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LP-L1 ESTIMATES FOR SOME CONVOLUTION OPERATORS
WITH SINGULAR MEASURES ON THE HEISENBERG GROUP

BY

T. GODOY and P. ROCHA (Cérdoba)

Abstract. We consider the Heisenberg group H" = C" x R. Let v be the Borel
measure on H" defined by v(E) = Scc" xE(w, p(w))n(w) dw, where p(w) =377, aj|w;)?,
w = (wi,...,w,) € C", a; € R, and n(w) = no(|w|?) with gy € C(R). We characterize
the set of pairs (p, ¢) such that the convolution operator with v is L? (H")-L?(H™) bounded.
We also obtain LP-improving properties of measures supported on the graph of the function
p(w) = [wl*™.

1. Introduction. Let H" = C" xR be the Heisenberg group with group
law (z,t) - (w, s) = (z + w,t + s+ (z,w)) where (z,w) = %Im(Z?:1 Zj - Wj).
For # = (x1,...,72,) € R?", we write z = (2/,2") with 2’ € R", 2/ € R".
So, R?" can be identified with C” via the map ¥ (2/,2") = 2/ + iz”. In this
setting the form (z,w) agrees with the standard symplectic form on R?".
Thus H” can be viewed as R?" x R endowed with the group law

(,t) - (y,8) = (x+y, t+ s+ s W(z,y))
where the symplectic form W is given by W (x,y) = Z?Zl(ynﬂwj —YjTnitj),
with z = (21,...,22,) and y = (y1,. .., Y2n ), with neutral element (0,0), and
with inverse (x,t)~! = (—x, —t).
Let ¢ : R?® — R be a measurable function and let v be the Borel measure
on H" supported on the graph of ¢, given by

(1) v(E) = | xe(w,e(w))n(w) dw,
R2n
with n(w) = [[j_, n;(Jwj|?), where for j = 1,...,n, n; is a function in

C°(R) such that 0 < n; <1, n;(t) =1ift € [-1,1] and supp(n;) C (—2,2).
Let T, be the right convolution operator by v, defined by

2 Tf(@t)=(fxv)(@t)= | f((@1) (wew) " )nw)dw.

R2n
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We are interested in the type set
E, = {(1/]?, 1/(]) € [07 1] X [07 1] : HTVHPQ < OO}

where the LP-spaces are taken with respect to the Lebesgue measure on
R?7+1 We say that the measure v defined in is LP-improving if E, does
not reduce to the diagonal 1/p = 1/q.

This problem is well known if in we replace the Heisenberg
group convolution with the ordinary convolution in R2"*!. If the graph
of ¢ has non-zero Gaussian curvature at each point, a theorem of Littman
(see [3]) implies that E, is the closed triangle with vertices (0,0), (1,1),
and (%, T1+2) (see []). A very interesting survey of results concerning
the type set for convolution operators with singular measures can be found
in [5]. Returning to our setting of H™, in [7] S. Secco obtains LP-improving
properties of measures supported on curves in H', under the assumption
that
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where ®(s) = (s, p1(s), p2(s)) is the curve on which the measure is sup-

ported. In [6] F. Ricci and E. Stein showed that the type set of the measure

given by , for the case p(w) = 0 and n = 1, is the triangle with vertices
(0,0), (1,1), and (3/4,1/4).

In this article we consider first p(w) =>%_, aj|lw;|?, with w; € R? and

a; € R. The Riesz-Thorin theorem implies that the type set £, is a convex

subset of [0,1] x [0, 1]. In Lemmas 3 and 4 we obtain the following necessary
conditions for the pair (1/p,1/q) to be in E,:

lgl’ 1>2n+1_2n 1> 1

¢~ p q p q” @n+1p
Thus E, is contained in the closed triangle with vertices (0,0), (1,1), and

(32:{;, 2n1+2). In Section 3 we prove that E, is exactly that triangle:

(s) # ———"— Vs e I,

THEOREM 1. If v is the Borel measure defined by , supported on the
graph of the function p(w) = 2?21 ajlw;|?, for some n € N, with w; € R?
and aj € R, then the type set E, is the closed triangle with vertices

2n + 1 1 )

=00, B0, 0= (T

In a similar way we also obtain LP-improving properties of the measure
supported on the graph of the function ¢(w) = |w|*™. In fact we prove
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THEOREM 2. For m,n € N>y let v, be the measure given by with
o(y) = |y|*™, y € R®™. Then the type set E,,  contains the closed triangle

with vertices
2(1 —
00, (1), (HEmr=m __m
21 4+mn) ' 2(1+mn)
Throughout this work, ¢ will denote a positive constant not necessarily
the same at each occurrence.

2. Necessary conditions. We denote B(r) the 2n+ 1-dimensional ball
centered at the origin with radius 7.

LEMMA 3. Let v be the Borel measure defined by , where @ is a
bounded measurable function. If (1/p,1/q) € E,, then p <gq.

Proof. For (y,s) € H" we define the operator 7, o by (7(ys)f)(2,t) =
f((y,s)™ - (x,1)). Since 7, T, = TyT(y.s), it is easy to see that the R"
argument utilized in the proof of Theorem 1.1 in [2] works on H" as well. =

LEMMA 4. Let v be the Borel measure defined by , where @ is a smooth
function. Then E, is contained in the closed triangle with vertices

2n+1 1
1,1 —_— .
0,0), (1,1, (2n—|—272n+2>
Proof. We will prove that if (1/p,1/q) € E, then
12 1 1 1
- > "l 9, and -
q p g (2n+1)p

Then the lemma will follow by the Riesz—Thorin theorem. Let fs = xq,,
where Qs = B(25). Let D = {x € R*" : ||z|| < 1} and

As={(z,t) eR*™ xR:z €D, |t — p(x)| < 5/4}.
For each (z,t) € A; fixed, we define Fj, by

)
Fs o, = {y €D : ||z —ylge < }
4“(1 + Hv@’supp(n)noo)
Now, for each (x,t) € As fixed, we have
(3) (z,8)- (y,0(y)) " € Qs Vy € Fy;
indeed,

I(2,t) - (1, 0(1) llrentr < |2 — yllrrmn + [t — @(2))]
+ (@) — o) + 31W(z,y)l,
and since
3IW (2, 9)] < nllz|lgenllz — yllgen,
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follows. Then for (z,t) € As we obtain
Ty fs(x,t) = | nly)dy > co™,
F(S,z

where ¢ is independent of §, x and ¢. If (1/p,1/q) € E, then

1/
e8! o2n = e A0 < ([T, (e, 1)t do )
As

< T fsllg < epgllfillp = 80P,

thus 62717 < 062 +t1)/P for all 0 < § < 1 small enough. This implies that
1 > 2n+1 _
q p
Now, the adjoint operator of T}, is given by
Trgla,t) = | g((z,) (y,0())n(y) dy
R2n

2n.

and let E} be the corresponding type set. Since 7, = (7;;)*, by duality
it follows that (1/p,1/p’) € E, if and only if (1/p,1/p') € E}, thus if
(1/p,1/q) € E} then % > 2”%1 — 2n. Finally, by duality it is also neces-
sary that

1 1
> -
g (Cn+1)p

Therefore E, is contained in the region determined by these two conditions

and by the condition p < ¢, i.e. the closed triangle with vertices (0,0), (1, 1),

(321%7 2n1+2)' .

REMARK. Lemma 4 holds if we replace the smoothness condition with
a Lipschitz condition.

3. The main results. For each N € N fixed, we consider an auxil-
iary operator Ty which will be embedded in an analytic family {7 .} of
operators on the strip —n < Re(z) < 1 such that

{ 1TN =)l oo my < czlfllpr@my, Re(z) =1,

ITN ()l 2@ny < ezl fllp2quny,  Re(z) = —n,

where ¢, will depend admissibly on the variable z and it will not depend
on N. We denote Ty = T'v 0. By Stein’s theorem on complex interpolation,

it will follow that the operator Tn will be bounded from L%(H”) in
L?F2(H") uniformly in N, if we see that T f(x,t) — T, f(z,t) as N — oo,
a.e. (z,t) € R?"*1 Theorem 1 will then follow from Fatou’s lemma and
Lemmas 3 and 4.

(4)
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To prove the second inequality in we will see that such a family will
admit the expression

TN,z(f)(x7t> = (f * KN,Z)(x7t)7
where Ky, € LY(H"), moreover it is a polyradial function (i.e. the values of
Ky, depend on |wi], ..., |w,| and t). Now our operator Tl . can be realized
as a pointwise product of operators via the group Fourier transform, i.e.

Tn-(F) () = FVEn-(V)

where, for each A # 0, I?N\Z()\) is an operator on the Hilbert space L%(R")
given by o
Kn:=(Ng(©) = | En(s,t)ma(s, t)g(€) ds dt.
H»
It then follows from Plancherel’s theorem for the group Fourier transform
that
I TN,z fll L2 my < Azl fll L2

if and only if
(5) HKN,Z()\)HOP < Az

uniformly over N and A # 0. Since Ky, is a polyradial integrable function,
by a well known result of Geller (see [I, Lemma 1.3, p. 213]) the operators
IR()\) : L2(H") — L?(H") are, for each X\ # 0, diagonal with respect to a
Hermite basis for L2(R"), namely

KN,z()\) = Cn((s'y,aMN,z(Qy )\))v,aENg
where C, = (2m)", o = (1, ..., ), 0ya = 1if y = and 6, = 0if vy # a,

and the diagonal entries pn ,(oq,...,an, A) can be expressed explicitly in
terms of the Laguerre transform. We have in fact

/’LN,z(ah <oy O, )‘)
oo oo n 1 2
= S . S Kﬁhz(rl, ey Tn) H (ergj (%]Mr?)e_ﬂ)“rj) dry...dry,
0o 0 j=1

where LY(s) are the Laguerre polynomials, i.e. L{(s) = Zf:o Ugiki;)w(;—,s)z

and K7 ,(s) = |z Kn.-(s, )" dt. Now (5)) is equivalent to
ITN2fll2my < Azl fll o2
if and only if
(6) lunz(a1, .. o, M) < A,
uniformly over N, «; and X # 0. If Re(z) = —n, in the proof of Theorem

we find that @ holds with A, independent of N, A # 0 and «;, and then
we obtain the boundedness on L?(H") that is stated in .
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We consider the family {I,}.cc of distributions on R that arises by
analytic continuation of the family {I.} of functions, initially given when
Re(z) > 0 and s € R\ {0} by

. ; sz/2

In particular, we have fz = I1_,, also Iy = ¢d where = denotes the Fourier
transform on R and § is the Dirac distribution at the origin on R.

Let H € S(R) be such that supp(H) C (—1,1) and § H(t)dt = 1. Now
we put ¢n(t) = H(t/N), thus Q/bj\\](g) = NH(N¢) and éN — 6 in the sense
of distributions as N — oco.

For ze C and N € N, we also define Jy , as the distribution on H" given
by the tensor product

(8) IN:=0® - ®8® (L. +k oN)

where *g denotes the usual convolution on R and I, is the fractional inte-
gration kernel given by (7). Finally, for = € C and N € N fixed, we define
the operator Tl . by

(9) TN f(z,t) = (fxv=*Jy.)(x,t).
We observe that T of(x,t) — ¢, f(z,t) as N — oo a.e. (z,t) € R¥HL

since Jyo=0®- - ®(5®ng]\\7 — 0®- - ®JI®cd in the sense of distributions
as N — oo.

Before proving Theorem 1 we need the following lemmas:

LeEMMA 5. If Re(z) < —1 thenv* Jyn, € LP(H") for all p > 1.

‘S‘Z_l.

Proof. For Re(z) < —1 and N € N fixed, a simple calculation gives

(v * Inz)(x,0) = n(x)(L #r on)(0 — p()).

We see that it is enough to prove that (I * ¢7]\V)() € LP(R) whenever Re(z)
< —1. We observe that if g € S(R) with supp(g)N[—¢, €] = 0 for some € > 0,
then for Re(z) < —1,

9—2/2 - o .
L(g) = { I'(2/2) |tLItI g(tydt if z ¢ —2N,
° _ if z € —2N.

From this observation and the fact that

Supp(TS(Qg]\VV)) C[s—1/N,s+1/N] C [—o0,—1] U1, 0]

N+1
for |s| > -
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(where ¢V (z) = ¢(—x) and (75¢)(x) = ¢(x — s)), we obtain

(0 G0)(5)] = [Lra(@n D] < efs = B2 g >

s —

Finally, since |(I, * @\V)(s)\ < ¢ for all s € [-2,2], the lemma follows. =
LEMMA 6. Forn € N and k € Ny set
Foi(0) = X(0,00) (0) Ly~ (0)e 720" 1,

Then .
— B (k+n—-1) (—=1/2+ &)

Proof. On R we define the Fourier transform by g(¢) = {; g(o)e ¢ do,

SO
m<€) _ S Lz—l(o_)o_nflefo'(l/QJrif)do—
0

and since
Lnfl n—1 __ e’ d g —o __k+n—1
r (o) ~ w1 \do (e™%0 )
for each n € N and each k € Ny, we obtain

_ 1/ d\* ,
ka(g) S ( ) (670'0_]64’71*1)670'(71/24’15) do

“ 1)\
_ (—1/2k'Jr i€) Sgk+n_16_a(1/z+i£) do
’ 0
_ (=12 +i€)’“°§ AR, _, ds
- k! Y2+ 12+ i€
(k+n—1) (=1/2+4&)Fk
k! (1/2 + i&)k+n

where the third equality follows from the rapid decay of the function e™% in
{#z : Re(z) > 0}. Then we apply the Cauchy’s theorem. u
Proof of Theorem 1. For Re(z) = 1 we have
TNz flloo = I * v 5 INzlloo < IFI[Y * TN zloo-
Since
(v 5 In.2) (. 0) = () (I %2 O5) (0 — ()
it follows that || * Jn .|leo < ¢[I'(2/2)|7t. Then, for Re(z) = 1, we obtain

TN 2|10 < eI (2/2)] 7"
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From Lemma 5, in particular, we have v * Jy . € L*(H") N L?(H"). In
addition v * Jy . is a polyradial function. Thus the operator (v*Jy )" (A) is
diagonal with respect to a Hermite base for L?(R™), and its diagonal entries
pn,z(a, ), with a = (o, ..., a,) € Njj, are given by

pv (o N) = | Y I =)
0 0
H r]LO \)\|r]2~)e_|)‘|TJ2'/4) dri...dr,
7j=1
= |V on) (=)
0 0 n
H M“JTJ r]LO ( \)\]r]z)e_l)‘lrfz'M) dri...dr,
= (=N TT | ()5, 28, (31A1r2)e M3/ dr,
j=10

Thus, it is enough to study the integral

oo

§m (r2) L0, (A2 /2)e A ey gy,

0
where a; € R and 11 € C2°(R). We make the change of variable o = |\|r?/2
in such an integral to obtain

o0

[ (r2) L0, (A2 /2)e” N e gy
0
‘)\‘ 1 S <‘2)3>L0 (O,)efa/Qeingn(/\)ala do

— |A\—1<Fa1GA>A<f2sgn<A> D) = A (Fay * Go)(~2sgn(Nar)
where
(10) Foy () = X(0,00) (0) L2, (0)™ 72,
(11) Gao) == m (20 /7).
Now

|(Fay % Ga)(=2sgn(MNar)| < [[Fay * Galloo < [[Fon llool|Gallr = [[Foy lloo I ]]1-

So it is enough to estimate HF’;HOO From Lemma 6, with n = 1 and k = ay,
we obtain

(12) For(6)] = ——

1/2+ ig|
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Finally, for Re(z) = —n, we obtain

(e, am, A < 27 Lo (= Nen (V)M T 1511
j=1
F(l —z>
2
F(l —z>
2

and by (6] it follows, for Re(z) = —n, that

<2

—1 n
HO/N)TT 1751
j=1

<2"

-1 n
1H [loo TT 11511
j=1

(2m)m2m
| TN 2 fllp2@ny < el fll 2y
(H™) ‘F(12 )‘ (H™)

It is easy to see, with the aid of the Stirling formula (see [9, p. 326]), that
the family {T .} satisfies, on the strip —n < Re(z) < 1, the hypothesis of
the complex interpolation theorem (see [10), p. 205]) and so T is bounded

from L%(H”) into L?"*2(H") uniformly in N; then letting N tend to

infinity, we conclude that the operator 7, is bounded from L%(H”) into
L*F2(H") for all m € N. u

Proof of Theorem 2. We consider, for each N € N fixed, the analytic
family {Un .} of operators on the strip — (n+ I_Tm) < Re(z) < 1, defined by
UNn.f = f*xUm*JN ., where Jy . is given by and Unof — Uy, f = f*vm
as N — oo. Proceeding as in the proof of Theorem 1 it follows, for Re(z) = 1,
that |Un,z|l1,00 < ¢|I'(2/2)|71. Also it is clear that, for Re(z) = —(n+1=2),
the kernel vy, Jy , is in L' (H")NL?(H") and it is also a radial function. Now,
our operator (v, * Jy ) (A) is diagonal, with diagonal entries vy .(k, \)
given by

k! I~ e - B )
UN,Z(]{:7 )\) = m S (Z/m * ']N,Z)(S) _)\)LZ 1(|)\|S2/2)€ |>\|82/452n 1 ds
"o
k! 00 - o
= Gyl (VO § (s Li T (Nls?/2)e” e i s,

0

Now we study the integral

oo
S 7]0(82)in1(|>\|52/2)6_|>\‘82/46i)\82mSQn_ldS.
0



110 T. GODOY AND P. ROCHA

We make the change of variable o = |\|s%/2 to obtain

S n0(82)Lz—1(|)\|82/2)€—|)\\52/4€i)\32m82n—1 ds
0
— 2n71|A|fn S n0(20/|)\\)LZ_I(U)e*”/Ze"Zm sgn(/\)|)\\1’mo'mo_n71 do
0

= 2" LN T Bk GaRA) Y (0) = 2 AT (B x GARA) (0)

= 2N (B x (Gax BA)(0)
where F), ;, is the function defined in Lemma 6, G)(c) = no(20/|)|) and
Ra(o) = x(o,(0)e®” ssnNINT"0™ If > 9, from Lemma 6 we get

[ F g % (G * Ba)lloo < [ Fnilli|Gall1]| Balloo

_(k+n—1)!<S d¢
- ! 2 (1/4+¢2)

W)u%ulnwm.

Now, we estimate HR\,\HOO Taking account of [8, Proposition 2, p. 332], we
note that
1 e s ) &
N — (2™ sgn(A)|A|F T o™ =€ < __m
[RA(S)] H e d"‘ = N =m/m

where the constant Cy,, does not depend on A. Then for Re(z) = — (n+1=2),
we have

o2 (k, )| < rh_z<—x>¢N<A>|2"*1|A|*”Hm % (G % Ry) oo

7ol
1/4+g2 (1/4 1 e2yn2 ) O =) /m

k!
=1}
< s (=N [on V)2 AI "(S

()]

Finally, by @ it follows that, for Re(z)

HOOQ e Lal
e+ ),

C’rl/m
|UN2 fll L2mny < MH]CHL?(H’I)-
P

It is clear that the family {Uy .} satisfies, on the strip —(n + I_Tm) <
Re(z) < 1, the hypothesis of the complex interpolation theorem. Thus Uy

2(1+nm) 2(14+nm) +nm)

is bounded from L20+mn)-m (H") into L~ = (H") uniformly in NV, and
letting N tend to infinity we conclude that the operator U,,, is bounded

2(1+ m
from L2(1+m"> (H") i e >(]HI") for m,n € N>g.
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