COLLOQUIUM MATHEMATICUM

SPACES OF MULTIPLIERS AND THEIR PREDUALS
 FOR THE ORDER MULTIPLICATION ON [0,1]. II

BY
SAVITA BHATNAGAR (Chandigarh)

Abstract

Consider $I=[0,1]$ as a compact topological semigroup with max multiplication and usual topology, and let $C(I), L^{p}(I), 1 \leq p \leq \infty$, be the associated algebras. The aim of this paper is to study the spaces $\operatorname{Hom}_{C(I)}\left(L^{r}(I), L^{p}(I)\right), r>p$, and their preduals.

1. Introduction. The multipliers from $L^{r}(I)$ to $L^{p}(I), 1 \leq r, p \leq \infty$, where I denotes the topological semigroup $[0,1]$ with max multiplication and the usual topology, have been studied by Baker, Pym and Vasudeva [1]. The identification of multiplier spaces and their preduals from $L^{r}(I)$ to $L^{p}(I), 1 \leq r \leq p \leq \infty$, has been carried out by Bhatnagar and Vasudeva [2]. The case when $r>p$ has evaded the authors. The present study does not close this gap completely; however, it provides a set of necessary conditions and another set of sufficient conditions for a linear operator to be a multiplier from $L^{r}(I)$ to $L^{p}(I), r>p$. As a natural outcome of the methods employed, we find that a multiplier from $L^{r}(I)$ to $L^{p}(I), r>p$, need not be bounded as was assumed in [1]. As there is substantial overlap between the arguments presented in [2] and the present note, we have tried to be as brief as possible. For details, the reader may refer to [2].
2. Preliminaries. The set $I=[0,1]$ equipped with max multiplication and usual topology is a compact topological semigroup. Let $C(I)$ and $L^{p}(I), 1 \leq p \leq \infty$, have their usual meanings. $L^{p}(I)$ is a left Banach $C(I)$ module under convolution $*$ defined by

$$
\varphi * g(t)=\varphi(t) \int_{0}^{t} g(s) d s+g(t) \int_{0}^{t} \varphi(s) d s
$$

for almost all $t \in I$, where $\varphi \in C(I)$ and $g \in L^{p}(I)$. We denote this left Banach $C(I)$-module by L_{*}^{p}. The adjoint action \circ of an element $\varphi \in C(I)$ on $L^{p^{\prime}}(I), 1 / p+1 / p^{\prime}=1$, under which $L^{p^{\prime}}(I)$ becomes a right Banach

2000 Mathematics Subject Classification: Primary 43A22.
$C(I)$-module is defined by

$$
g \circ \varphi(s)=g(s) \int_{0}^{s} \varphi(t) d t+\int_{s}^{1} \varphi(t) g(t) d t, \quad g \in L^{p^{\prime}}(I)
$$

The right Banach $C(I)$-module $L^{p^{\prime}}(I)$ with the adjoint action defined above is denoted by $L_{\circ}^{p^{\prime}}$. The above definitions can be extended to $\varphi \in L^{r}(I)$, $r>p$, by denseness of $C(I)$ in $L^{r}(I)$.

Let $M_{\circ}^{r, p}$ denote $\operatorname{Hom}_{C(I)}\left(L_{*}^{r}, L_{*}^{p}\right)$ and $M_{*}^{r, p}$ denote $\operatorname{Hom}_{C(I)}\left(L_{*}^{r}, L_{\circ}^{p}\right)$ for $1 \leq r, p \leq \infty$. If

$$
A_{*}^{r, p}=L_{*}^{r} \hat{\otimes}_{C(I)} L_{*}^{p^{\prime}}, \quad A_{\circ}^{r, p}=L_{*}^{r} \hat{\otimes}_{C(I)} L_{\circ}^{p^{\prime}}
$$

where the tensor product is the projective tensor product of Banach modules, then it follows, using a theorem of Rieffel [5], that $\left(A_{*}^{r, p}\right)^{*}=M_{*}^{r, p}$ and $\left(A_{\circ}^{r, p}\right)^{*}=M_{\circ}^{r, p}$.

3. Description of preduals. We define an operator

$$
B: L^{r}(I) \hat{\otimes} L^{p^{\prime}}(I) \rightarrow L^{p^{\prime}}(I)
$$

where $1 \leq r, p^{\prime}<\infty$, by

$$
B(f \otimes g)(s)=g(s) \int_{0}^{s} f(t) d t
$$

The image of B in $L^{p^{\prime}}(I)$ will be called $B^{r, p}$ if $1<r, p<\infty$, and B^{∞} in L^{∞} if $r=p^{\prime}=\infty$. Let $I_{n}=\left[0,2^{-n}\right]$ and $J_{n}=\left[2^{-n}, 2^{-n+1}\right], n=1,2, \ldots$ For a measurable function φ on I, let $P_{n} \varphi$ denote the function $\chi_{J_{n}} \varphi, n=1,2, \ldots$ Define $e_{n}=2^{n} \chi_{I_{n}}, n=1,2, \ldots$ Since $\int_{0}^{1} e_{n}(s) d s=1$ for each n, we can easily see that if $f \equiv 0$ on I_{n} then $B\left(e_{n} \otimes f\right)=f$. As $f=\sum_{n=1}^{\infty} P_{n} f$, we obtain

$$
f=\sum_{n=1}^{\infty} B\left(e_{n} \otimes P_{n} f\right)=\sum_{n=1}^{\infty} e_{n} \circ P_{n} f=\sum_{n=1}^{\infty} e_{n} * P_{n} f
$$

Let

$$
\begin{aligned}
& C^{r, p}=\left\{\varphi: \varphi \text { is measurable and } \sum_{n=1}^{\infty} 2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}}<\infty\right\} \\
& C_{u}^{r, p}=\left\{\varphi: \varphi \text { is measurable and } \sum_{n=1}^{\infty}\left(2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}}\right)^{u}<\infty\right\}
\end{aligned}
$$

where $1 / u=1 / r+1 / p^{\prime}$. It may be noted that for $r=p, C^{p, p}=C_{u}^{p, p}$. We first characterize B^{∞}.

Proposition 1. $B^{\infty}=\{\varphi: \varphi$ is measurable and $\varphi(s) / s$ is essentially bounded $\}$.

Proof. If φ is measurable and $\varphi(s) / s$ is essentially bounded then φ can be written as $\varphi(s)=(\varphi(s) / s) \int_{0}^{s} 1 d t$. Consequently, $\varphi=B(\psi)$, where $\psi(s)=$ $1 \otimes \varphi(s) / s$. On the other hand, if $\varphi=B(f \otimes g)$, where $f, g \in L^{\infty}$, then $\varphi(s)=g(s) \int_{0}^{s} f(t) d t, s \in I$, is measurable. Moreover,

$$
\left|\frac{\varphi(s)}{s}\right|=\left|\frac{g(s)}{s} \int_{0}^{s} f(t) d t\right| \leq\|g\|_{\infty}\|f\|_{\infty}
$$

Remark. It is not difficult to see that the requirement that $\varphi(s) / s$ be essentially bounded is equivalent to $\sup _{n} 2^{n}\left\|P_{n} \varphi\right\|_{\infty}<\infty$.

Theorem 1. For $r>p, C^{r, p} \subseteq B^{r, p} \subseteq C_{u}^{r, p}$, where $1 / u=1 / r+1 / p^{\prime}$.
Proof. If $\varphi \in C^{r, p}$, then $\sum_{n=1}^{\infty} 2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}}<\infty$, so that $\varphi=$ $\sum_{n=1}^{\infty} B\left(e_{n} \otimes P_{n} \varphi\right)$ and $\sum_{n=1}^{\infty}\left\|e_{n}\right\|_{r}\left\|P_{n} \varphi\right\|_{p^{\prime}}<\infty$. Thus $\psi=\sum_{n=1}^{\infty} e_{n} \otimes$ $P_{n} \varphi \in L^{r} \otimes L^{p^{\prime}}$ and $B(\psi)=\varphi$.

To prove the other inclusion, fix r and p and let $q=1+r / p^{\prime}$, so that $q^{\prime}=1+p^{\prime} / r$. Let $\alpha=q / r$. Then

$$
\alpha \cdot \frac{1}{q}+(1-\alpha) \cdot \frac{1}{\infty}=\frac{1}{r}, \quad \alpha \cdot \frac{1}{q^{\prime}}+(1-\alpha) \cdot \frac{1}{\infty}=\frac{1}{p^{\prime}} .
$$

Since $B\left(L^{q} \otimes L^{q^{\prime}}\right) \subset B^{q, q}$ and $B\left(L^{\infty} \otimes L^{\infty}\right) \subset B^{\infty}$, it follows by interpolation, using Calderón [3], that B maps $L^{r} \otimes L^{p^{\prime}}$ into a suitable intermediate space between $B^{q, q}$ and B^{∞}. (It may be observed that $B^{q, q}=C^{q, q}$). To see this, note that $B^{q, q}$ may be regarded as a mixed L^{p} space, viz., $L^{1}\left(\mathbb{N}, \nu, L^{q^{\prime}}(I)\right)$, where ν is the measure on \mathbb{N} assigning mass 2^{-n} to the element $\{n\}$, and B^{∞} may be regarded as $L^{\infty}\left(\mathbb{N}, \nu, L^{\infty}(I)\right)$. These identifications are obtained by associating with $\varphi \in B^{q, q}$ (or B^{∞}) the function $f: \mathbb{N} \times I \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
f(n, t)=2^{n} \varphi\left(\frac{t+1}{2^{n}}\right), \quad n \in \mathbb{N}, t \in I \tag{1}
\end{equation*}
$$

By Calderón [3], the intermediate space with index α between $L^{1}(\mathbb{N}, \nu$, $\left.L^{q^{\prime}}(I)\right)$ and $L^{\infty}\left(\mathbb{N}, \nu, L^{\infty}(I)\right)$ is contained in $L^{u}\left(\mathbb{N}, \nu, L^{v}(I)\right)$, where

$$
\alpha \cdot \frac{1}{1}+(1-\alpha) \cdot \frac{1}{\infty}=\frac{1}{u}, \quad \alpha \cdot \frac{1}{q^{\prime}}+(1-\alpha) \cdot \frac{1}{\infty}=\frac{1}{v} .
$$

Thus $1 / u=1 / r+1 / p^{\prime}$, and $v=p^{\prime}$. It follows that B maps $L^{r} \hat{\otimes} L^{p^{\prime}}$ into $L^{u}\left(\mathbb{N}, \nu, L^{p^{\prime}}(I)\right)$ and by identification (1) this corresponds to measurable functions φ on I such that $\sum_{n=1}^{\infty}\left(2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}}\right)^{u}<\infty$. Thus $\varphi \in C_{u}^{r, p}$. This completes the proof.

We next characterize the predual $A_{\circ}^{r, p}$ of the multiplier space $M_{\circ}^{r, p}$. Let $A C_{u}^{\circ}(u \geq 1)$ be the space of absolutely continuous functions on $[0,1]$ whose derivative belongs to $L^{u}(I)$ and which vanish at 1.

THEOREM 2. For $r \geq p, C^{r, p} \subseteq A_{\circ}^{r, p} \subseteq B^{r, p}+A C_{u}^{\circ}$, where $1 / r+1 / p^{\prime}=$ $1 / u$.

Proof. If $\varphi \in C^{r, p}$, we can write $\varphi=\sum_{n=1}^{\infty} e_{n} \circ P_{n} \varphi$ and by definition of $C^{r, p}, \sum_{n=1}^{\infty}\left\|e_{n}\right\|_{r}\left\|P_{n} \varphi\right\|_{p^{\prime}}<\infty$ so that $\varphi \in A_{\circ}^{r, p}$.

Clearly, every element of $A_{0}^{r, p}$ is a sum of the form $\varphi+\psi$, where $\varphi \in B^{r, p}$ and $\psi \in A C_{u}^{\circ}$, so that we have the required result.

THEOREM 3. (a) $A_{*}^{r, p}$ is a semisimple commutative Banach algebra under convolution. It has an approximate identity. The maximal ideal space of $A_{*}^{r, p}$ is the interval $(0,1]$ with the interval topology.
(b) $C^{r, p}+C^{p^{\prime}, r^{\prime}} \subseteq A_{*}^{r, p} \subseteq B^{r, p}+B^{p^{\prime}, r^{\prime}}$ for $1 \leq r, p \leq \infty$.
(c) $C^{p^{\prime}, r^{\prime}} \subseteq C^{r, p}$ if $r \geq \overline{p^{\prime}}$, and $C^{r, p} \subseteq C^{p^{\prime}, r^{\prime}}$ if $r \leq \overline{p^{\prime}}$, $C_{u}^{p^{\prime}, r^{\prime}} \subseteq C_{u}^{r, p}$ if $r \geq p^{\prime}$, and $C_{u}^{r, p} \subseteq C_{u}^{p^{\prime}, r^{\prime}}$ if $r \leq p^{\prime}$.
(d) $C^{r, p} \subseteq A_{*}^{r, p} \subseteq C_{u}^{r, p}$ if $r \geq p^{\prime}$, and $C^{p^{\prime}, r^{\prime}} \subseteq A_{*}^{r, p} \subseteq C_{u}^{p^{\prime}, r^{\prime}}$ if $r \leq p^{\prime}$.

Proof. (a) $A_{*}^{r, p}=L^{r} \hat{\otimes}_{C(I)} L^{p^{\prime}}$, being the projective tensor product of two Banach algebras, is a Banach algebra. For the detailed proof, consult Theorem 7 of [2].
(b) If $\varphi \in C^{r, p}$, then $\sum_{n=1}^{\infty} 2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}}<\infty$ and $\varphi=\sum_{n=1}^{\infty} e_{n} * P_{n} \varphi$ $\in A_{*}^{r, p}$. Similarly for $C^{p^{\prime}, r^{\prime}}$. It is clear that every element of $A_{*}^{r, p}$ is a sum $\varphi+\psi$, where $\varphi \in B^{r, p}$ and $\psi \in B^{p^{\prime}, r^{\prime}}$, so that $A_{*}^{r, p} \subseteq B^{r, p}+B^{p^{\prime}, r^{\prime}}$.
(c) We show that $C^{p^{\prime}, r^{\prime}} \subseteq C^{r, p}$ if $r \geq p^{\prime}$, the other proofs are similar. If $\varphi \in C^{p^{\prime}, r^{\prime}}$, then $\sum_{n=1}^{\infty} 2^{n / p}\left\|P_{n} \varphi\right\|_{r}<\infty$ and

$$
\sum_{n=1}^{\infty} 2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}} \leq \sum_{n=1}^{\infty} 2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{r}\left(2^{-n}\right)^{1 / p^{\prime}-1 / r}=\sum_{n=1}^{\infty} 2^{n / p}\left\|P_{n} \varphi\right\|_{r}<\infty
$$

so that $\varphi \in C^{r, p}$.
(d) is clear in view of (c).
4. Multipliers. In this section we study the multipliers, namely, $M_{*}^{r, p}=$ $\operatorname{Hom}_{C(I)}\left(L_{*}^{r}, L_{\circ}^{p}\right)$ and $M_{\circ}^{r, p}=\operatorname{Hom}_{C(I)}\left(L_{*}^{r}, L_{*}^{p}\right)$. We have $M_{*}^{r, p}=\left(A_{*}^{r, p}\right)^{*}$, and we deal with the case $r \geq p^{\prime}$; the other case can be obtained by identifying $A_{*}^{r, p}$ and $A_{*}^{p^{\prime}, r^{\prime}}$. The following theorem gives us a necessary condition for a multiplier to be in $M_{*}^{r, p}$.

ThEOREM 4. Let $r \geq p^{\prime}$. If $t \in M_{*}^{r, p}$ then t is measurable and

$$
\sup _{n} 2^{-n / r^{\prime}}\left\|P_{n} t\right\|_{p}<\infty
$$

Proof. $M_{*}^{r, p}=\left(A_{*}^{r, p}\right)^{*} \subseteq\left(C^{r, p}\right)^{*}$ by Theorem 3. Therefore, if $t \in M_{*}^{r, p}$ then t is measurable and $\sup _{n} 2^{-n / r^{\prime}}\left\|P_{n} t\right\|_{p}<\infty$.

The following theorem gives us a sufficient condition for a multiplier to be in $M_{*}^{r, p}$.

Theorem 5. Let $r \geq p^{\prime}$. If t is measurable and satisfies

$$
\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} t\right\|_{p}\right)^{u^{\prime}}<\infty
$$

then $t \in M_{*}^{r, p}$.
Proof. $M_{*}^{r, p}=\left(A_{*}^{r, p}\right)^{*} \supseteq\left(C_{u}^{r, p}\right)^{*}$ by Theorem 3. Therefore if t is measurable and satisfies $\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} t\right\|_{p}\right)^{u^{\prime}}<\infty$ then $t \in M_{*}^{r, p}$.

Next, we look at $\operatorname{Hom}_{C(I)}\left(L_{*}^{r}, L_{*}^{p}\right)$, i.e., $\left(L^{r} \hat{\otimes}_{C(I)} L^{p^{\prime}}\right)^{*}$, where the action of $C(I)$ on $L^{r}(I)$ is by $*$ and on $L^{p^{\prime}}(I)$ by \circ. The natural map w : $L_{*}^{r} \hat{\otimes} L_{\circ}^{p^{\prime}} \rightarrow L^{r} \circ L^{p^{\prime}}$ factors through $L^{r} \hat{\otimes}_{C(I)} L^{p^{\prime}}$ (note that $C(I)$ can be replaced by another dense subalgebra contained in $L^{r} \cap L^{p^{\prime}}$). Theorem 1 of [2] shows that the map $L_{*}^{r} \hat{\otimes}_{C(I)} L_{\circ}^{p^{\prime}} \rightarrow L^{r} \circ L^{p^{\prime}}$ induced by w is one-to-one. Then $L^{r} \circ L^{p^{\prime}}$ can be identified with $\left\{\sum_{i=1}^{\infty} f_{i} \circ g_{i}: f_{i} \in L^{r}, g_{i} \in L^{p^{\prime}}\right.$ and $\left.\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{r}\left\|g_{i}\right\|_{p^{\prime}}<\infty\right\}$, which we can identify with $L_{*}^{r} \hat{\otimes}_{C(I)} L_{\circ}^{p^{\prime}}$, i.e., the predual of $\operatorname{Hom}_{C(I)}\left(L_{*}^{r}, L_{*}^{p}\right)$.

Theorem 6. Let $r \geq p$. If $\beta \in M_{\circ}^{r, p}$ then β is measurable and satisfies $\sup _{n} 2^{-n / r^{\prime}}\left\|P_{n} \beta\right\|_{p}<\infty$.

Proof. $M_{\circ}^{r, p}=\left(A_{\circ}^{r, p}\right)^{*} \subseteq\left(C^{r, p}\right)^{*}$ by Theorem 2. Thus if $\beta \in M_{\circ}^{r, p}$ then $\beta \in\left(C^{r, p}\right)^{*}$ and so β is measurable and satisfies $\sup _{n} 2^{-n / r^{\prime}}\left\|P_{n} \beta\right\|_{p}<\infty$.

TheOrem 7. Let $r \geq p$. If $\beta \in L^{u^{\prime}}(I)$ has an a.e. derivative h which satisfies $\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} h\right\|_{p}\right)^{u^{\prime}}<\infty$, then $\beta \in M_{\circ}^{r, p}$.

Proof. $M_{\circ}^{r, p}=\left(A_{\circ}^{r, p}\right)^{*} \supseteq\left(C_{u}^{r, p}+A C_{u}^{\circ}\right)^{*}$ by Theorems 1 and 2. Suppose $\mu \in\left(C_{u}^{r, p}+A C_{u}^{\circ}\right)^{*}$. Then $\left.\mu\right|_{A C_{u}^{\circ}} \in\left(A C_{u}^{\circ}\right)^{*}$ and $\left.\mu\right|_{C_{u}^{r, p}} \in\left(C_{u}^{r, p}\right)^{*}$. Note that $\left(A C_{u}^{\circ}\right)^{*}=L^{u^{\prime}}(I)$, via the pairing

$$
\begin{equation*}
\langle\mu, \varphi\rangle=\int_{0}^{1} \beta(s) f(s) d s \tag{2}
\end{equation*}
$$

where $\varphi(s)=\int_{s}^{1} f(t) d t$ is in $A C_{u}^{\circ}$ and μ corresponds to $\beta \in L^{u^{\prime}}(I)$. Since $\left.\mu\right|_{C_{u}^{r, p}} \in\left(C_{u}^{r, p}\right)^{*}$ it follows that $\beta \in\left(C_{u}^{r, p}\right)^{*}$. For any $\varepsilon>0, L^{p^{\prime}}\left(I_{\varepsilon}\right) \subset$ $C_{u}^{r, p}\left(I_{\varepsilon}=[\varepsilon, 1]\right)$ and so $\left.\mu\right|_{L^{p^{\prime}}\left(I_{\varepsilon}\right)}$ corresponds to an $L^{p}\left(I_{\varepsilon}\right)$ function h_{ε} such that for $\varphi \in L^{p^{\prime}}\left(I_{\varepsilon}\right)$,

$$
\langle\mu, \varphi\rangle=\int_{\varepsilon}^{1} h_{\varepsilon}(s) \varphi(s) d s=\int_{0}^{1} h_{\varepsilon}(s) \varphi(s) d s
$$

where φ is taken to be zero on $[0, \varepsilon)$. It is clear that the h_{ε} 's are compatible,
i.e. $h_{\varepsilon^{\prime}}=h_{\varepsilon}$ on $[\varepsilon, 1]$ if $\varepsilon^{\prime}<\varepsilon$. Moreover, for $\varphi=\int_{s}^{1} f(t) d t \in L^{p^{\prime}}\left(I_{\varepsilon}\right)$ we have

$$
\langle\mu, \varphi\rangle=\int_{0}^{1} h_{\varepsilon}(s) \int_{s}^{1} f(t) d t d s=\int_{0}^{1} f(t) \int_{\varepsilon}^{t} h_{\varepsilon}(s) d s d t
$$

Comparing this with (2) we get

$$
\beta(t)=\int_{\varepsilon}^{t} h_{\varepsilon}(s) d s \quad \text { for } t>\varepsilon
$$

Thus $\beta^{\prime}(t)=h_{\varepsilon}(t)$ a.e. on $[\varepsilon, 1]$ so we have proved that there exists h measurable on $(0,1]$ such that $h \in L^{p}\left(I_{\varepsilon}\right)$ for every $\varepsilon>0$ and $\beta^{\prime}(t)=h(t)$ a.e. on $(0,1]$. If we take $\varphi \in B^{r, p} \subseteq C_{u}^{r, p}$, then

$$
\langle\mu, \varphi\rangle=\int_{0}^{1} h(t) \varphi(t) d t
$$

exists and is finite because $\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} h\right\|_{p}\right)^{u^{\prime}}<\infty$. The multiplier M_{β} corresponding to β is given by

$$
M_{\beta}(f)(t)=\left[\beta(1)-\int_{t}^{1} h(s) d s\right] f(s)+h(t) \int_{0}^{t} f(s) d s \quad \text { for } f \in L^{r}(I)
$$

Indeed,

$$
\begin{aligned}
\left\langle M_{\beta}(f), g\right\rangle & =\langle\beta, f \circ g\rangle \\
& =\int_{0}^{1}\left\{h(t) g(t) \int_{0}^{t} f(s) d s+g(t) f(t) \beta(t)\right\} d t \\
& =\int_{0}^{1} g(t)\left\{\left(\beta(1)-\int_{t}^{1} h(s) d s\right) f(t)+h(t) \int_{0}^{t} f(s) d s\right\} d t
\end{aligned}
$$

Remarks. (i) For $r=p(u=1), \beta \in L^{\infty}(I)$, and consequently $x \mapsto$ $\int_{x}^{1} h(t) d t$ is bounded.
(ii) The condition that $h(s) \int_{0}^{s} f(t) d t$ is in $L^{p}(I)$ for every $f \in L^{r}(I)$ is equivalent to $\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} h\right\|_{p}\right)^{u^{\prime}}<\infty$. To see this, let $g \in L^{p^{\prime}}$. If $\widehat{f}(x)$ denotes $\int_{0}^{x} f(y) d y$ for $f \in L^{r}$, then

$$
\begin{aligned}
|\langle h \widehat{f}, g\rangle| & =\left|\int_{0}^{1}(h \widehat{f})(x) g(x) d x\right| \leq \sum_{n}\left\|P_{n} h\right\|_{p}\left\|P_{n}(g \widehat{f})\right\|_{p^{\prime}} \\
& \leq\left[\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} h\right\|_{p}\right)^{u^{\prime}}\right]^{1 / u^{\prime}}\left[\sum_{n=1}^{\infty}\left(2^{n / r^{\prime}}\left\|P_{n}(g \widehat{f})\right\|_{p^{\prime}}\right)^{u}\right]^{1 / u}<\infty
\end{aligned}
$$

since $g \widehat{f} \in B^{r, p} \subseteq C_{u}^{r, p}$. Thus $h \widehat{f} \in L^{p}$ for all $f \in L^{r}$.

Conversely, suppose $h \widehat{f} \in L^{p}$ for all $f \in L^{r}$. Since

$$
\left[\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} h\right\|_{p}\right)^{u^{\prime}}\right]^{1 / u^{\prime}}=\sup _{\varphi \in C_{u}^{r, p}} \frac{\|h \varphi\|_{1}}{\|\varphi\|}
$$

and

$$
\|\varphi\|_{p^{\prime}} \leq\|\varphi\| \quad \text { for } \varphi \in C_{u}^{r, p}
$$

we get

$$
\|h \varphi\|_{1} \leq\left\|(x+1)^{1 / r^{\prime}} h\right\|_{p}\left\|(x+1)^{-1 / r^{\prime}} \varphi\right\|_{p^{\prime}} \leq\left\|(x+1)^{1 / r^{\prime}} h\right\|_{p}\|\varphi\|<\infty
$$

since $f(x)=(x+1)^{-1 / r} \in L^{r}$. Thus $\left[\sum_{n=1}^{\infty}\left(2^{-n / r^{\prime}}\left\|P_{n} h\right\|_{p}\right)^{u^{\prime}}\right]^{1 / u^{\prime}}<\infty$. Here $\|\varphi\|$ stands for $\left[\sum_{n=1}^{\infty}\left(2^{n / r^{\prime}}\left\|P_{n} \varphi\right\|_{p^{\prime}}\right)^{u}\right]^{1 / u}$.
(iii) In [1] the fact that a multiplier T from a Banach algebra A to itself gives rise to a bounded continuous function was used heavily. It is natural to expect that if T is a multiplier from a Banach algebra A to a Banach algebra B, where $A \subset B, A \neq B$, then T need not give rise to a bounded continuous function. See Larsen [4, Theorem 1.2.2]. This is corroborated by the fact that $\beta(x)=\log x, x \in(0,1]$, gives a multiplier from $L^{r}(I)$ to $L^{p}(I)$, $r>p(u>1)$, whereas $t \mapsto \int_{t}^{1}(1 / s) d s$ is not bounded.

Acknowledgements. The author is grateful to Prof. H. L. Vasudeva for many helpful discussions.

REFERENCES

[1] J. W. Baker, J. S. Pym and H. L. Vasudeva, Totally ordered measure spaces and their L^{p} algebras, Mathematika 29 (1982), 42-54.
[2] S. Bhatnagar and H. L. Vasudeva, Spaces of multipliers and their preduals for the order multiplication on $[0,1]$, Colloq. Math. 94 (2002), 21-36.
[3] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
[4] R. Larsen, An Introduction to the Theory of Multipliers, Springer, 1971.
[5] M. A. Rieffel, Multipliers and tensor products of L^{p}-spaces of locally compact groups, Studia Math. 33 (1969), 71-82.

Department of Mathematics
Panjab University
Chandigarh 160014, India
E-mail: bhsavita@pu.ac.in

