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Abstract. Motivated by the powerful and elegant works of Miers (1971, 1973, 1978)
we mainly study nonlinear Lie-type derivations of von Neumann algebras. Let A be a von
Neumann algebra without abelian central summands of type I1. It is shown that every
nonlinear Lie n-derivation of A has the standard form, that is, can be expressed as a sum
of an additive derivation and a central-valued mapping which annihilates each (n − 1)th
commutator of A. Several potential research topics related to our work are also presented.

1. Introduction. Let R be a commutative ring with identity, A be a
unital associative algebra over R, and Z(A) be the center of A. An additive
mapping ϕ : A → A is called a derivation if

ϕ(xy) = ϕ(x)y + xϕ(y) for all x, y ∈ A.

Let [x, y] = xy−yx denote the Lie product of elements x, y ∈ A. An additive
mapping ϕ : A → A is called a Lie derivation if it is a derivation according
to the Lie product, i.e.,

ϕ([x, y]) = [ϕ(x), y] + [x, ϕ(y)] for all x, y ∈ A.

A Lie triple derivation is an additive mapping ϕ : A → A which satisfies

ϕ([[x, y], z]) = [[ϕ(x), y], z] + [[x, ϕ(y)], z] + [[x, y], ϕ(z)]

for all x, y, z ∈ A. A nonlinear derivation (resp. nonlinear Lie derivation,
nonlinear Lie triple derivation) has the same definition with the additivity
assumption omitted.

Obviously, a derivation is a Lie derivation, and a Lie derivation is a Lie
triple derivation. But the converse statements are not true in general. For
instance, suppose that d : A → A is a derivation and that f is a mapping
from A into its center Z(A) such that f([x, y]) = 0 for all x, y ∈ A. Then
ϕ = d+f is a Lie derivation of A, but not necessarily a derivation. Similarly,
if d : A → A is a derivation and f : A → Z(A) is a mapping such that
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f([[x, y], z]) = 0 for all x, y, z ∈ A, then ϕ = d+ f is a Lie triple derivation
of A, but not necessarily a Lie derivation.

Mimicking the definitions of Lie derivations and Lie triple derivations,
we can extend them in a more general way. Suppose that n ≥ 2 is a fixed
positive integer. Consider the sequence of polynomials

p1(x1) = x1,

p2(x1, x2) = [p1(x1), x2] = [x1, x2],

p3(x1, x2, x3) = [p2(x1, x2), x3] = [[x1, x2], x3],

p4(x1, x2, x3, x4) = [p3(x1, x2, x3), x4] = [[[x1, x2], x3], x4], . . . ,

pn(x1, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn].

The polynomial pn(x1, . . . , xn) is said to be an (n−1)th commutator (n ≥ 2).
A mapping ϕ : A → A is called a nonlinear Lie n-derivation if

(♠) ϕ(pn(x1, . . . , xn)) =

n∑
i=1

pn(x1, . . . , xi−1, ϕ(xi), xi+1, . . . , xn)

for all x1, . . . , xn ∈ A, and a Lie n-derivation if ϕ is moreover additive. It
should be stressed that nonlinear Lie n-derivations here are not necessar-
ily additive. Lie n-derivations were introduced by Abdullaev [Ab], where
the form of Lie n-derivations of a certain von Neumann algebra (or of its
skew-adjoint part) was described. By definition, a Lie derivation is a Lie
2-derivation and a Lie triple derivation is a Lie 3-derivation. Moreover, we
have the following fact.

Proposition 1.1. If ϕ : A → A is a Lie n-derivation, then ϕ is a Lie
(n+ k(n− 1))-derivation for every k ∈ N0.

Proof. We will use induction on k. There is nothing to prove for k = 0.
Suppose that k ≥ 1 and that the statement holds true for k − 1. Set m =
n+ k(n− 1). Then

ϕ(pm(x1, . . . , xm))

= ϕ([[. . . [[pm−(n−1)(x1, . . . , xm−(n−1)), xm−(n−1)+1], xm−(n−1)+2], . . .], xm]).

Since ϕ is a Lie n-derivation and

ϕ(pm−(n−1)(x1, . . . , xm−(n−1)))

=

m−(n−1)∑
i=1

pm−(n−1)(x1, . . . , xi−1, ϕ(xi), xi+1, . . . , xm−(n−1)),

we get

ϕ(pm(x1, . . . , xm)) =

m∑
i=1

pm(x1, . . . , xi−1, ϕ(xi), xi+1, . . . , xm)

for all x1, . . . , xm ∈ A.
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Remark 1.2. Of course, the converse of Proposition 1.1 is not in general
true even for n = 3. This can be seen by the previous paragraph.

Furthermore, if d : A → A is a derivation and f : A → Z(A) is such that
f(pn(x1, . . . , xn)) = 0 for all x1, . . . , xn ∈ A (n ≥ 2), then the mapping

(♣) ϕ = d+ f

is a nonlinear Lie n-derivation of A (n ≥ 2). But it is not a nonlinear
derivation of A in the case where f does not annihilate A. We shall say that
a nonlinear Lie n-derivation ϕ of A is standard if it can be expressed in the
form (♣) (n ≥ 2).

Recently, there has been an increasing interest in the question of when
Lie-type derivations (or nonlinear Lie-type derivations) on operator algebras
are of the form (♣). Many authors have made essential contributions to
related topics. It is Miers who initiated the study of Lie-type derivations of
von Neumann algebras in [M2, M3]. He proved that every Lie derivation on
a von Neumann algebra A is of the form (♣). He further observed that if A is
a von Neumann algebra without abelian central summands of type I1, then
every Lie triple derivation also has the form (♣). Mathieu and Villena [MV]
showed that every Lie derivation on C∗-algebras has the form (♣). Cheung
[Che] gave a sufficient condition for every Lie derivation on a triangular
algebra to be standard.

Lu and his students studied Lie-type derivations of various operator al-
gebras in their systematic works [Lu1, Lu2, Lu3, LuL1, LuL2]. The operator
algebras involved include the algebras of bounded linear operators, CSL al-
gebras, J -subspace lattice algebras, nest algebras on Hilbert spaces, reflex-
ive algebras. Roughly speaking, every Lie derivation or Lie triple derivation
on these operator algebras has the form (♣). Ji and Wang [JLZ, JW] ob-
tained the same result for Lie triple derivations of TUHF algebras and for
multiplicative Lie triple derivations of triangular algebras. Sun and Ma [SM]
proved the same for Lie triple derivations of the nest algebra AlgN , whereN
is a nontrivial nest on an arbitrary Banach space X . Benkovič and Eremita
[BeEr] addressed the question of when all nonlinear Lie n-derivations of a
triangular ring T have the form (♣). Their main result applies to the classi-
cal examples of triangular rings: nest algebras and (block) upper triangular
matrix rings. Bai and Du [BD] studied nonlinear Lie derivations of von
Neumann algebras and got the following result. Let A be a von Neumann
algebra without abelian central summands of type I1. Let ϕ : A → A be a
nonlinear Lie derivation of A. Then ϕ is of the standard form (♣). That is,
ϕ = d+ f , where d is an additive derivation of A and f is a mapping of A
into its center Z(A) which annihilates each commutator of A.
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2. Preliminaries. Throughout this paper, we always assume that A is
a von Neumann algebra without abelian central summands of type I1. We
denote the center of A by Z(A). If A = A∗ ∈ A, the central core of A,
denoted by A, is defined to be sup{S ∈ Z(A) | S = S∗ ≤ A}. Clearly,
the central core of a projection P is the largest central projection contained
in P . For arbitrary A ∈ A, the central carrier of A, denoted by A, is the
intersection of all central projections P such that PA = A.

Let P and Q be nonzero orthogonal projections in A with P + Q = I,
P = Q = I and P = Q = 0 (see [M1] and the last paragraph of p. 58
in [M3]). Let A11 = {PAP | A ∈ A}, A12 = {PAQ | A ∈ A}, A21 =
{QAP | A ∈ A}, A22 = {QAQ | A ∈ A}. Then we usually write A as
A = A11 + A12 + A21 + A22. Let us list several basic facts which will be
used.

Lemma 2.1. Let A be a von Neumann algebra without abelian central
summands of type I1.

(1) ([M3, Lemma 1]) For any i, j, k ∈ {1, 2}, if Aij ∈ Aij and AijX = 0
for all X ∈ Ajk, then Aij = 0.

(2) ([M1, Lemma 5]) If A ∈ A commutes with PXQ and QXP for all
X ∈ A, then A commutes with PXP and QXQ for all X ∈ A, and
hence A ∈ Z(A).

(3) ([M1, Lemma 14]) Aii ∩ Z(A) = {0} (i = 1, 2).
(4) ([BM, Lemma 5]) If C ∈ Z(A) such that CA ⊆ Z(A), then C = 0.

Let us recall the classical Kleinecke–Shirokov theorem, which plays an
important role in our proofs.

Lemma 2.2 ([K, Sh]). Let a, b be elements of a Banach algebra B such
that [[a, b], b] = 0. Then [a, b] is quasi-nilpotent.

The main result of this paper is

Theorem 2.3. Let A be a von Neumann algebra without abelian central
summands of type I1. Let ϕ : A → A be a nonlinear Lie n-derivation of A.
Then ϕ is of the standard form (♣). That is, ϕ = d+f , where d is an additive
derivation of A and f is a central-valued mapping which annihilates each
(n− 1)th commutator of A.

As direct consequences of Theorem 2.3 we have

Corollary 2.4 ([BD, Main Theorem]). Let A be a von Neumann al-
gebra without abelian central summands of type I1. Let ϕ : A → A be a
nonlinear Lie 2-derivation of A. Then ϕ is of the standard form (♣). That
is, ϕ = d+f , where d is an additive derivation of A and f is a central-valued
mapping which annihilates each commutator of A.
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Corollary 2.5 ([M3, Theorem 1]). Let A be a von Neumann algebra
without abelian central summands of type I1. Let ϕ : A → A be a nonlinear
Lie 3-derivation of A. Then ϕ is of the standard form (♣). That is, ϕ = d+f ,
where d is an additive derivation of A and f is a central-valued mapping
which annihilates each second commutator of A.

Remark 2.6. Corollary 2.5 means that the proof of [M3] can work as is
even when the Lie triple derivation ϕ is not necessarily additive.

3. Proof of the main result. Before proving our main theorem we
need some lemmas. Let A be a von Neumann algebra without abelian central
summands of type I1 and ϕ be a nonlinear Lie n-derivation of A. It is clear
that every Lie derivation is a Lie n-derivation for n ≥ 3. Without loss of
generality we always assume n ≥ 3 below.

Lemma 3.1. If [A,B] ∈ Z(A) for A,B ∈ A, then [ϕ(A), B]+[A,ϕ(B)] ∈
Z(A).

Proof. Note that

ϕ(0) = ϕ(pn(0, . . . , 0)) = 0.

If [A,B] ∈ Z(A) for A,B ∈ A, then pn(A,B,A1, . . . , An−2) = 0 for all
A1, . . . , An−2 ∈ A. Applying ϕ to this polynomial yields

[· · · [[ϕ(A), B] + [A,ϕ(B)], A1], . . . , An−2] = 0

for all A1, . . . , An−2 ∈ A. Therefore [· · · [[ϕ(A), B]+[A,ϕ(B)], A1], . . . , An−3]
∈ Z(A) for all A1, . . . , An−3 ∈ A. On the other hand, by Lemma 2.2 we
know that [· · · [[ϕ(A), B] + [A,ϕ(B)], A1], . . . , An−3] is quasi-nilpotent for
all A1, . . . , An−3 ∈ A, so it is zero. A direct recursive procedure shows that
[[ϕ(A), B]+[A,ϕ(B)], A1] = 0 for all A1 ∈ A. That is, [ϕ(A), B]+[A,ϕ(B)] ∈
Z(A).

For later proofs we state an equivalent definition of a nonlinear Lie n-
derivation. Define a recursive sequence of polynomials by letting

q1(x1) = x1,

q2(x1, x2) = [x2, q1(x1)] = [x2, x1], . . . ,

qn(x1, . . . , xn) = [xn, qn−1(x1, . . . , xn−1)].

Then the definition of a nonlinear Lie n-derivation in this setting becomes

(1) ϕ(qn(x1, . . . , xn)) =
n∑
i=1

qn(x1, . . . , xi−1, ϕ(xi), xi+1, . . . , xn)

for all x1, . . . , xn ∈ A. Conversely, a mapping of A satisfying (1) is a non-
linear Lie n-derivation.

Lemma 3.2. There exists A0 ∈ A such that ϕ(P )− [P,A0] ∈ Z(A).
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Proof. It is easy to check that for any A12 ∈ A12,

A12 = qn(A12, P, . . . , P ) = [P, [P, . . . , [P, [P,A12]] · · · ]].
Applying ϕ to this polynomial we get

(2) ϕ(A12) = [ϕ(P ), A12] + [P, [ϕ(P ), A12]] + · · ·
+ [P, [P, . . . , [P, [ϕ(P ), A12]] · · · ]] + [P, [P, . . . , [P, [P,ϕ(A12)]] · · · ]].

Note the relations

P ([P, [ϕ(P ), A12]])Q = P (P [ϕ(P ), A12]− [ϕ(P ), A12]P )Q = P [ϕ(P ), A12]Q

and

P [P,ϕ(A12)]Q = P (Pϕ(A12)− ϕ(A12)P )Q = Pϕ(A12)Q.

Multiplying by P and Q from the left and the right in (2) respectively, we
have

Pϕ(A12)Q = (n− 1)P [ϕ(P ), A12]Q+ Pϕ(A12)Q for all A12 ∈ A12.

Therefore P [ϕ(P ), A12]Q = 0 for all A12 ∈ A12. That is,

(3) A12ϕ(P )Q = Pϕ(P )A12 for all A12 ∈ A12.

Similarly, by using A21 = pn(A21, P, P, . . . , P ), we obtain

(4) A21ϕ(P )P = Qϕ(P )A21 for all A21 ∈ A12.

The relations (3) and (4) imply that

[Pϕ(P )P +Qϕ(P )Q,A12] = [Pϕ(P )P +Qϕ(P )Q,A21] = 0

for all A12 ∈ A12 and A21 ∈ A21. It follows from Lemma 2.1(2) that
Pϕ(P )P +Qϕ(P )Q ∈ Z(A). Let us write A0 = Pϕ(P )Q−Qϕ(P )P . Then
ϕ(P )− [P,A0] = Pϕ(P )P +Qϕ(P )Q ∈ Z(A), which is the desired result.

Let A0 be as in Lemma 3.2. The mapping defined by A 7→ [A,A0] (for
A ∈ A) is an inner derivation of A. Without loss of generality, we may
assume that ϕ(P ) ∈ Z(A).

Lemma 3.3. For every A ∈ Aij (1 ≤ i 6= j ≤ 2), we have ϕ(A) ∈ Aij.

Proof. We only consider the case of i = 1, j = 2, since the other
case (i = 2, j = 1) can be treated similarly. If A ∈ A12, then A =
[P, [P, . . . , [P,A] · · · ]]. Suppose that ϕ(A) =

∑
1≤i 6=j≤2Aij , where Aij ∈ Aij .

Since ϕ(P ) ∈ Z(A), we get

ϕ(A) = [P, [P, . . . , [P,ϕ(A)] · · · ]] = A12 + (−1)n−1A21.

Therefore it is sufficient to show A21 = 0.

For any B ∈ A12, we have [B,A] = 0. Lemma 3.1 yields

C = [ϕ(B), A] + [B,ϕ(A)] = [ϕ(B), A] + (−1)n−1[B,A21] ∈ Z(A).
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Applying ϕ to the polynomial

qn(A,P, . . . , P,B) = [B, [P, [P, . . . , [P,A] · · · ]]] = 0,

we obtain

[ϕ(B), A] + [B,A12 + (−1)n−2A21] = [ϕ(B), A] + (−1)n−2[B,A21]

= C − (−1)n−1[B,A21] + (−1)n−2[B,A21]

= C + (−1)n−22[B,A21] = 0

for all B ∈ A12. Thus [A21, B] = (−1)n−2 1
2C ∈ Z(A) for all B ∈ A12. By

Lemma 2.2 we know that [A21, B] is quasi-nilpotent for all B ∈ A12. Hence
[A21, B] = A21B − BA21 = 0. This implies that A21B = 0 for all B ∈ A12.
So A21 = 0 by Lemma 2.1(1).

Lemma 3.4. ϕ(Q) ∈ Z(A).

Proof. For any A12 ∈ A12, we have

A12 =

{
pn(A12, P, . . . , P,Q) = [[· · · [[A12, P ], P ], . . . , P ], Q] if n is even,

pn(P,A12, P, . . . , P,Q) = [[· · · [[P,A12], P ], . . . , P ], Q] if n is odd.

In both cases we get

ϕ(A12) = [[· · · [ϕ(A12), P ], . . . , P ], Q] + [A12, ϕ(Q)] = ϕ(A12) + [A12, ϕ(Q)],

since ϕ(A12) ∈ A12. Thus [A12, ϕ(Q)] = 0 for all A12 ∈ A12. Similarly,
[A21, ϕ(Q)] = 0 for allA21 ∈ A21. Then Lemma 2.1(2) yields ϕ(Q) ∈ Z(A).

Lemma 3.5. If A ∈ Aii, then ϕ(A) ∈ Aii + Z(A) (i = 1, 2).

Proof. For each A ∈ A11, we assume that ϕ(A) =
∑

1≤i,j≤2Aij , where
Aij ∈ Aij . Since pn(A,P, . . . , P ) = [· · · [[A,P ], P ], . . . , P ] = 0, we obtain

[· · · [[ϕ(A), P ], P ], . . . , P ] = A21 + (−1)n−1A12 = 0.

This shows that A12 = A21 = 0. Hence ϕ(A) = A11 +A22. Similarly, ϕ(B) =
B11 + B22 for all B ∈ A22, where Bii ∈ Aii (i = 1, 2). Since [A,B] = 0, we
have

C = [ϕ(A), B] + [A,ϕ(B)] = [A22, B] + [A,B11] ∈ Z(A)

by Lemma 3.1. This implies that [A22, B] = QC ∈ QZ(A) = Z(A22).
Thus [A22, B] is central quasi-nilpotent in A22 and so is zero. Therefore
A22 ∈ Z(A22). There exists D ∈ Z(A) such that A22 = QD = (I − P )D =
−PD+D ∈ A11+Z(A). It follows that ϕ(A) = A11+A22 = A11−PD+D ∈
A11 +Z(A) for all A ∈ A11. Likewise, ϕ(B) ∈ A22 +Z(A) for all B ∈ A22.

Lemma 3.6. For every A ∈ A, we have

(1)

{
ϕ(PAQ−QAP ) = Pϕ(A)Q−Qϕ(A)P if n is even,

ϕ(PAQ+QAP ) = Pϕ(A)Q+Qϕ(A)P if n is odd,
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(2)

{
Pϕ(A)Q = 0 if PAQ = 0,

Qϕ(A)P = 0 if QAP = 0.

Proof. (1) It is easy to verify that

qn(A,P, . . . , P ) = [P, [P, . . . , [P,A] · · · ]] = PAQ+ (−1)n−1QAP.

Applying ϕ to the above polynomial yields the desired results.

(2) Assume that PAQ = 0. When n is odd, then

ϕ(QAP ) = ϕ(PAQ+QAP ) = Pϕ(A)Q+Qϕ(A)P ∈ A21

by Lemma 3.3. Therefore Pϕ(A)Q = 0. When n is even, the same result
holds. Similarly, the other case can be proved.

Lemma 3.7. For any A ∈ A, A12, B12 ∈ A12, we have

(1) [ϕ(A+A12)− ϕ(A), B12] = 0,
(2) ϕ(A+A12)−ϕ(A) = P (ϕ(A+A12)−ϕ(A))Q+C, where C ∈ Z(A).

Proof. (1) Since [A+A12, B12] = [A,B12], we have

[B, [A+A12, [P, . . . , [P,B12] · · · ]]] = [B, [A, [P, . . . , [P,B12] · · · ]]]

for all B ∈ A. Note that ϕ(B12) ∈ A12. Applying ϕ to the above polynomial
gives

[B, [ϕ(A+A12), B12]] + [B, [A+A12, ϕ(B12)]]

= [B, [ϕ(A), B12]] + [B, [A,ϕ(B12)]].

Thus [B, [ϕ(A + A12) − ϕ(A), B12]] = 0 for all B ∈ A. This implies that
[ϕ(A+A12)− ϕ(A), B12] is central quasi-nilpotent in A and hence is zero.

(2) This follows from (1) and [BD, Lemma 2].

Lemma 3.8. For 1 ≤ i 6= j ≤ 2, we have

(1) ϕ(Aii +Aij)− ϕ(Aii)− ϕ(Aij) ∈ Z(A),
(2) ϕ(Aii +Aji)− ϕ(Aii)− ϕ(Aji) ∈ Z(A).

Proof. We only prove (1) for of i = 1, j = 2. The other cases can be
proved similarly. In view of Lemma 3.7 we know that

ϕ(A11 +A12)− ϕ(A11) = P (ϕ(A11 +A12)− ϕ(A11))Q+ C

for some C ∈ Z(A). It is sufficient to show that

ϕ(A12) = P (ϕ(A11 +A12)− ϕ(A11))Q.

By Lemma 3.6 we arrive at

ϕ(A12) = ϕ(P (A11 +A12)Q±Q(A11 +A12)P )

= P (ϕ(A11 +A12))Q±Q(ϕ(A11 +A12))P,
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where the signs ± depend on the parity of n. Taking into account that
ϕ(A12) ∈ A12 and ϕ(A11) ∈ A11 + Z(A) we immediately obtain

ϕ(A12) = P (ϕ(A11 +A12))Q = P (ϕ(A11 +A12)− ϕ(A11))Q.

Lemma 3.9. ϕ is additive on A12 and A21.

Proof. For all A12, B12 ∈ A12, we have

A12 +B12 = [P +A12, Q+B12] = [· · · [[[P +A12, Q+B12], Q], Q], . . . , Q].

It follows from Lemmas 3.4 and 3.8 that

ϕ(A12 +B12) = [· · · [[[ϕ(P +A12), Q+B12], Q], Q], . . . , Q]

+ [· · · [[[P +A12, ϕ(Q+B12)], Q], Q], . . . , Q]

= [· · · [[[ϕ(P ) + ϕ(A12), Q+B12], Q], Q], . . . , Q]

+ [· · · [[[P +A12, ϕ(Q) + ϕ(B12)], Q], Q], . . . , Q]

= ϕ(A12) + ϕ(B12).

Similarly, ϕ is also additive on A21.

Lemma 3.10. For all A11 ∈ A11, A22 ∈ A22, we have ϕ(A11 + A22) −
ϕ(A11)− ϕ(A22) ∈ Z(A).

Proof. Clearly [A11 + A22, A12] = A11A12 − A12A22 for all A12 ∈ A12.
By Lemma 3.9 we get

(5) ϕ(A11A12 −A12A22) = ϕ(A11A12) + ϕ(−A12A22)

= ϕ([· · · [[[A11, A12], Q], Q], . . . , Q]) + ϕ([· · · [[[A22, A12], Q], Q], . . . , Q])

= [· · · [[[ϕ(A11), A12], Q], Q], . . . , Q] + [· · · [[[A11, ϕ(A12)], Q], Q], . . . , Q]

+ [· · · [[[ϕ(A22), A12], Q], Q], . . . , Q] + [· · · [[[A22, ϕ(A12)], Q], Q], . . . , Q]

= [ϕ(A11) + ϕ(A22), A12] + [A11 +A22, ϕ(A12)].

On the other hand,

[A, [A11 +A22, [P, . . . , [P,A12] · · · ]]]
= [A, [P, [P, . . . , [P,A11A12 −A12A22] · · · ]]]

for all A ∈ A. Applying ϕ to the above polynomial and using (5) we obtain

[A, [ϕ(A11 +A22), A12]] + [A, [A11 +A22, ϕ(A12)]]

= [A, [P, [P, . . . , [P,ϕ(A11A12 −A12A22)] · · · ]]]
= [A,ϕ(A11A12 −A12A22)]

= [A, [ϕ(A11) + ϕ(A22), A12]] + [A, [A11 +A22, ϕ(A12)]].

Hence [A, [ϕ(A11 + A22) − ϕ(A11) − ϕ(A22), A12]] = 0 for all A ∈ A. This
shows that [ϕ(A11 +A22)− ϕ(A11)− ϕ(A22), A12] is central quasi-nilpotent
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and hence is zero. It follows from [BD, Lemma 2] that ϕ(A11 + A22) −
ϕ(A11)− ϕ(A22) ∈ A12 + Z(A).

Since P (A11 + A22)Q = 0, we have P (ϕ(A11 + A22))Q = 0 by Lemma
3.6(2). Applying Lemma 3.5 gives

ϕ(A11 +A22)− ϕ(A11)− ϕ(A22) ∈ Z(A).

Lemma 3.11. For all Aii, Bii ∈ Aii, we have ϕ(Aii + Bii) − ϕ(Aii) −
ϕ(Bii) ∈ Z(A) (i = 1, 2).

Proof. We only prove the case i = 1, as the case i = 2 can be proved
similarly. For any A12 ∈ A12, [A11 +B11, A12] = A11A12 +B11A12. Applying
Lemma 3.9 yields

(6) ϕ(A11A12 +B11A12) = ϕ(A11A12) + ϕ(B11A12)

= ϕ([· · · [[[A11, A12], Q], Q], . . . , Q]) + ϕ([· · · [[[B11, A12], Q], Q], . . . , Q])

= [ϕ(A11), A12] + [A11, ϕ(A12)] + [ϕ(B11), A12] + [B11, ϕ(A12)]

= [ϕ(A11) + ϕ(B11), A12] + [A11 +B11, ϕ(A12)].

On the other hand,

[A, [A11 +B11, [P, . . . , [P,A12] · · · ]]]
= [A, [P, [P, . . . , [P,A11A12 +B11A12] · · · ]]]

for all A∈A. Applying ϕ to the above polynomial and using (6) we arrive at

[A, [ϕ(A11 +B11), A12]] + [A, [A11 +B11, ϕ(A12)]]

= [A, [P, [P, . . . , [P,ϕ(A11A12 +B11A12)] · · · ]]]
= [A,ϕ(A11A12 +B11A12)]

= [A, [ϕ(A11) + ϕ(B11), A12]] + [A, [A11 +B11, ϕ(A12)]].

Therefore [A, [ϕ(A11 + B11) − ϕ(A11) − ϕ(B11), A12]] = 0 for all A ∈ A. It
follows that [ϕ(A11 +B11)−ϕ(A11)−ϕ(B11), A12] is central quasi-nilpotent
and so is zero. By [BD, Lemma 2] we again get ϕ(A11 + B11) − ϕ(A11) −
ϕ(B11) ∈ A12 + Z(A).

Note that P (A11 +B11)Q = 0. Thus P (ϕ(A11 +B11))Q = 0 by Lemma
3.6(2). Taking Lemma 3.5 into account we conclude that

ϕ(A11 +B11)− ϕ(A11)− ϕ(B11) ∈ Z(A).

Lemma 3.12. For all Aii ∈ Aii, Aij ∈ Aij, Ajj ∈ Ajj (1 ≤ i 6= j ≤ 2),
we have ϕ(Aii +Ajj +Aij)− ϕ(Aii)− ϕ(Ajj)− ϕ(Aij) ∈ Z(A).

Proof. It suffices to consider the case i = 1, j = 2. The other case can
be proved similarly. Combining Lemma 3.10 with Lemma 3.7 leads to
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ϕ(A11 +A22 +A12)− ϕ(A11)− ϕ(A22)

= ϕ(A11 +A22 +A12)− ϕ(A11 +A22) + C0

= P (ϕ(A11 +A22 +A12)− ϕ(A11 +A22))Q+ C

= Pϕ(A11 +A22 +A12)Q+ C ∈ A12 + Z(A).

for some C0, C ∈ Z(A). By Lemma 3.6 it follows that

ϕ(A12) = ϕ(P (A11 +A22 +A12)Q±Q(A11 +A22 +A12)P )

= Pϕ(A11 +A22 +A12)Q±Qϕ(A11 +A22 +A12)P

= Pϕ(A11 +A22 +A12)Q,

where the signs ± are related to the parity of n. Therefore

ϕ(A11 +A22 +A12)− ϕ(A11)− ϕ(A22)− ϕ(A12) = C ∈ Z(A).

Lemma 3.13. ϕ is almost additive on A. That is, ϕ(A + B) − ϕ(A) −
ϕ(B) ∈ Z(A) for all A,B ∈ A.

Proof. By Lemmas 3.9 and 3.11, we only need to prove

ϕ(A11 +A12 +A21 +A22)− ϕ(A11)− ϕ(A12)− ϕ(A21)− ϕ(A22) ∈ Z(A)

for all Aij ∈ Aij (1 ≤ i, j ≤ 2).

Applying Lemmas 3.12 and 3.7 we have

[ϕ(A11 +A12 +A21 +A22)− ϕ(A11)− ϕ(A12)− ϕ(A21)− ϕ(A22), B12]

= [ϕ(A11 +A12 +A21 +A22)− ϕ(A11)− ϕ(A21)− ϕ(A22), B12]

= [ϕ(A11 +A12 +A21 +A22)− ϕ(A11 +A21 +A22), B12] = 0

for all B12 ∈ A12. Similarly,

[ϕ(A11 +A12 +A21 +A22)− ϕ(A11)− ϕ(A12)− ϕ(A21)− ϕ(A22), B21] = 0

for all B21 ∈ A21. In view of Lemma 2.1(2) we deduce that

ϕ(A11 +A12 +A21 +A22)− ϕ(A11)− ϕ(A12)− ϕ(A21)− ϕ(A22) ∈ Z(A)

for all Aij ∈ Aij (1 ≤ i, j ≤ 2).

Now we are in a position to prove our main result.

Proof of Theorem 2.3. By Lemmas 3.3 and 3.5, if Aij ∈ Aij with i 6= j,
then ϕ(Aij) = Bij ∈ Aij ; if Aii ∈ Aii, then ϕ(Aii) = Bii+C, where Bii ∈ Aii
and C ∈ Z(A) are uniquely determined by Lemma 2.1(3). Therefore it is
reasonable to define d : A → A by d(A11 +A12 +A21 +A22) = B11 +B12 +
B21 + B22. It is clear that ϕ(A) − d(A) ∈ Z(A) for all A ∈ A. So we can
define f : A → Z(A) by f(A) = ϕ(A)− d(A) for A ∈ A).

Step 1. d is additive.
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Lemma 3.9 shows that d is additive on A12 and A21. We claim that it is
also additive on Aii (i = 1, 2). For any Aii, Bii ∈ Aii, we have

d(Aii +Bii)− d(Aii)− d(Bii) = ϕ(Aii +Bii)− f(Aii +Bii)− ϕ(Aii)

+ f(Aii)− ϕ(Bii) + f(Bii) ∈ Aii ∩ Z(A).

Lemma 2.1(3), yields d(Aii+Bii)−d(Aii)−d(Bii) = 0 for all Aii, Bii ∈ Aii.
Assume that A =

∑
1≤i,j≤2Aij , B =

∑
1≤i,j≤2Bij , where Aij , Aij ∈ Aij .

According to the definition of d, we get

d(A+B) = d
( ∑

1≤i,j≤2

(Aij +Bij)
)

=
∑

1≤i,j≤2

d(Aij +Bij)

=
∑

1≤i,j≤2

(d(Aij) + d(Bij)) = d(A) + d(B).

Step 2. d is a derivation of A.
Choose Aij , Bij , Cij ∈ Aij with 1 ≤ i, j ≤ 2. If i 6= j, we have

d(AiiBij) = ϕ(AiiBij) = ϕ([· · · [[Aii, Bij ], Pj ], . . . , Pj ])(7)

= [· · · [[ϕ(Aii), Bij ] + [Aii, ϕ(Bij)], Pj ], . . . , Pj ]

= [· · · [d(Aii)Bij +Aiid(Bij), Pj ], . . . , Pj ]

= d(Aii)Bij +Aiid(Bij),

where Pj = P if j = 1, Pj = Q if j = 2. Similarly,

(8) d(AijBjj) = d(Aij)Bjj +Aijd(Bjj).

Using (7) it is easy to check that

d(AiiBiiCij) = d(AiiBii)Cij +AiiBiid(Cij).

On the other hand,

d(AiiBiiCij) = d(Aii)BiiCij +Aiid(BiiCij)

= d(Aii)BiiCij +Aiid(Bii)Cij +AiiBiid(Cij).

Comparing with the above two expressions, we obtain

(d(AiiBii)− d(Aii)Bii −Aiid(Bii))Cij = 0.

By Lemma 2.1(1) it follows that

(9) d(AiiBii) = d(Aii)Bii +Aiid(Bii).

Note that d is additive. Thus there exists C ∈ Z(A) such that

d(A12B21)− d(B21A12) = d(A12B21 −B21A12) = d([A12, B21])

= ϕ([A12, B21]) + C = ϕ([[· · · [A12, Q], . . . , Q], B21]) + C

= [[· · · [ϕ(A12), Q], . . . , Q], B21] + [[· · · [A12, Q], . . . , Q], ϕ(B21)] + C

= [d(A12), B21] + [A12, d(B21)] + C

= d(A12)B21 +A12d(B21)−B21d(A12)− d(B21)A12 + C.
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Hence d(A12B21) − d(A12)B21 − A12d(B21) ∈ PZ(A) and d(B21A12) −
B21d(A12)− d(B21)A12 ∈ QZ(A).

Let A =
∑

1≤i,j≤2Aij , B =
∑

1≤i,j≤2Bij , where Aij , Bij ∈ Aij . A direct
computation shows that

d(AB) = d(A11B11) + d(A11B12) + d(A12B21) + d(A12B22)

+ d(A21B11) + d(A21B12) + d(A22B21) + d(A22B22)

= d(A)B +Ad(B) + PC1 +QC2

for some C1, C2 ∈ Z(A). Define θ : A×A → PZ(A)⊕QZ(A) by

θ(A,B) = d(AB)− d(A)B −Ad(B).

It is not difficult to see that θ is bi-additive. Hence, for any A ∈ A11 ⊕A22

and B ∈ A, we obtain θ(A,B) = θ(B,A) = 0 by (7)–(9).
It suffices to show that θ(A,B) ≡ 0 for all A,B,C ∈ A. For all A,B,C

∈ A, we have

d(ABC) = d((AB)C) = d(AB)C +ABd(C) + θ(AB,C)

= d(A)BC +Ad(B)C +ABd(C) + θ(A,B)C + θ(AB,C).

On the other hand,

d(ABC) = d(A(BC)) = d(A)BC +Ad(BC) + θ(A,BC)

= d(A)BC +Ad(B)C +ABd(C) +Aθ(B,C) + θ(A,BC).

Therefore
θ(A,B)C + θ(AB,C) = Aθ(B,C) + θ(A,BC).

(Hence θ is a Hochschild 2-cocycle.) For all Aii ∈ Aii (i = 1, 2), we have
θ(A,B)Aii = θ(A,BAii). Assume that θ(A,B) = PC1 + QC2 for some
C1, C2 ∈ ZA. Then θ(A,B)A11 = PC1A11 = θ(A,BA11) ∈ PZ(A) ⊕
QZ(A). Thus PC1A11 ∈ PZ(A) = Z(A11). Since A has no abelian cen-
tral summands, neither has A11. Applying Lemma 2.1(4) gives PC1 = 0.
Similarly, we can prove that QC2 = 0. So θ(A,B) = 0.

Step 3. f([· · · [[A1, A2], A3], . . . , An]) = 0 for all Ai ∈ A.

In fact,

f([· · · [[A1, A2], A3], . . . , An])

= ϕ([· · · [[A1, A2], A3], . . . , An])− d([· · · [[A1, A2], A3], . . . , An])

= [· · · [[ϕ(A1), A2], A3], . . . , An] + [· · · [[A1, ϕ(A2)], A3], . . . , An] + · · ·
+ [· · · [[A1, A2], A3], . . . , ϕ(An)]− d([· · · [[A1, A2], A3], . . . , An])

= [· · · [[d(A1), A2], A3], . . . , An] + [· · · [[A1, d(A2)], A3], . . . , An] + · · ·
+ [· · · [[A1, A2], A3], . . . , d(An)]− d([· · · [[A1, A2], A3], . . . , An])

= 0.
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Sakai’s well-known theorem [Sa] states that every linear derivation of a
von Neumann algebra A is inner. The anonymous referee advised us to con-
sider whether the additive derivation d of A in the decomposition ϕ = d+f
of Theorem 2.3 is inner. We do not know how to answer this question in
our nonlinear context. However, the referee helped us to prove the following
result.

Corollary 3.14. The additive derivation d of A in the decomposition
ϕ = d + f of Theorem 2.3 is inner whenever ϕ is continuous in the weak
operator topology on A.

Proof. Assume that ϕ is continuous in the weak operator topology on A.
Note that A ∈ A 7→ A11 = PAP,A12 = PAQ,A21 = QAP,A22 = QAQ
are continuous in the weak operator topology. Hence A ∈ A 7→ B12 =
ϕ(A12), B21 = ϕ(A21) are continuous. Write ϕ(A11) = B11(A) + C(A),
where B11(A) ∈ A11 and C(A) ∈ Z(A). Since C(A)Q = ϕ(A11)Q and
A 7→ ϕ(A11)Q is continuous in the weak operator topology, it follows that
{C(A)Q : A ∈ A, ‖A‖ ≤ R} is compact in the weak operator topology and
hence norm-bounded for each R > 0. Since C ∈ Z(A) 7→ CQ ∈ Z(A)Q is
an isomorphism due to Q = I, {C(A) : A ∈ A, ‖A‖ ≤ R} is norm-bounded.

Now, let {Aα} be a net in A with ‖Aα‖ ≤ R and assume that Aα →
A ∈ A in the weak operator topology. By the boundedness of {C(Aα)} one
can choose a subnet {Aα(β)} such that C(Aα(β)) → C for some C ∈ Z(A).
Since ϕ((Aα(β))11) = B11(Aα(β))+C(Aα(β)) and ϕ((Aα(β))11)→ ϕ(A11), one
has B11(Aα(β)) → B11 for some B11 ∈ A11 so that ϕ(A11) = B11 + C. By
the uniqueness property, it follows that B11 = B11(A) and C = C(A). This
implies that C(A) is a unique limit point of {C(Aα)} so that C(Aα)→ C(A)
and hence B11(Aα) → B11(A) in the weak operator topology. Therefore,
A ∈ A 7→ B11 = B11(A) is continuous in the weak operator topology on
each bounded subset of A. Since the same holds for A 7→ B22, we see that
A ∈ A 7→ d(A) = B11 +B12 +B21 +B22 is continuous in the weak operator
topology for each bounded subset of A.

Note that the derivation d obtained in Theorem 2.3 is additive. Thus
d(A) + d(−A) = d(0) = 0 for all A ∈ A and hence d(−A) = −d(A) for
all A ∈ A. Whenever d is continuous on A in some linear topology, it is
automatically linear on A. It follows from Sakai’s theorem that d is inner.

4. Topics for further research. Although the main aim of this paper
is to study nonlinear Lie-type derivations of a class of von Neumann algebras,
the structure of nonlinear Lie-type derivations on noncommutative algebras
and operator algebras is also of great interest. In the light of the motivation
and contents of this article, we will propose several topics for future research
in this field.
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Recall that all von Neumann algebras are semiprime and each von Neu-
mann algebra without central summands of type I1 is a generalized matrix
algebra (i.e. a unital algebra A having a nontrivial idempotent e such that
eA(1 − e) or (1 − e)Ae is nonzero). Nonlinear Lie n-derivations of trian-
gular algebras and those of full matrix algebras were already studied in
[BeEr, JLZ, XW4]. Some similar problems were recently considered in the
context of generalized matrix algebras [LW, XW1, XW2, XW3]. One would
expect that the next step is to investigate nonlinear Lie-type mappings of
generalized matrix algebras. It is worth pointing out that the notion of
generalized matrix algebras efficiently combines triangular algebras and full
matrix algebras. The eventual goal of our systematic work is to deal with
all questions related to additive (or multiplicative) mappings of triangular
algebras and full matrix algebras in a unified framework, which is the desir-
able generalized matrix algebras framework. Let us recall the definition of
generalized matrix algebras given by a Morita context.

Let R be a commutative ring with identity. A Morita context consists of
two R-algebras A and B, two bimodules AMB and BNA, and two bimodule
homomorphisms called pairings ΦMN : M⊗BN → A and ΨNM : N⊗AM →
B making the following diagrams commutative:

M⊗BN ⊗AM
ΦMN⊗IM //

IM⊗ΨNM

��

A⊗AM

∼=

��
M ⊗B B

∼= //M

N⊗AM ⊗B N
ΨNM⊗IN //

IN⊗ΦMN

��

B ⊗BN

∼=

��
N ⊗A A

∼= // N

Let us write this Morita context as (A,B,M,N,ΦMN , ΨNM ). We refer the
reader to [Mor] for the basic properties of Morita contexts. If (A,B,M,N,
ΦMN , ΨNM ) is a Morita context, then the set[

A M

N B

]
=

{[
a m

n b

] ∣∣∣∣ a ∈ A, m ∈M, n ∈ N, b ∈ B
}

form anR-algebra under matrix-like addition and matrix-like multiplication,
where at least one of the two bimodules M and N is not zero. Such an
R-algebra is usually called a generalized matrix algebra of order 2 and is
denoted by

G =

[
A M

N B

]
.

Similarly, one can define a generalized matrix algebra of order n > 2. It was
shown in [LW, Example 2.2] that up to isomorphism, an arbitrary general-
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ized matrix algebra of order n (n ≥ 2) is a generalized matrix algebra of
order 2. If one of the modules M and N is zero, then G degenerates to an
ordinary triangular algebra.

Let R be a commutative ring with identity 1 and A be a unital algebra
over R. In [XW1], we have shown that A is a natural generalized matrix
algebra if and only if there exists a nontrivial idempotent e ∈ A such that
eA(1 − e) 6= 0 or (1 − e)Ae 6= 0. In view of the purely algebraic nature of
the proof of Theorem 2.3, we believe that a much more general result can
be obtained. In particular, we ask:

Question 4.1. Let A be a unital semiprime algebra having a nontrivial
idempotent e such that

(1) eA(1− e) and (1− e)Ae are faithful bimodules,
(2) Z(eAe) = Z(A)e and Z((1− e)A(1− e)) = Z(A)(1− e),
(3) eAe has no nonzero central ideals.

Does any nonlinear Lie n-derivation of A have the standard form (♣)?

It is not difficult to see that each von Neumann algebra without central
summands of type I1 has all the above-mentioned properties.

Let us return to the case of generalized matrix algebras. Let R be a
commutative ring with identity and A,B be unital associative algebras
over R. Suppose that M is a faithful (A,B)-bimodule and N is a faith-
ful (B,A)-bimodule. Let G =

[
A M
N B

]
be a generalized matrix algebra de-

fined by the Morita context (A,B,M,N,ΦMN , ΨNM ). The bilinear form
ΦMN : M ⊗B N → A (resp. ΨNM : N ⊗A M → B) is said to be nonde-
generate if for any 0 6= m ∈ M and 0 6= n ∈ N , ΦMN (m,N) 6= 0 and
ΦMN (M,n) 6= 0 (resp. ΨNM (n,M) 6= 0 and ΨNM (N,m) 6= 0). We call the
generalized matrix algebra strict if ΦMN , ΨNM are both nondegenerate.

It follows from [XW1, Lemma 3.1] that

Z(G) =

{[
a 0

0 b

] ∣∣∣∣ am = mb, na = bn, ∀m ∈M, n ∈ N
}
.

Let us define two natural R-linear projections πA : G → A and πB : G → B
by

πA :

[
a m

n b

]
7→ a and πB :

[
a m

n b

]
7→ b.

It is easy to see that πA(Z(G)) is a subalgebra of Z(A) and that πB(Z(G)) is
a subalgebra of Z(B). Furthermore, there exists a unique algebraic isomor-
phism ϕ : πA(Z(G)) → πB(Z(G)) such that am = mϕ(a) and na = ϕ(a)n
for all a ∈ πA(Z(G)), m ∈M , n ∈ N (see [XW1, Lemma 3.2]).
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Let 1A and 1B be the identities of the algebras A and B, respectively,
and let I be the identity of G. We will adopt the traditional notations:

P =

[
1A 0

0 0

]
, Q = I − P =

[
0 0

0 1B

]
and

G11 = PGP, G12 = PGQ, G21 = QGP, G22 = QGQ.
Thus the generalized matrix algebra G can be expressed as

G = G11 + G12 + G21 + G22.

Note that G11 and G22 are subalgebras of G which are isomorphic to A and B,
respectively. Moreover, πA(Z(G)) and πB(Z(G)) are isomorphic to PZ(G)P
and QZ(G)Q, respectively.

The following theorem was proved in our preprint [XW5].

Theorem 4.2. Let G=
[
A M
N B

]
be a 2-torsion free strict generalized ma-

trix algebra and ϕ : G→G be a nonlinear Lie 2-derivation of G. If πA(Z(G))
= Z(A) and πB(Z(G)) = Z(B), then ϕ is of the standard form (♣).

It is natural to consider the following question.

Question 4.3. Let G =
[
A M
N B

]
be a 2-torsion free strict generalized ma-

trix algebra. Suppose that πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B). Does
any nonlinear Lie n-derivation (n ≥ 2) of G have the standard form (♣)?

Various Lie-type derivations of nest algebras have been intensively stud-
ied [BeEr, LW, Lu2, QH, YZ, ZWC]. The most extensive results known are
obtained in the case of Hilbert space. It is natural and interesting to ex-
tend these results to the Banach space case. A nest algebra is an operator
algebra whose invariant subspace lattice is a nest. In what follows, let X
be a Banach space over the complex field C. By B(X ) and I we denote
the algebra of all bounded linear operators on X and the identity operator
on X , respectively. The terms operator on X and subspace of X will mean
bounded linear mapping of X into itself and norm-closed linear manifold
of X , respectively. A nest N is a family of closed subspaces of X that is
totally ordered by inclusion and contains {0} and X , and is closed under
closed linear spans and intersections. The nest algebra associated to a nest
N , denoted by AlgN , is the set of all bounded linear operators on X which
leave invariant each subspace in N , that is,

AlgN = {T ∈ B(X ) | T (N) ⊆ N for all N ∈ N}.
More recently, Sun and Ma [SM] obtained a new characterization theorem
in the Banach space setting. Let N be a nontrivial nest on X , AlgN be the
associated nest algebra and ϕ : AlgN → B(X ) be a linear mapping. Then ϕ
is a Lie triple derivation if and only if there exist a derivation d : AlgN →
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B(X ) and a linear mapping f : AlgN → CI with f([[X,Y ], Z]) = 0 for all
X,Y, Z ∈ AlgN such that ϕ = d+ f on AlgN . This implies that every Lie
triple derivation from AlgN into B(X ) has the standard form (♣). It seems
reasonable to make the following conjecture:

Conjecture 4.4. Let N be a nontrivial nest on X , AlgN be the asso-
ciated nest algebra and ϕ : AlgN → B(X ) be a nonlinear Lie n-derivation
(n ≥ 2). Then ϕ has the standard form (♣).
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