (A_*^{r,p})^*$, and we deal with the case $r \ge p'$; the other case can be obtained by identifying $A_*^{r,p}$ and $A_*^{p',r'}$. The following theorem gives us a necessary condition for a multiplier to be in $M_*^{r,p}$.

THEOREM 4. Let $r \geq p'$. If $t \in M_*^{r,p}$ then t is measurable and $\sup 2^{-n/r'} \|P_n t\|_p < \infty.$

Proof. $M_*^{r,p} = (A_*^{r,p})^* \subseteq (C^{r,p})^*$ by Theorem 3. Therefore, if $t \in M_*^{r,p}$ then t is measurable and $\sup_n 2^{-n/r'} \|P_n t\|_p < \infty$.

The following theorem gives us a sufficient condition for a multiplier to be in $M^{r,p}_*$.

THEOREM 5. Let $r \ge p'$. If t is measurable and satisfies

$$\sum_{n=1}^{\infty} (2^{-n/r'} \|P_n t\|_p)^{u'} < \infty,$$

then $t \in M^{r,p}_*$.

Proof. $M^{r,p}_* = (A^{r,p}_*)^* \supseteq (C^{r,p}_u)^*$ by Theorem 3. Therefore if t is measurable and satisfies $\sum_{n=1}^{\infty} (2^{-n/r'} ||P_nt||_p)^{u'} < \infty$ then $t \in M^{r,p}_*$.

Next, we look at $\operatorname{Hom}_{C(I)}(L^r_*, L^p_*)$, i.e., $(L^r \otimes_{C(I)} L^{p'})^*$, where the action of C(I) on $L^r(I)$ is by * and on $L^{p'}(I)$ by \circ . The natural map $w : L^r_* \otimes L^{p'}_\circ \to L^r \circ L^{p'}$ factors through $L^r \otimes_{C(I)} L^{p'}$ (note that C(I) can be replaced by another dense subalgebra contained in $L^r \cap L^{p'}$). Theorem 1 of [2] shows that the map $L^r_* \otimes_{C(I)} L^{p'}_\circ \to L^r \circ L^{p'}$ induced by w is one-to-one. Then $L^r \circ L^{p'}$ can be identified with $\{\sum_{i=1}^{\infty} f_i \circ g_i : f_i \in L^r, g_i \in L^{p'}$ and $\sum_{i=1}^{\infty} \|f_i\|_r \|g_i\|_{p'} < \infty\}$, which we can identify with $L^r_* \otimes_{C(I)} L^{p'}_\circ$, i.e., the predual of $\operatorname{Hom}_{C(I)}(L^r_*, L^p_*)$.

THEOREM 6. Let $r \ge p$. If $\beta \in M^{r,p}_{\circ}$ then β is measurable and satisfies $\sup_{n} 2^{-n/r'} \|P_n\beta\|_p < \infty$.

Proof. $M^{r,p}_{\circ} = (A^{r,p}_{\circ})^* \subseteq (C^{r,p})^*$ by Theorem 2. Thus if $\beta \in M^{r,p}_{\circ}$ then $\beta \in (C^{r,p})^*$ and so β is measurable and satisfies $\sup_n 2^{-n/r'} ||P_n\beta||_p < \infty$.

THEOREM 7. Let $r \geq p$. If $\beta \in L^{u'}(I)$ has an a.e. derivative h which satisfies $\sum_{n=1}^{\infty} (2^{-n/r'} ||P_nh||_p)^{u'} < \infty$, then $\beta \in M^{r,p}_{\circ}$.

Proof. $M^{r,p}_{\circ} = (A^{r,p}_{\circ})^* \supseteq (C^{r,p}_u + AC^{\circ}_u)^*$ by Theorems 1 and 2. Suppose $\mu \in (C^{r,p}_u + AC^{\circ}_u)^*$. Then $\mu|_{AC^{\circ}_u} \in (AC^{\circ}_u)^*$ and $\mu|_{C^{r,p}_u} \in (C^{r,p}_u)^*$. Note that $(AC^{\circ}_u)^* = L^{u'}(I)$, via the pairing

(2)
$$\langle \mu, \varphi \rangle = \int_{0}^{1} \beta(s) f(s) \, ds,$$

where $\varphi(s) = \int_{s}^{1} f(t) dt$ is in AC_{u}° and μ corresponds to $\beta \in L^{u'}(I)$. Since $\mu|_{C_{u}^{r,p}} \in (C_{u}^{r,p})^{*}$ it follows that $\beta \in (C_{u}^{r,p})^{*}$. For any $\varepsilon > 0$, $L^{p'}(I_{\varepsilon}) \subset C_{u}^{r,p}$ $(I_{\varepsilon} = [\varepsilon, 1])$ and so $\mu|_{L^{p'}(I_{\varepsilon})}$ corresponds to an $L^{p}(I_{\varepsilon})$ function h_{ε} such that for $\varphi \in L^{p'}(I_{\varepsilon})$,

$$\langle \mu, \varphi \rangle = \int_{\varepsilon}^{1} h_{\varepsilon}(s)\varphi(s) \, ds = \int_{0}^{1} h_{\varepsilon}(s)\varphi(s) \, ds,$$

where φ is taken to be zero on $[0, \varepsilon)$. It is clear that the h_{ε} 's are compatible,

i.e. $h_{\varepsilon'} = h_{\varepsilon}$ on $[\varepsilon, 1]$ if $\varepsilon' < \varepsilon$. Moreover, for $\varphi = \int_s^1 f(t) dt \in L^{p'}(I_{\varepsilon})$ we have

$$\langle \mu, \varphi \rangle = \int_{0}^{1} h_{\varepsilon}(s) \int_{s}^{1} f(t) \, dt \, ds = \int_{0}^{1} f(t) \int_{\varepsilon}^{t} h_{\varepsilon}(s) \, ds \, dt.$$

Comparing this with (2) we get

$$\beta(t) = \int_{\varepsilon}^{t} h_{\varepsilon}(s) \, ds \quad \text{ for } t > \varepsilon.$$

Thus $\beta'(t) = h_{\varepsilon}(t)$ a.e. on $[\varepsilon, 1]$ so we have proved that there exists h measurable on (0,1] such that $h \in L^p(I_{\varepsilon})$ for every $\varepsilon > 0$ and $\beta'(t) = h(t)$ a.e. on (0,1]. If we take $\varphi \in B^{r,p} \subseteq C_u^{r,p}$, then

$$\langle \mu, \varphi \rangle = \int_{0}^{1} h(t)\varphi(t) dt$$

exists and is finite because $\sum_{n=1}^{\infty} (2^{-n/r'} ||P_n h||_p)^{u'} < \infty$. The multiplier M_β corresponding to β is given by

$$M_{\beta}(f)(t) = \left[\beta(1) - \int_{t}^{1} h(s) \, ds\right] f(s) + h(t) \int_{0}^{t} f(s) \, ds \quad \text{for } f \in L^{r}(I).$$

Indeed,

<

$$\begin{split} M_{\beta}(f),g\rangle &= \langle \beta, f \circ g \rangle \\ &= \int_{0}^{1} \left\{ h(t)g(t) \int_{0}^{t} f(s) \, ds + g(t)f(t)\beta(t) \right\} dt, \\ &= \int_{0}^{1} g(t) \left\{ \left(\beta(1) - \int_{t}^{1} h(s) \, ds \right) f(t) + h(t) \int_{0}^{t} f(s) \, ds \right\} dt. \end{split}$$

REMARKS. (i) For r = p (u = 1), $\beta \in L^{\infty}(I)$, and consequently $x \mapsto \int_{x}^{1} h(t) dt$ is bounded.

(ii) The condition that $h(s) \int_0^s f(t) dt$ is in $L^p(I)$ for every $f \in L^r(I)$ is equivalent to $\sum_{n=1}^{\infty} (2^{-n/r'} ||P_n h||_p)^{u'} < \infty$. To see this, let $g \in L^{p'}$. If $\widehat{f}(x)$ denotes $\int_0^x f(y) dy$ for $f \in L^r$, then

$$\begin{aligned} |\langle h\widehat{f},g\rangle| &= \left|\int_{0}^{1} (h\widehat{f})(x)g(x)\,dx\right| \leq \sum_{n} \|P_{n}h\|_{p}\|P_{n}(g\widehat{f})\|_{p'} \\ &\leq \left[\sum_{n=1}^{\infty} (2^{-n/r'}\|P_{n}h\|_{p})^{u'}\right]^{1/u'} \left[\sum_{n=1}^{\infty} (2^{n/r'}\|P_{n}(g\widehat{f})\|_{p'})^{u}\right]^{1/u} < \infty, \end{aligned}$$

since $g\widehat{f} \in B^{r,p} \subseteq C_u^{r,p}$. Thus $h\widehat{f} \in L^p$ for all $f \in L^r$.

Conversely, suppose $h\hat{f} \in L^p$ for all $f \in L^r$. Since

$$\left[\sum_{n=1}^{\infty} (2^{-n/r'} \|P_n h\|_p)^{u'}\right]^{1/u'} = \sup_{\varphi \in C_u^{r,p}} \frac{\|h\varphi\|_1}{\|\varphi\|},$$

and

 $\|\varphi\|_{p'} \le \|\varphi\|$ for $\varphi \in C_u^{r,p}$,

we get

 $\|h\varphi\|_{1} \leq \|(x+1)^{1/r'}h\|_{p}\|(x+1)^{-1/r'}\varphi\|_{p'} \leq \|(x+1)^{1/r'}h\|_{p}\|\varphi\| < \infty,$ since $f(x) = (x+1)^{-1/r} \in L^{r}$. Thus $[\sum_{n=1}^{\infty} (2^{-n/r'}\|P_{n}h\|_{p})^{u'}]^{1/u'} < \infty$. Here $\|\varphi\|$ stands for $[\sum_{n=1}^{\infty} (2^{n/r'}\|P_{n}\varphi\|_{p'})^{u}]^{1/u}$.

(iii) In [1] the fact that a multiplier T from a Banach algebra A to itself gives rise to a bounded continuous function was used heavily. It is natural to expect that if T is a multiplier from a Banach algebra A to a Banach algebra B, where $A \subset B$, $A \neq B$, then T need not give rise to a bounded continuous function. See Larsen [4, Theorem 1.2.2]. This is corroborated by the fact that $\beta(x) = \log x, x \in (0, 1]$, gives a multiplier from $L^r(I)$ to $L^p(I)$, r > p (u > 1), whereas $t \mapsto \int_t^t (1/s) ds$ is not bounded.

Acknowledgements. The author is grateful to Prof. H. L. Vasudeva for many helpful discussions.

REFERENCES

- J. W. Baker, J. S. Pym and H. L. Vasudeva, Totally ordered measure spaces and their L^p algebras, Mathematika 29 (1982), 42–54.
- [2] S. Bhatnagar and H. L. Vasudeva, Spaces of multipliers and their preduals for the order multiplication on [0, 1], Colloq. Math. 94 (2002), 21–36.
- [3] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.
- [4] R. Larsen, An Introduction to the Theory of Multipliers, Springer, 1971.
- [5] M. A. Rieffel, Multipliers and tensor products of L^p-spaces of locally compact groups, Studia Math. 33 (1969), 71–82.

Department of Mathematics Panjab University Chandigarh 160014, India E-mail: bhsavita@pu.ac.in

Received 14 May 2003

(4345)