
COLLOQU IUM MATHEMAT ICUM
VOL. 132 2013 NO. 1

ON A GENERALISATION OF THE HAHN–JORDAN
DECOMPOSITION FOR REAL CÀDLÀG FUNCTIONS

BY

RAFAŁ M. ŁOCHOWSKI (Warszawa and Muizenberg)

Abstract. For a real càdlàg function f and a positive constant c we find another
càdlàg function which has the smallest total variation among all functions uniformly ap-
proximating f with accuracy c/2. The solution is expressed in terms of truncated variation,
upward truncated variation and downward truncated variation introduced in earlier work
of the author. They are always finite even if the total variation of f is infinite, and they
may be viewed as a generalisation of the Hahn–Jordan decomposition for real càdlàg
functions. We also present partial results for more general functions.

1. Introduction. The notion of a real-valued signed measure and its
Hahn–Jordan decomposition plays a fundamental role in a measure theory
and the theory of integration. They are also related to the upper, lower and
total variations of the signed measure [H, Sect. IV.29]. A generalisation to
vector-valued measures is also possible. When the measurable space is [a; b],
−∞ < a < b <∞ (with the σ-field of all Borel measurable sets), instead of
signed or vector-valued measures one may consider functions of finite total
variation.

The total variation may be defined for any function f : [a; b] → E with
values in a general metric space E. Namely, when ρ is the metric on E we
define the total variation of f by the formula

TV(f, [a; b]) = sup
n

sup
πn

n∑
i=1

ρ(f(ti), f(ti−1)),

where the second supremum is over all partitions πn = {a ≤ t0 < t1 < · · · <
tn ≤ b}.

In general, the total variation of f may be (and in many important cases
is) infinite. For example, almost all paths of standard Brownian motion,
which is widely used in stochastic modeling and optimisation, are continu-
ous functions with infinite total variation on any interval [0; t], t > 0. This
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fact was arguably the main reason for the introduction of the Itô stochastic
integral.

However, after imposing some mild regularity conditions on f we can
easily find functions approximating f with arbitrary accuracy and having fi-
nite total variation, even if the total variation of f is infinite. Obviously, the
better the approximation, the greater the total variation of the approximat-
ing function. Let us fix c > 0. A natural question arises about the greatest
lower bound for the total variation of a function g : [a; b] → E, uniformly
approximating f with accuracy c/2 > 0, and the first problem we will deal
with is the determination of

inf
g∈B(f,c/2)

TV(g, [a; b]),

where B(f, d) denotes the ball

B(f, d) : =
{
g : [a; b]→ E : sup

t∈[a;b]
ρ(f(t), g(t)) ≤ d

}
.

The immediate bound from below for infg∈B(f,c/2)TV(g, [a; b]) is

(1.1) inf
g∈B(f,c/2)

TV(g, [a; b]) ≥ sup
n

sup
πn

n∑
i=1

max{ρ(f(ti), f(ti−1))− c, 0},

which follows directly from the triangle inequality,

ρ(g(ti), g(ti−1)) ≥ ρ(f(ti), f(ti−1))− ρ(f(ti), g(ti))− ρ(f(ti−1), g(ti−1))
≥ ρ(f(ti), f(ti−1))− c.

We will call the quantity on the right hand side of (1.1), i.e.

sup
n

sup
πn

n∑
i=1

max{ρ(f(ti), f(ti−1))− c, 0},

the truncated variation of f at level c and denote it by TVc(f, [a; b]); it was
first introduced in [L1].

The lower bound for infg∈B(f,c/2)TV(g, [a; b]) just obtained may well be
infinite, but from inequality (1.1) it follows that it is finite for any c > 0 iff
the function f is a uniform limit of finite variation functions. We prove this
fact and identify the family of such functions in Section 2 (Fact 2.2).

The family of real càdlàg functions, i.e. right-continuous functions with
left limits, will be of our special interest, since càdlàg functions with fi-
nite total variations correspond naturally to finite signed measures on (a; b].
Moreover, in this paper we will show that for càdlàg f, for E = R with the
standard Euclidean metric ρ(x, y) = |x − y| and for any c > 0 we have in
fact equality, i.e.

(1.2) inf
‖g−f‖∞≤c/2

TV(g, [a; b]) = TVc(f, [a; b]),
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where g : [a; b] → R and ‖g − f‖∞ = supt∈[a;b] |g(t) − f(t)|. Morever, there
exists a càdlàg function f c : [a; b]→ R such that

‖f c − f‖∞ ≤ c/2 and TV(f c, [a; b]) = TVc(f, [a; b]).

Remark 1.1. In general, the function f c is not unique, but imposing
the stronger condition that ‖f c − f‖∞ ≤ c/2 and for any s ∈ (a; b],

(1.3) TV(f c, [a; s]) = TVc(f, [a; s]),

we will find that the function f c exists and is uniquely determined for any
c ≤ sups,u∈[a;b] |f(s)− f(u)| (cf. Corollary 3.8).

Remark 1.2. A natural question appears to be whether the truncated
variation is an attainable lower bound for infg∈B(f,c/2)TV(g, [a; b]) for func-
tions with values in other metric spaces, but the answer is not known to
the author. In [TV, Lemma 9] it was proven that if f is continuous and E
is a general, multidimensional (and complete metric) space then the value
infg∈B(f,c/2)TV(g, [a; b]) is attained for some function g0; however, the au-
thors do not identify this quantity as the truncated variation. The proof of
[TV, Lemma 9] works for any càdlàg function f.

Since for E = R with ρ(x, y) = |x − y| the total variation depends only
on the increments of the function, in this case a more natural problem,
which we will call the second problem, is the following. For a càdlàg function
f : [a; b]→ R and c > 0 find

inf{TV(f + h, [a; b]) : ‖h‖osc ≤ c},

where for h : [a; b]→ R, ‖h‖osc := sups,u∈[a;b] |h(s)− h(u)|. Note that ‖ · ‖osc
is a norm on the equivalence classes of bounded functions which differ by a
constant.

Solution to the second problem is the same as the solution to the first
problem, i.e.

(1.4) inf{TV(f + h, [a; b]) : ‖h‖osc ≤ c} = TVc(f, [a; b]),

and one of the optimal representatives of the class of functions for which
equality (1.4) is attained is hc = f c− f . To this class also belongs some h0,c
such that h0,c(a) = 0. We will prove that f0,c = f + h0,c − f(a) is a càdlàg
function with possible jumps only at points where f has jumps, and that it
may be represented in the form

(1.5) f0,c(s) = UTVc(f ; [a; s])−DTVc(f ; [a; s]),

where
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(1.6) UTVc(f, [a; s])

:= sup
n

sup
a≤t0<t1<···<tn≤s

n∑
i=1

max{f(ti)− f(ti−1)− c, 0},

(1.7) DTVc(f, [a; s])

:= sup
n

sup
a≤t0<t1<···<tn≤s

n∑
i=1

max{f(ti−1)− f(ti)− c, 0}.

The functionals UTVc(f, [a; s]) and DTVc(f, [a; s]) are non-decreasing func-
tions of s and are called the upward and downward truncated variations of f
of order c on [a; s] respectively. They were first introduced in [L2] with a bit
different formulas, equivalent to (1.6) and (1.7).

Finally, for s ∈ (a; b] we will show that

(1.8) TV(f0,c, [a; s]) = TVc(f, [a; s]) = UTVc(f, [a; s]) + DTVc(f, [a; s]).

The equalities (1.5) and (1.8) give the Hahn–Jordan decomposition of the
finite signed measure induced by the function f0,c (or f c). This measure
assigns to any interval (a1, b1] ⊂ (a; b] the number

µ(a1, b1] = f0,c(b1)− f0,c(a1)
and we have

µ(a1, b1] = µ+(a1, b1]− µ−(a1, b1],
where

µ+(a1, b1] = UTVc(f, [a; b1])−UTVc(f, [a; a1]),

µ−(a1, b1] = DTVc(f, [a; b1])−DTVc(f, [a; a1]).

However, since c > 0 is arbitrary, the equalities (1.5) and (1.8) may also be
viewed as a generalisation of the Hahn–Jordan decomposition for any real
càdlàg function f .

Remark 1.3. The truncated variation and its decomposition into the
sum of the upward and downward truncated variations appears naturally
when the uniform approximation of the càdlàg function f by finite variation
functions is considered. The truncated variation is obtained by the composi-
tion of increments of f with a convex function ϕ(·) = (| · | − c)+. Naturally,
for any Young function (convex, non-decreasing, non-constant and vanishing
at 0) ϕ : [0;∞)→ R the notion of ϕ-variation defined as

TVϕ(f, [a; b]) := sup
n

sup
a≤t0<t1<···<tn≤b

n∑
i=1

ϕ(|f(ti)− f(ti−1)|)

is of importance. More on ϕ-variation may be found in [DN, Chapt. 3].
The authors of [DN] consider only the case when ϕ is strictly increasing,
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since for such ϕ, the ϕ-variation leads to interesting estimates for integrals
(generalisations of the Love–Young inequality).

However, for any Young function ϕ : [0;∞)→ R the functional

‖f‖(ϕ) := inf{C > 0 : TVϕ(f/C, [a; b]) ≤ 1}
is a seminorm on the space of functions f : [a; b] → R such that TVϕ(f/C,
[a; b]) <∞ for some C > 0 (cf. [DN, Chapt. 3, proof of Theorem 3.7]). ‖·‖(ϕ)
is also a norm on the space of equivalence classes of such functions, differing
by a constant. Defining

UTVϕ(f, [a; b]) := sup
n

sup
a≤t0<t1<···<tn≤b

n∑
i=1

ϕ
(
(f(ti)− f(ti−1))+

)
,

DTVϕ(f, [a; b]) := sup
n

sup
a≤t0<t1<···<tn≤b

n∑
i=1

ϕ
(
(f(ti)− f(ti−1))−

)
,

‖f‖U,(ϕ) := inf{C > 0 : UTVϕ(f/C, [a; b]) ≤ 1},
‖f‖D,(ϕ) := inf{C > 0 : DTVϕ(f/C, [a; b]) ≤ 1}

we also have
‖f‖(ϕ) ≤ ‖f‖U,(ϕ) + ‖f‖D,(ϕ).

For two Young functions ϕ and ψ, ‖ · ‖(ϕ) and ‖ · ‖(ψ) are equivalent
when the ratio of the right-continuous inverse functions, ϕ−1/ψ−1, is sepa-
rated from 0 and from ∞. Let us notice, however, that not for every Young
function ϕ can the corresponding ϕ-variation be decomposed into the sum
of the upward and downward ϕ-variation. To see this, consider the following
example. Let ϕ be such that ϕ(0) = ϕ(1) = 0, ϕ(2) = 1, ϕ(3) = 2 and
ϕ(4) = 6; let f be increasing on [0; 1], decreasing on [1; 2] and increasing on
[2; 3] with f([0; 1]) = [0; 3], f([1; 2]) = [1; 3] and f([2; 3]) = [1; 4]. We have
TVϕ(f, [0; 3]) = 6, UTVϕ(f, [0; 3]) = 6 and DTVϕ(f, [0; 3]) = 1, thus

TVϕ(f, [0; 3]) < UTVϕ(f, [0; 3]) + DTVϕ(f, [0; 3]).

These and other properties of TVϕ, UTVϕ andDTVϕ for a general Young
function ϕ will be the subject of further investigation.

Remark 1.4. Since we deal with càdlàg functions, a more natural setting
of the first problem would be the investigation of

inf{TV(g, [a; b]) : g càdlàg, dD(g, f) ≤ c/2},
where dD denotes the Skorokhod metric (cf. [B, Chapt. 3]). However, the
total variation does not change under (continuous and strictly increasing)
transformations of the argument and for E = R with ρ(x, y) = |x − y|
the function f c minimizing TV(g, [a; b]) appears to be a càdlàg one, hence
solutions of both problems coincide in this case.
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Let us comment on the organisation of the paper. In the next section
we deal with functions with values in general metric spaces and prove Fact
2.2. In the third section we deal with real càdlàg functions: we introduce
some necessary definitions and notation, and present the construction of the
functions f c and f0,c for the first and the second problem. In the fourth
section we establish the connection between f0,c and truncated variations.
In the last section we summarise some other general properties of truncated
variations, e.g. we show that for any real càdlàg function f, TVc(f, [a; b]) is
a continuous, convex and decreasing function of the parameter c > 0.

2. Truncated variation of functions with values in metric spaces.
In this section we consider families of functions f : [a; b] → E, with finite
truncated variation for any c > 0, even if their total variation appears to be
infinite.

Definition 2.1. Let −∞ < a < b <∞ and f : [a; b]→ E. The function
f is called regulated if for any s ∈ (a; b) it has left and right limits, f(s−)
and f(s+), and the limits f(a+) and f(b−) exist.

Each regulated function has an at most countable number of discontinu-
ities (this follows easily from [DN, Chapt. 2, Corollary 2.2]), but this property
is not sufficient for a function to be regulated.

Fact 2.2. Let E be a complete metric space, −∞ < a < b < ∞ and
f : [a; b]→ E. The following properties are equivalent:

(a) f is regulated;
(b) f is a uniform limit of finite variation functions;
(c) for any c > 0, TVc(f, [a; b]) <∞.

Proof. To prove (a)⇒(b) it is enough to notice that by [DN, Chapt. 2,
Theorem 2.1]), f is a uniform limit of step functions of finite total variation
(the assumption of [DN, Chapt. 2, Theorem 2.1] that E is a Banach space
may be relaxed and the proof works for E a complete metric space). To
prove (b)⇒(a) it is enough to notice that condition (b) of [DN, Chapt. 2,
Theorem 2.1] holds for any function which is a uniform limit of finite variation
functions.

The implication (b)⇒(c) follows immediately from the inequality (1.1),
and to prove (c)⇒(b) it is enough to notice that every function satisfying
(c) also satisfies condition (b) of [DN, Chapt. 2, Theorem 2.1].

Remark 2.3. When E is not a complete metric space, the families of
functions satisfying conditions (b) and (c) of Fact 2.2 are still equal and con-
tain the family of regulated functions (the implications (a)⇒(b) and (b)⇒(c)
in the proof of [DN, Chapt. 2, Theorem 2.1] hold), but the latter family
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may be strictly smaller. To see this it is enough to note that the function
f : [0; 2]→ [0; 1) such that f(x) = x1x<1 is not regulated for E = [0; 1) with
standard Euclidean metric, but it has finite total variation.

Remark 2.4. From (1.2) we may derive an upper bound for

inf
g∈B(f,c/2)

TV(g, [a; b])

when f is càdlàg and E = RN with ρ induced by the L1 norm. Namely,
for f(t) = (f1(t), . . . , fN (t)) ∈ RN , ‖f(t)‖1 := |f1(t)| + · · · + |fN (t)| and
ρ(f(t), g(t)) := ‖f(t)− g(t)‖1, we have

inf
g∈B(f,c/2)

TV(g, [a; b]) ≤ inf
c1,...,cN>0, c1+···+cN=c

N∑
i=1

inf
gi∈B(fi,ci/2)

TV(gi, [a; b])

= inf
c1,...,cN>0, c1+···+cN=c

N∑
i=1

TVci(fi, [a; b]).

Another upper bound for infg∈B(f,c/2)TV(g, [a; b]) was given in [TV, Theo-
rems 10 and 11].

3. Solution of the first and second problems for real càdlàg
functions

3.1. Definitions and notation. In this subsection we introduce defi-
nitions and notation which will be used throughout the paper.

Let f : [a; b]→ R be a càdlàg function. For c > 0 we define two stopping
times:

T cDf = inf
{
s ≥ a : sup

t∈[a;s]
f(t)− f(s) ≥ c

}
,

T cUf = inf
{
s ≥ a : f(s)− inf

t∈[a;s]
f(t) ≥ c

}
.

Assume that T cDf ≥ T cUf , i.e. either the first upward jump of f of size c
appears before the first downward jump of the same size, or both times are
infinite (there is no upward or downward jump of size c). Note that in the
case T cDf < T cUf we may simply consider the function −f. Now we define
sequences (T cU,k)

∞
k=0, (T

c
D,k)

∞
k=−1 in the following way: T cD,−1 = a, T cU,0 = T cUf ,

and for k = 0, 1, 2, . . . ,

T cD,k =

 inf
{
s ∈ [T cU,k; b] : sup

t∈[T c
U,k;s]

f(t)− f(s) ≥ c
}

if T cU,k < b,

∞ if T cU,k ≥ b,
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T cU,k+1 =

{
inf
{
s ∈ [T cD,k; b] : f(s)− inft∈[T c

D,k;s]
f(t) ≥ c

}
if T cD,k < b,

∞ if T cD,k ≥ b.
Remark 3.1. The times T cU,k and T cD,k may be seen as the consecutive

times of “switching” between the two disjoint borders {(t, f(t) − c/2) : t ∈
[a; b]} and {(t, f(t) + c/2) : t ∈ [a; b]} of the graph of a lazy function, which
changes its value only if necessary for the relation ‖f − f c‖∞ ≤ c/2 to hold.

Note that there exists K < ∞ such that T cU,K = ∞ or T cD,K = ∞.
Otherwise we would obtain two infinite sequences (sk)∞k=1, (Sk)

∞
k=1 such that

a ≤ s1 < S1 < s2 < S2 < · · · ≤ b and f(Sk) − f(sk) ≥ c/2. But this is a
contradiction, since f is a càdlàg function and (f(sk))

∞
k=1, (f(Sk))

∞
k=1 have

a common limit.

Now for k such that T cD,k−1 < ∞ and T cU,k < ∞ let us define two
sequences of non-decreasing functions mc

k : [T cD,k−1;T
c
U,k) ∩ [a; b] → R and

M c
k : [T cU,k;T

c
D,k) ∩ [a; b]→ R by the formulas

mc
k(s) = inf

t∈[T c
D,k−1;s]

f(t), M c
k(s) = sup

t∈[T c
U,k;s]

f(t).

Next we define two finite sequences of real numbers (mc
k) and (M c

k), for
k such that T cD,k−1 <∞ and T cU,k <∞ respectively, by the formulas

mc
k = mc

k(T
c
U,k−) = inf

t∈[T c
D,k−1;T

c
U,k)∩[a;b]

f(t),

M c
k =M c

k(T
c
D,k−) = sup

t∈[T c
U,k;T

c
D,k)∩[a;b]

f(t).

3.2. Solution of the first problem. In this subsection we will solve the
first problem: what is the smallest possible (or infimum of ) total variation
of functions from the ball {g : ‖f − g‖∞ ≤ c/2}?

To solve this problem we start with some results concerning càdlàg
functions.We apply the definitions of the previous subsection to the function f
and assume that T cDf ≥ T cUf. Define f c : [a; b]→ R by

f c(s) =


mc

0 + c/2 if s ∈ [a;T cU,0),
M c
k(s)− c/2 if s ∈ [T cU,k;T

c
D,k), k = 0, 1, 2, . . . ,

mc
k+1(s) + c/2 if s ∈ [T cD,k;T

c
U,k+1), k = 0, 1, 2, . . . .

Remark 3.2. Note that due to Remark 3.1, b belongs to one of the in-
tervals [T cU,k;T

c
D,k) or [T

c
D,k;T

c
U,k+1) for some k = 0, 1, 2, . . . and the function

f c is defined for every s ∈ [a; b].

Remark 3.3. One may think about f c as the laziest function possible
which changes its value only if necessary for the relation ‖f − f c‖∞ ≤ c/2
to hold. Its starting value is such that it stays in [f(t)− c/2; f(t) + c/2] for
the longest time possible.
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Remark 3.4. In the case T cDf < T cUf we may apply the definitions of the
previous subsection to the function −f and simply define f c = −(−f)c. Thus
we will assume that the mapping f 7→ f c is defined for any càdlàg function.
Similarly, in all the proofs of this section we assume T cDf ≤ T cUf, but all results
(i.e. Lemma 3.5, Theorem 3.6, Corollary 3.8, Lemma 3.10, Theorem 3.11,
Corollary 3.12 and Theorem 4.1) apply to any càdlàg function f. Obvious
modifications are only necessary in the definition of T cU,k and T

c
D,k, and of f cU

and f cD of Theorem 3.6.

Lemma 3.5. The function f c uniformly approximates the function f with
accuracy c/2 and has finite total variation. Moreover f c is a càdlàg function
and every point of discontinuity of f c is also a point of discontinuity of f.

Proof. Let us fix s ∈ [a; b]. We have three possibilities.

• s ∈ [a;T cU,0). In this case, since a ≤ s < T cUf ≤ T cDf,

f(s)− f c(s) = f(s)− inf
t∈[a;T c

U,0)
f(t)− c/2 ∈ [−c/2; c/2).

• s ∈ [T cU,k;T
c
D,k) for some k = 0, 1, 2, . . . . In this case M c

k(s)− f(s) is in
[0; c), hence

f(s)− f c(s) = f(s)−M c
k(s) + c/2 ∈ (−c/2; c/2].

• s ∈ [T cD,k;T
c
U,k+1) for some k = 0, 1, 2, . . . . In this case f(s)−mc

k+1(s)
belongs to [0, c), hence

f(s)− f c(s) = f(s)−mc
k+1(s)− c/2 ∈ [−c/2; c/2).

The function f c has finite total variation since it is non-decreasing on
[T cU,k;T

c
D,k), k = 0, 1, 2, . . . , and non-increasing on [T cD,k;T

c
U,k+1), k = 0, 1, 2,

. . . , and it has a finite number of jumps between these intervals.
For a similar reason, f c has left and right limits. To see that it is right-

continuous, let us fix s ∈ [a; b] and notice that by definition of f c, for t ∈ (s; b]
sufficiently close to s,

f c(t) = inf
u∈[s;t]

f c(u) or f c(t) = sup
u∈[s;t]

f c(u),

and the assertion follows from the right-continuity of f.
A similar argument may be applied to prove that f c is continuous at

every point of continuity of f except T cU,0, T
c
D,0, T

c
U,1, T

c
D,1, . . . ; but if s = T cD,i

and f is continuous at s then f(T cU,i−) = f(T cU,i) = inft∈[T c
D,i−1;T

c
U,i)

f(t) + c

and

f c(T cU,i−) = inf
t∈[T c

D,i−1;T
c
U,i)

f(t) + c/2 = f(T cU,i)− c/2 = f c(T cU,i).

A similar argument applies when s = T cD,i.
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Since f c is of finite total variation, we know that there exist two non-
decreasing f cU and f cD : [a; b]→ [0;∞) such that f c(t) = f c(a)+f cU(t)−f cD(t).

Let us examine the signs of the jumps of the function f c between the
intervals [T cU,k;T

c
D,k) and [T cD,k;T

c
U,k+1). Due to the càdlàg property we have

f c(T cU,k)− f c(T cU,k−) = f c(T cU,k)−mc
k − c/2

= f(T cU,k)− inf
t∈[T c

D,k−1;T
c
U,k)

f(t)− c ≥ 0,

f c(T cD,k)− f c(T cD,k−) = f c(T cD,k)−M c
k + c/2

= f(T cD,k)− sup
t∈[T c

U,k;T
c
D,k)

f(t) + c ≤ 0.

Hence we may set f cU(s) = f cD(s) = 0 for s ∈ [a;T cU,0),

f cU(s) =



k−1∑
i=0

{M c
i −mc

i − c}+M c
k(s)−mc

k − c if s ∈ [T cU,k;T
c
D,k),

k∑
i=0

{M c
i −mc

i − c} if s ∈ [T cD,k;T
c
U,k+1)

and

f cD(s)=



k−1∑
i=0

{M c
i −mc

i+1 − c} if s ∈ [T cU,k;T
c
D,k),

k−1∑
i=0

{M c
i −mc

i+1 − c}+M c
k −mc

k+1(s)− c if s ∈ [T cD,k;T
c
U,k+1).

Theorem 3.6. If g : [a; b]→ R uniformly approximates f with accuracy
c/2 and has finite total variation, and gU, gD : [a; b] → [0;∞) are non-
decreasing functions such that g(t) = g(a) + gU(t)− gD(t), t ∈ [a; b], then for
any s ∈ [a; b],

(3.1) gU(s) ≥ f cU(s) and gD(s) ≥ f cD(s).
Proof. Again, we consider three cases.

• s ∈ [a;T cU,0). In this case gU(s) ≥ 0 = f cU(s) as well as gD(s) ≥ 0 =
f cD(s).
• s ∈ [T cU,k;T

c
D,k) for some k = 0, 1, 2, . . . . In this case, since g uniformly

approximates f with accuracy c/2 and gU, gD are non-decreasing, for
i = 0, 1, . . . , k − 1 we get

sup
si∈[T c

U,i;T
c
D,i)

gU(si)− inf
si∈[T c

D,i−1;T
c
U,i)

gU(si)

≥ sup
si∈[T c

U,i;T
c
D,i)

(gU − gD)(si)− inf
si∈[T c

D,i−1;T
c
U,i)

(gU − gD)(si)
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= sup
si∈[T c

U,i;T
c
D,i)

g(si)− inf
si∈[T c

D,i−1;T
c
U,i)

g(si)

≥ sup
si∈[T c

U,i;T
c
D,i)
{f(si)− c/2} − inf

si∈[T c
D,i−1;T

c
U,i)
{f(si) + c/2}

=M c
i −mc

i − c.

Similarly

gU(s)− inf
sk∈[T c

D,k−1;T
c
U,k)

gU(sk)

= sup
t∈[T c

U,k;s]
gU(t)− inf

sk∈[T c
D,k−1;T

c
U,k)

gU(sk)

≥ sup
t∈[T c

U,k;s]
(gU − gD)(t)− inf

sk∈[T c
D,k−1;T

c
U,k)

(gU − gD)(sk)

= sup
t∈[T c

U,k;s]
g(t)− inf

sk∈[T c
D,k−1;T

c
U,k)

g(sk)

≥ sup
t∈[T c

U,k;s]
{f(t)− c/2} − inf

sk∈[T c
D,k−1;T

c
U,k)
{f(sk) + c/2}

=M c
k(s)−mc

k − c.

Summing up and using the monotonicity of gU we get

gU(s) ≥
k−1∑
i=0

{M c
i −mc

i − c}+M c
k(s)−mc

k − c = f cU(s).

The proof of the corresponding inequality for gD follows similarly and
we get

gD(s) ≥
k−1∑
i=0

{M c
i −mc

i+1 − c} = f cD(s).

• s ∈ [T cD,k;T
c
U,k+1). The proof is similar to the previous case.

From Theorem 3.6 we immediately see that the decomposition

(3.2) f c(s) = f c(a) + f cU(s)− f cD(s)

is minimal (cf. [RY, p. 5]), thus the total variation of f c on [a; s] equals
f cU(s) + f cD(s).

Remark 3.7. From Lemma 3.5 and the minimality of the decomposition
(3.2) it follows that f cU and f cU are also càdlàg functions and that every point
of discontinuity of f cU or f cU is also a point of discontinuity of f. Moreover,
due to the minimality of the variation of f c, jumps of f c are no greater than
jumps of f.
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Corollary 3.8. The function f c is optimal, i.e. if g : [a; b]→ R is such
that ‖f − g‖∞ ≤ c/2 and has finite total variation, then for every s ∈ [a; b],

TV(g, [a; s]) ≥ TV(f c, [a; s]).

Moreover, it is unique in the sense that if for every s ∈ [a; b] the opposite
inequality holds,

TV(g, [a; s]) ≤ TV(f c, [a; s]),

and c ≤ sups,u∈[a;b] |f(s)− f(u)|, then g = f c.

Proof. Let gU, gD : [a; b]→ [0;∞) be non-decreasing functions such that
for s ∈ [a; b],

g(s) = g(a) + gU(s)− gD(s) and TV(g, [a; s]) = gU(s) + gD(s).

The first assertion follows directly from Theorem 3.6 and the fact that
TV(g, [a; s]) = gU(s) + gD(s).

The opposite inequality, TV(g, [a; s]) ≤ TV(f c, [a; s]), holds for every
s ∈ [a; b] iff gU(s) = f cU(s) and gD(s) = f cD(s). Thus in that case we get
g(s)− f c(s) = g(a)− f c(a) and

c/2 ≥ sup
s∈[a;T c

U,0)
{g(s)− f(s)}(3.3)

= sup
s∈[a;T c

U,0)
{g(a)− f c(a) + f c(s)− f(s)}

= g(a)− f c(a) + c/2

(notice that T cU,0 ≤ b since c ≤ sups,u∈[a;b] |f(s)− f(u)| and T cU,0 ≤ T cD,0, and
that f c(T cU,0−)− infs∈[a;T c

U,0)
f(s) = c/2). On the other hand,

−c/2 ≤ g(T cU,0)− f(T cU,0) = g(a)− f c(a) + f c(T cU,0)− f(T cU,0)(3.4)
= g(a)− f c(a)− c/2.

From (3.3) and (3.4) we get g(a) = f c(a). This together with the equalities
gU(s) = f cU(s) and gD(s) = f cD(s) gives g = f c.

Remark 3.9. The formula obtained for the smallest possible total vari-
ation of a function from the ball {g : ‖f − g‖∞ ≤ c/2} reads

f cU(b) + f cD(b)

and does not resemble formula (1.2). In Section 4 we will show that these
values coincide.

3.3. Solution of the second problem. In this subsection we will solve
the second problem: for a càdlàg function f : [a; b]→ R and c > 0 find

inf{TV(f + h, [a; b]) : ‖h‖osc ≤ c},
where h : [a; b]→ R, ‖h‖osc := sups,u∈[a;b] |h(s)− h(u)|.
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We will show that

inf{TV(f + h, [a; b]) : ‖h‖osc ≤ c} = f cU(b) + f cD(b),

where f cU and f cD were defined in the previous subsection. To do it let us
simply define

f0,c = f cU − f cD.
Lemma 3.10. The increments of f0,c uniformly approximate the incre-

ments of f with accuracy c, and the function f0,c has finite total variation.

Proof. Since f c − f0,c is constant, the first and the second assertions
follow immediately from Lemma 3.5 and from a simple calculation that for
any s, u ∈ [a; b],

{f0,c(s)− f0,c(u)} − {f(s)− f(u)}
= {f c(s)− f(s)} − {f c(u)− f(u)} ∈ [−c; c].

Now we will prove the analog of Theorem 3.6.

Theorem 3.11. If the increments of g : [a; b] → R uniformly approxi-
mate the increments of f with accuracy c, g has finite total variation and
gU, gD : [a; b]→ [0;∞) are non-decreasing functions such that g(t) = g(a) +
gU(t)− gD(t), t ∈ [a; b], then for any s ∈ [a; b],

gU(s) ≥ f cU(s) and gD(s) ≥ f cD(s).
Proof. It is enough to see that for h = g − f, ‖h‖osc ≤ c, thus for

α = −1

2

{
inf

s∈[a;b]
h(s) + sup

s∈[a;b]
h(s)

}
,

we have ‖α + h‖∞ ≤ 1
2c, and the function gα = α + g belongs to the ball

{g : ‖f−g‖∞ ≤ 1
2c}.Application of Theorem 3.6 to the function gα concludes

the proof.

Since the decomposition f0,c(s)=f cU(s)−f cD(s) is minimal and f0,c(a)=0
we immediately obtain

Corollary 3.12. The function f0,c is optimal, i.e. if g : [a; b] → R is
such that

sup
a≤u<s≤b

|{g(s)− g(u)} − {f(s)− f(u)}| ≤ c

and g has finite total variation, then for every s ∈ [a; b],

TV(g, [a; s]) ≥ TV(f0,c, [a; s]).

Moreover, it is unique in the sense that if g(a) = 0 and for every s ∈ [a; b]
the opposite inequality holds,

TV(g, [a; s]) ≤ TV(f0,c, [a; s]),

then g = f0,c.
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From Corollary 3.12 it immediately follows that

inf{TV(f + h, [a; b]) : ‖h‖osc ≤ c} = f cU(b) + f cD(b).

Indeed, for any h such that ‖h‖osc ≤ c we put g = f + h and if g has finite
total variation then it satisfies the assumptions of Corollary 3.12 and we get

TV(g, [a; b]) ≥ TV(f0,c, [a; b]) = f cU(b) + f cD(b).

4. Relation of the solutions of the first and second problems
to truncated variations. In order to prove (1.2), (1.4) and (1.8), where
UTVc(f, [a; s]) andDTVc(f, [a; s]) are defined by (1.6) and (1.7) respectively,
it is enough to prove

Theorem 4.1. For a given càdlàg function f : [a; b] → R and for any
s ∈ (a; b] the following equalities hold:

UTVc(f, [a; s]) = f cU(s),(4.1)
DTVc(f, [a; s]) = f cD(s),(4.2)
TVc(f, [a; s]) = f cU(s) + f cD(s).(4.3)

Proof. Examining the proof of Lemma 3 from [L2], we see that it may
be applied (with obvious modifications) to the càdlàg (but not necessarily
continuous) function f and we obtain

(4.4) UTVc(f, [a; s])

= sup
a≤t<u≤(T c

Df)∧s
(f(u)− f(t)− c)+ +UTVc(f, [(T cDf) ∧ s; s]).

Now, from the assumption T cDf ≥ T cUf we get T cDf = T cD,0 and we have

sup
a≤t<u≤(T c

Df)∧s
(f(u)− f(t)− c)+ =


0 if s ∈ [a;T cU,0),
M c

0(s)−mc
0 − c if s ∈ [T cU,0;T

c
D,0),

M c
0 −mc

0 − c if s ≥ T cD,0.

Iterating equality (4.4) we obtain

UTVc(f, [a; s])

=



0 if s ∈ [a;T cU,0),
k−1∑
i=0

(M c
i −mc

i − c) +M c
k(s)−mc

k − c if s ∈ [T cU,k;T
c
D,k),

k∑
i=0

(M c
i −mc

i − c) if s ∈ [T cD,k;T
c
U,k+1)

= f cU(s).
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Remark 4.2. Iterating (4.4) we obtain an equality a bit different from
UTVc(f, [a; s]) = f cU, but equivalent to it. To see this let us define the
following sequence of times. We set T̃ cD,−1 = a, and for k = 0, 1, 2, . . . ,

T̃ cD,k+1 = inf
{
s > T̃ cD,k : sup

t∈[T̃ c
D,k;s]

f(t)− f(s) ≥ c
}
.

Let us fix s0 ∈ [a; b] and define k0 = max{k : T̃ cD,k ≤ s0}. Iterating (4.4) we
obtain

UTVc(f, [a; s0])

=

k0−1∑
k=1

sup
T̃ c
D,k≤s<u≤T̃

c
D,k+1

(f(u)− f(s)− c)+ +UTVc(f, [T̃ cD,k0 ; s0]),

whose right hand side looks different from f cU(s0). But it is easy to notice that
for all k ≥ 1 such that T̃ cD,k+1<T

c
U,1f the summand supT̃ c

D,k≤s<u≤T̃
c
D,k+1

(f(u)

− f(s)− c)+ is zero. Thus in fact the quantities UTVc(f, [a; s0]) and f cU(s0)
coincide.

In the same way we prove that DTVc(f)[a; s] = f cD(s).

Now, to prove (4.3) simply notice that TVc(f, [a; s]) ≥ 0 and if s ∈
[T cU,k;T

c
D,k),

TVc(f, [a; s]) ≥
k−1∑
i=0

(M c
i −mc

i − c) +
k−1∑
i=0

(M c
i −mc

i+1 − c) +M c
k(s)−mc

k − c

= f cU(s) + f cD(s).

Analogously, if s ∈ [T cD,k;T
c
U,k+1),

TVc(f, [a; s]) ≥
k−1∑
i=0

(M c
i −mc

i − c)

+

k−1∑
i=0

(M c
i −mc

i+1 − c) +M c
k −mc

k+1(s)− c

= f cU(s) + f cD(s).

Hence for all s ∈ [a; b],

TVc(f, [a; s]) ≥ f cU(s) + f cD(s).

So
TVc(f, [a; s]) ≥ UTVc(f, [a; s]) + DTVc(f, [a; s]).

Since the opposite inequality is obvious, we finally get (4.3).
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Now we see that by Corollaries 3.8 and 3.12, the functions hc = f c − f
and h0,c = f(a) + f0,c − f = f(a) + UTVc(f, [a; .])−DTVc(f, [a; .])− f are
optimal and such that for any s ∈ (a; b],

inf{TV(f + h, [a; s]) : ‖h‖∞ ≤ c/2} = TV(f + hc, [a; s])

= TVc(f, [a; s]),

inf{TV(f + h, [a; s]) : ‖h‖osc ≤ c} = TV(f + h0,c, [a; s])

= TVc(f, [a; s]).

Moreover, by Remark 3.7, hc and h0,c are also càdlàg functions and every
point of discontinuity of hc or h0,c is also a point of discontinuity of f.

5. Further properties of truncated variations. In this section we
summarize the basic properties of the functionals defined. We start with

5.1. Algebraic properties. For any c > 0 we have

DTVc(f, [a; b]) = UTVc(−f, [a; b]),(5.1)
TVc(f, [a; b]) = UTVc(f, [a; b]) + DTVc(f, [a; b]).(5.2)

Property (5.1) follows simply from the definitions (1.6) and (1.7). Property
(5.2) is a consequence of Theorem 4.1.

5.2. UTVc(f, [a; b]),DTVc(f, [a; b]) and TVc(f, [a; b]) as functions of c

Fact 5.1. For any càdlàg function f the functions

(0;∞) 3 c 7→ UTVc(f, [a; b]) ∈ [0;∞),

(0;∞) 3 c 7→ DTVc(f, [a; b]) ∈ [0;∞), (0;∞) 3 c 7→ TVc(f, [a; b]) ∈ [0;∞)

are non-increasing, continuous, and convex functions of c. Moreover,
limc↓0TV

c(f, [a; b])=TV(f, [a; b]) and for any c≥‖f‖osc, TVc(f, [a; b]) = 0.

Proof. The finiteness of TV, UTV and DTV follows from Lemma 3.5 and
Theorem 4.1. Monotonicity is obvious.

To prove convexity, let us fix c, ε > 0 and consider a partition a ≤ t0 <
t1 < · · · < tn ≤ b such that

UTVc(f, [a; b]) ≤
n−1∑
i=0

max{f(ti+1)− f(ti)− c, 0}+ ε.

Taking α ∈ [0; 1] and c1, c2 > 0 such that c = αc1 + (1− α)c2 we have

max{f(ti+1)− f(ti)− αc1 − (1− α)c2, 0}
= max{α(f(ti+1)− f(ti)− c1) + (1− α)(f(ti+1)− f(ti)− c2), 0}
≤ αmax{f(ti+1)− f(ti)− c1, 0}+ (1− α)max{f(ti+1)− f(ti)− c2, 0}.
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Now

UTVc(f, [a; b]) ≤
n−1∑
i=0

max{f(ti+1)− f(ti)− c, 0}+ ε

≤ α
n−1∑
i=0

max{f(ti+1)− f(ti)− c1, 0}

+ (1− α)
n−1∑
i=0

max{f(ti+1)− f(ti)− c2, 0}+ ε

≤ αUTVc1(f, [a; b]) + (1− α)UTVc2(f, [a; b]) + ε.

Since ε may be arbitrarily small, we obtain the convexity assertion. From
convexity and monotonicity we obtain the continuity assertion.

The same properties of DTV and TV follow immediately from (5.1)
and (5.2).

The fact that TVc(f, [a; b]) = 0 for c ≥ ‖f‖osc follows easily from the
equality

max{|f(ti+1)− f(ti)| − c, 0} = 0

satisfied for any such c and ti, ti+1 ∈ [a; b].

Remark 5.2. [TV, Theorem 17] gives some estimates for the rate of
convergence of TVc(f, [a; b]) to ∞ when c ↓ 0 and f has finite p-variation
with p > 1.
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