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DIRECT LIMIT OF MATRIX ORDER UNIT SPACES

BY

J. V. RAMANI (Agra), ANIL K. KARN (New Delhi) and SUNIL YADAV (Agra)

Abstract. The notion of F-approximate order unit norm for ordered F-bimodules
is introduced and characterized in terms of order-theoretic and geometric concepts. Using
this notion, we characterize the inductive limit of matrix order unit spaces.

1. Introduction. A study of normed F-bimodules as the direct limit
of matrix normed spaces was suggested by B. E. Johnson, as an appropri-
ate model to study the matricial theory of operator spaces. This idea was
appreciated and justified by Effros and Ruan in [2]. The present authors
extended this idea to the order-theoretic context. In [7, 8] they studied the
direct limit of matrix ordered spaces and that of matricially Riesz normed
spaces. Continuing this process, in this paper we discuss the direct limit
of approximate matrix order unit spaces, studied by Karn and Vasudevan
[3, 4]. We also consider the direct limit of matrix order unit spaces (studied
by Choi and Effros [1]).

We recall the following notions discussed in [7, 8] (see also [2]).

Matricial notions. Let V be a complex vector space. Let Mn(V ) denote
the set of all n × n matrices with entries from V . For V = C, we denote
Mn(C) by Mn. For α = [αij ] ∈Mn and v = [vij ] ∈Mn(V ) we define

αv =
[ n∑
j=1

αijvjk

]
, vα =

[ n∑
j=1

vijαjk

]
.

Then Mn(V ) is an Mn-bimodule for all n ∈ N. In particular Mn(V ) is a
complex vector space for all n ∈ N. For v ∈Mn(V ), w ∈Mm(V ), we define

v ⊕ w =
[
v 0
0 w

]
∈Mn+m(V )

Next, we consider the family {Mn}. For each n,m ∈ N define σn,n+m :
Mn → Mn+m by σn,n+m(α) = α ⊕ 0m. Then σn,n+m is a vector space
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isomorphism with

σn,n+m(αβ) = σn,n+m(α)σn,n+m(β).

Thus we can identify Mn with a subalgebra of Mn+m for every m ∈ N. More
generally, we may identify Mn with a subset of the set F of∞×∞ complex
matrices having all but a finite number of entries zero. In this sense, F may
be considered as the direct or inductive limit of the family {Mn}. In other
words,

F =
∞⋃
n=1

Mn.

Let eij denote the∞×∞ matrix with 1 at the (i, j)th entry and 0 elsewhere.
Then the collection {eij} is called the set of matrix units in F . We write
1n for

∑n
i=1 eii. For i, j, k, l ∈ N, we have eijekl = δjkeil. Note that for any

α ∈ F , there exist complex numbers αij such that

α =
∑
i,j

αijeij (a finite sum).

Thus F is an algebra.
For α =

∑
i,j αijeij ∈ F , we define α∗ =

∑
i,j ᾱjieij ∈ F . Then α 7→ α∗

is an involution. In other words, F is a ∗-algebra.

Definition 1.1. Let V be a complex vector space. Consider the fam-
ily {Mn(V )}. For each n,m ∈ N, define Tn,n+m : Mn(V ) → Mn+m(V ) by
Tn,n+m(v) = v ⊕ 0m, 0m ∈ Mm(V ). Then Tn,n+m is an injective homomor-
phism. Let V be the inductive limit of the directed family {Mn(V ), Tn,n+m}.
Then V is an F-bimodule. We shall call V the matricial inductive limit or
direct limit of V .

Definition 1.2. An F-bimodule V is said to be non-degenerate if for
every v ∈ V there exists an n ∈ N such that 1nv1n = v.

The matricial inductive limit of a complex vector space may be charac-
terized in the following sense:

Theorem 1.3 ([2]). The matricial inductive limit of a complex vec-
tor space is a non-degenerate F-bimodule. Conversely , let W be a non-
degenerate F-bimodule. Put W = e11We11. Then W is a complex vector
space and W is its matricial inductive limit. Moreover ,

(a) Mn(W ) ∼= 1nW1n ∼= W ⊗Mn.
(b) W =

⋃∞
n=1Mn(W ) ∼= W ⊗F .

Now we recall the relevant norm structure.

Definition 1.4. Let V be a complex vector space. Recall that Mn(V )
is an Mn-bimodule for all n ∈ N. A matrix norm on V is a sequence {‖ · ‖n}
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such that ‖ ·‖n is a norm on Mn(V ) for all n ∈ N. We say that (V, {‖ ·‖n}) is
a matrix normed space if ‖v ⊕ 0m‖n+m = ‖v‖n and ‖αvβ‖n ≤ ‖α‖ ‖v‖n‖β‖
for all v ∈Mn(V ), α, β ∈Mn and n,m ∈ N (see [9]).

Definition 1.5. Let V be a non-degenerate F-bimodule. Let ‖ · ‖ be a
norm on V. Then we say that ‖ · ‖ is an F-bimodule norm on V if ‖αvβ‖ ≤
‖α‖ ‖v‖ ‖β‖ for any α, β ∈ F , v ∈ V. In this case we say that V is a non-
degenerate normed F-bimodule.

Theorem 1.6. Let (V, {‖ · ‖n}) be a matrix normed space. Let V be the
matricial inductive limit of V . For each v ∈ V, we define ‖v‖ as follows:
let n ∈ N be such that 1nv1n = v. Write ‖v‖ = ‖v‖n. This definition is
independent of the choice of n and introduces an F-bimodule norm on V
such that (V, ‖ · ‖) is a non-degenerate normed F-bimodule.

Conversely , let (W, ‖ · ‖) be a non-degenerate normed F-bimodule and
let W = 11W11 and ‖ · ‖n = ‖ · ‖|Mn(W ) for all n ∈ N. Then (W, {‖ · ‖n}) is
a matrix normed space whose matricial inductive limit is (W, ‖ · ‖).

Next, we come to the order structure.

Definition 1.7. A matrix ordered space is a ∗-vector space V together
with a cone Mn(V )+ in Mn(V )sa for all n ∈ N and with the following
property: if v ∈ Mn(V )+ and γ ∈ Mn,m then γ∗vγ ∈ Mm(V )+ for any
n,m ∈ N. Here Mn(V )sa stands for the self-adjoint part of Mn(V ).

Definition 1.8. Let W be an F-bimodule. Then a map ∗ :W →W is
called an involution on W if for all v, w ∈ W and α ∈ F ,

(1) (v∗)∗ = v,
(2) (v + w)∗ = v∗ + w∗,
(3) (αv)∗ = v∗α∗, (vα)∗ = α∗v∗.

In this case W is called a ∗-F-bimodule. We set Wsa = {v ∈ W | v = v∗}.

Definition 1.9. Let V be a ∗-F-bimodule. Let V+ be a bimodule cone
in Vsa, that is,

1. v1, v2 ∈ V+ ⇒ v1 + v2 ∈ V+.
2. v ∈ V+, α ∈ F ⇒ α∗vα ∈ V+.

Then (V,V+) will be called an ordered F-bimodule.

Theorem 1.10. Let (V, {Mn(V )+}) be a matrix ordered space. Let V be
the matricial inductive limit of V . Then (V,V+) is a non-degenerate ordered
F-bimodule, where V+ =

⋃∞
n=1Mn(V )+. Conversely , let (W,W+) be a non-

degenerate ordered F-bimodule. Put W = 11W11 and Mn(W )+ = 1nW+1n
for all n ∈ N. Then (W, {Mn(W )+}) is a matrix ordered space with W+ =⋃∞
n=1Mn(W )+.
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In the rest of the paper we will be dealing with non-degenerate ordered
F-bimodules. We introduce some more notations. We write Jn =

∑n
i=1 ei,n+i

for any n∈N. Note that ‖In‖= ‖Jn‖= 1 and JnIn = 0, InJn = Jn, JnJn = 0,
JnJ

∗
n = In. Let (V,V+) be a non-degenerate ordered F-bimodule. Let

u1, u2 ∈ V+, and find an n ∈ N such that 1nu11n = u1 and 1nu21n = u2. We
denote u1 + J∗nu2Jn by (u1, u2)+n . For any v ∈ V and n ∈ N with 1nv1n = v
we denote InvJn + J∗nv

∗In by san(v).

Note. In the notation (u1, u2)+n ± san(v) ∈ V+, we say that n ∈ N is
suitable provided 1nu11n = u1, 1nu21n = u2 and 1nv1n = v. This termino-
logy will be used throughout the paper without any further explanation.

Definition 1.11. Let (V,V+) be a positively generated non-degenerate
ordered F-bimodule. Let ‖ · ‖ be an F-bimodule norm on V. We say ‖ · ‖ is
an F-Riesz norm on V if for any v ∈ V,

‖v‖ = inf{max(‖u1‖, ‖u2‖) | (u1, u2)+N ± saN (v) ∈ V+ for some u1, u2 ∈ V+

and a suitable N ∈ N}.

Definition 1.12. Let (V,V+) be an ordered F-bimodule. We say that
V+ is proper if V ∩ (−V+) = {0}, and generating if given v ∈ V there exist
v0, v1, v2, v3 ∈ V+ such that v =

∑3
k=0 i

kvk, where i2 = −1.

Definition 1.13. Let (V,V+) be a non-degenerate ordered F-bimodule
such that V+ is proper and generating. Assume that ‖·‖ is an F-Riesz norm
on V such that V+ is norm closed. Then the triple (V,V+, ‖ · ‖) is called an
F-Riesz normed bimodule.

The following characterization of non-degenerate F-Riesz normed bi-
modules can be obtained from [8].

Theorem 1.14. Let (V, {Mn(V )+}, {‖ · ‖n}) be a matricially Riesz
normed space. Let (V,V+) be the matricial inductive limit of the matrix or-
dered space (V, {Mn(V )+}) and let (V, ‖ · ‖) be the matricial inductive limit
of matrix normed space (V, {‖ · ‖n}). Then (V,V+, ‖ · ‖) is a non-degenerate
F-Riesz normed bimodule. Conversely , let (W,W+, ‖·‖) be a non-degenerate
F-Riesz normed bimodule. Let W = 11W11 and Mn(W )+ = 1nW+1n and
‖ · ‖n = ‖ · ‖|Mn(W ) for all n ∈ N. Then (W, {Mn(W )+}, {‖ · ‖n}) is a
matricially Riesz normed space whose inductive limit is (W,W+, ‖ · ‖).

2. Direct limit of approximate matrix order unit spaces. In this
section, we discuss the notion of an approximate order unit and the conse-
quent F-norm in the context of ordered F-bimodules.

Definition 2.1. Let (V, {Mn(V )+}) be a matrix ordered space. Then
an increasing net {eλ}λ∈D in V + is called an approximate order unit for V
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if for any v ∈ V , there are α > 0 and λ ∈ D such that[
αeλ v

v∗ αeλ

]
∈M2(V )+.

When eλ = e for all λ, we say that e is an order unit for V .

Definition 2.2. Let (V,V+) be a non-degenerate, ordered F-bimodule.
An increasing net {eλ}λ∈D in V+ is called an approximate order unit for
V if given a v ∈ V, we can find λ ∈ D, α > 0 and N ∈ N such that
(αeλ, αeλ)+N ± saN (v) ∈ V+.

Remark. If V has an approximate order unit, then V+ is generating.

Construction. Let (V,V+) be a non-degenerate ordered F-bimodule. Put
V = e11Ve11. Then by Theorem 1.10, (V, {Mn(V )+}) is a matrix ordered
space and (V,V+) is its matricial inductive limit. Let {eλ}λ∈D be an ap-
proximate order unit for V. For every λ ∈ D, put e1λ = e11eλe11. Then the
net {e1λ}λ∈D is an approximate order unit for V . Define, for each n ∈ N,

enλ = e1λ ⊕ · · · ⊕ e1λ =
n⊕
i=1

e1λ.

Then enλ has the following representation.

Lemma 2.3.

enλ =
n∑
i=1

ei1e
1
λe1i.

Proof. For p, q ∈ N, let Jp,q =
∑q

i=1 ei,p+i, so that J0,p = Ip, Jp,p = Jp,
where Jp =

∑p
i=1 ei,p+i. Let u1, . . . , uk ∈ V with 1niui1ni = ui, i = 1, . . . , k.

Define

u1 ⊕ · · · ⊕ uk =
k−1∑
i=0

(JPi
s=0 ns,ni+1

)∗ui+1(JPi
s=0 ns,ni+1

),

where n0 = 0. This gives

enλ =
n⊕
i=1

e1λ =
n−1∑
i=0

J∗i,1e
1
λJi,1 =

n∑
i=1

ei,1e
1
λe1,i.

The following two results will be needed.

Lemma 2.4. If {eλ}λ∈D is an approximate order unit for V , then {enλ}λ∈D
is an approximate order unit for Mn(V ) for all n ∈ N.

Proof. Follows from [4, Lemma 2.6].

Lemma 2.5. Let (V,V+) be a non-degenerate ordered F-bimodule and
{eλ}λ∈D be an approximate order unit for V. If v ∈ V, then there exist
n ∈ N, λ ∈ D and α > 0 such that (αenλ, αe

n
λ)+n ± san(v) ∈ V+.
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Proof. It suffices to show that for every µ ∈ D, there exist n ∈ N, λ ∈ D
and β > 0 such that eµ ≤ βenλ. Let µ ∈ D. Find n ∈ N such that 1neµ1n = eµ.
Then eµ ∈Mn(V ). Let eijµ = e1ieµej1 for all i, j = 1, . . . , n. Then eijµ ∈ V for
all i, j = 1, . . . , n. Thus for each pair (i, j), there are λij ∈ D and αij > 0
such that (αije1λij

, αije
1
λij

)+1 ± sa1(eijµ ) ∈M2(V )+ ⊂ V+. Since D is directed,
there is a λ ∈ D such that λij ≤ λ for all i, j = 1, . . . , n. Let α = max{αij |
1 ≤ i, j ≤ n} > 0. Thus (αe1λ, αe

1
λ)+1 ± sa1(eijµ ) ∈ M2(V )+ ⊂ V+ for all

i, j = 1, . . . , n. That is,
n∑

i,j=1

γij((αe1λ, αe
1
λ)+1 ± sa1(eijµ ))γ∗ij ∈M2n(V )+ ⊂ V+,

where γij = ei1 + en+j,2. This gives
n∑

i,j=1

(ei1 + en+j,2)[αe1λ + e21αe
1
λe12 ± (e11e

ij
µ e12 + e21e

ij∗
µ e11)](e1i + e2,n+j)

=
n∑

i,j=1

[ei1αe1λe1i ± ei1eijµ e1,n+j ± en+j,1e
ij∗
µ e1i + en+j,1αe

1
λe1,n+j ]

= nα

n∑
i=1

ei1e
1
λe1i + nα

n∑
j=1

en+j,1e
1
λe1,n+j

±
n∑

i,j=1

ei1e
ij
µ e1,n+j ±

n∑
i,j=1

en+j,1e
ij∗
µ e1i.

Therefore
(nαenλ, nαe

n
λ)+n ± san(eµ) ∈ V+.

Since eµ ∈ V+, eµ ≤ nαenλ.

Definition 2.6. Let v ∈ V. Define

‖v‖a = inf{α > 0 | (αeNλ , αeNλ )+N ± saN (v) ∈ V+

for a suitable N ∈ N and λ ∈ D}.

In what follows, we shall show that ‖ · ‖a is an F-Riesz norm on V.

Lemma 2.7. Let v ∈ V +. Let α ∈ F be such that 1Nα1N = α. Then
α∗vNα ≤ ‖α‖2vN .

Proof. It is easy to note that vNα = αvN , α∗vN = vNα∗, α∗α ≤ ‖α‖2IN .
Let β = (‖α‖2IN − α∗α)1/2. Then 1Nβ1N = β so that βvN = vNβ.
Since vN ∈ V+, we have β∗vNβ ∈ V+. In other words, β2vN ∈ V+. Thus
(‖α‖2IN − α∗α)vN ∈ V+. Therefore, α∗αvN = α∗vNα ≤ ‖α‖2vN .
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Lemma 2.8. If (u1, u2)+N ± saN (v) ∈ V+, then, for any k > 0,

(ku1, k
−1u2)+N ± saN (v) ∈ V+.

Proof. We have(√
k In,

1√
k
In

)+

N

((u1, u2)+N ± saN (v))
(√

k In,
1√
k
In

)+

N

= (ku1, k
−1u2)+N ± saN (v) ∈ V+.

Lemma 2.9. ‖ · ‖a is an F-bimodule seminorm.

Proof. Let v ∈ V, α, β ∈ F , α 6= 0, β 6= 0. Given ε > 0, there exist k > 0,
λ ∈ D and N ∈ N such that (keNλ , ke

N
λ )+N ± saN (v) ∈ V+ and k < ‖v‖a + ε.

Without loss of generality, we may assume 1Nα1N = α and 1Nβ1N = β.
Thus as in Lemma 2.10 of [8],

(αkeNλ α
∗, β∗keNλ β)± saN (αvβ) ∈ V+.

By Lemma 2.7, αkeNλ α
∗ ≤ k‖α‖2eNλ and β∗keNλ β ≤ k‖β‖2eNλ . Thus

(k‖α‖2eNλ , k‖β‖2eNλ )+N ± saN (αvβ) ∈ V+. From Lemma 2.8, using ‖β‖/‖α‖,
we obtain (k‖α‖ ‖β‖eNλ , k‖α‖ ‖β‖eNλ )+N ± saN (αvβ) ∈ V+. By definition
‖αvβ‖a ≤ k‖α‖ ‖β‖ < ‖α‖ ‖β‖(‖v‖a + ε). Since ε > 0 is arbitrary ‖αvβ‖a ≤
‖α‖ ‖v‖a‖β‖. Hence ‖ · ‖a is an F-bimodule seminorm.

Lemma 2.10. ‖ · ‖a is an F-Riesz seminorm.

Proof. Let v ∈ V. Let u1, u2 ∈ V+ be such that (u1, u2)+N ± saN (v) ∈ V+

for a suitable N ∈ N. Put k = max(‖u1‖a, ‖u2‖a). Let ε > 0. Then by
definition there exists λ ∈ D such that u1 ≤ (k+ ε)eNλ , u2 ≤ (k+ ε)eNλ , and
((k + ε)eNλ , (k + ε)eNλ )+N ± saN (v) ∈ V+. That is, ‖v‖a ≤ k + ε. Since ε > 0
is arbitrary, ‖v‖a ≤ max(‖u1‖a, ‖u2‖a). Hence

‖v‖a ≤ inf{max(‖u1‖a, ‖u2‖a) | (u1, u2)+N±saN (v) ∈ V+ for some u1, u2 ∈ V+

and a suitable N ∈ N}.
For any α > ‖v‖a, by definition there exist λ ∈ D and N ∈ N such that
(αeNλ , αe

N
λ )+N ± saN (v) ∈ V+. Since ‖eNλ ‖a ≤ 1, we conclude that ‖ · ‖a is an

F-Riesz seminorm.

Definition 2.11. The F-Riesz seminorm given by Definition 2.6 is
called an F-approximate order unit seminorm.

We recall the following notions from [8].

Definition 2.12. Let A ⊂ V+. Then A is called positively bounded if
v ∈ Vsa and v + knan ∈ V+ for all n ∈ N implies v ∈ V+, where {an} is a
sequence in A and {kn} is a sequence in (0,∞) with inf kn = 0.

Definition 2.13. Let A ⊂ V+. Then A is called almost positively
bounded if (knun1 , knu

n
2 )+Nn

± saNn(v) ∈ V+ for all n ∈ N implies v = 0,
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where {un1}, {un2} are sequences in A, {kn} is a sequence in (0,∞) with
inf kn = 0, and {Nn} is a sequence in N.

Observation. Let n ∈ N. Let u1, u2, v ∈Mn(V ) with u1, u2 ∈Mn(V )+

and (u1, u2)+n ± san(v) ∈ V+. By a technique used in Lemma 2.10 of [8], for
any 1 ≤ i, j ≤ n, we have

(e1iu1ei1, e1ju2ej1)+1 ± sa1(e1ivej1) ∈ V+.

Lemma 2.14. Assume that {e1λ}λ∈D is almost positively bounded. Then
‖ · ‖a is a norm on V.

Proof. Let ‖v‖a =0 for some v∈V such that 1Nv1N = v. For every n ∈ N,
there exists λn ∈ D such that

(
1
ne

N
λn
, 1
ne

N
λn

)+
N
± saN (v) ∈ V+. Then by the

above observation, for any 1 ≤ i, j ≤ N ,
(

1
ne

1
λn
, 1
ne

1
λn

)+
1
± sa1(e1ivej1) ∈ V+.

That is, e1ivej1 = 0 for any 1 ≤ i, j ≤ N . Hence v = 0.

Lemma 2.15. Let V+ be proper. If {e1λ}λ∈D is positively bounded , then
it is almost positively bounded.

Proof. Let v ∈ V and let {λn}, {µn} be sequences in D, {kn} be a
sequence of positive numbers with inf kn = 0 and {Nn} be a sequence in N
such that

(kneNn
λn
, kne

Nn
µn

)+Nn
± saNn(v) ∈ V+

for all n ∈ N. Let M ∈ N be such that 1Mv1M = v. Then

(kneMλn
, kne

M
λn

)+Nn
± saM (v) ∈ V+.

Again for each n ∈ N, we can choose δn ∈ D such that δn ≥ λn, µn. Let

zn = (kneMδn , kne
M
δn)+M ± saM (v) ∈ V+.

We claim that v = 0. Fix j, k such that 1 ≤ j, k ≤ M . Then by the Obser-
vation, we have

zjkn = (kne1δn , kne
1
δn)+1 ± sa1(e1jvek1) ∈ V+

for all n ∈ N. Now
(I1 + J1)zjkn (I1 + J1)∗ = kne

1
δn + kne

1
δn ± (e1jvek1 + e1kv

∗ej1)

= 2(kne1δn ±<(e1jvek1))

and
(I1 + iJ1)zjkn (I1 + iJ1)∗ = kne

1
δn + kne

1
δn ± i(e1jvek1 − e1kv

∗ej1)

= 2(kne1δn ± i=(e1jvek1)).

Since {e1λ}λ∈D is positively bounded, we have ±<(e1jvek1) ∈ V+ and
±=(e1jvek1) ∈ V+. Since V+ is proper, <(e1jvek1) = 0 and =(e1jvek1) = 0
for all 1 ≤ j, k ≤ M . That is, v = 0. Hence {e1λ}λ∈D is almost positively
bounded.
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Summarizing the above results, we obtain the following

Theorem 2.16. Let (V,V+) be a non-degenerate ordered F-bimodule
such that V+ is proper. Let {eλ}λ∈D be an approximate order unit for V
such that {enλ}λ∈D is positively bounded for all n ∈ N. Then ‖ · ‖a is an
F-Riesz norm on V such that V+ is ‖ · ‖a-closed.

Definition 2.17. A non-degenerate ordered F-bimodule (V,V+) with
an F-approximate order unit {eλ}λ∈D is called an F-approximate order unit
bimodule if V+ is proper and {enλ}λ∈D is positively bounded for each n ∈ N.
It will be denoted by (V, {eλ}λ∈D).

Definition 2.18. Let (V, {Mn(V )+}) be a matrix ordered space satis-
fying the following conditions:

1. {eλ}λ∈D is an approximate order unit for V .
2. V + is proper.
3. {enλ}λ∈D is positively bounded in Mn(V )+ for all n ∈ N.

Then (V, {eλ}λ∈D) is called an approximate order unit space [6].

Now we can summarize the results of the section by giving the following
characterization of the direct limit of approximate matrix order unit spaces.

Theorem 2.19. Let (V, {eλ}λ∈D) be an approximate order unit space.
Let (V,V+) be the matricial inductive limit of V . Then (V, {enλ}λ∈D,n∈N) is
an F-approximate order unit bimodule. Conversely , let (V, {eλ}λ∈D) be an
F-approximate order unit bimodule. Let V = e11Ve11, Mn(V )+ = 1nV+1n
and e1λ = e11eλe11 for all λ ∈ D. Then (V,Mn(V )+) is a matrix ordered
space such that (V, {e1λ}λ∈D) is an approximate order unit space.

3. Direct limit of matrix order unit spaces

Definition 3.1. Let (V,V+) be a non-degenerate, ordered F-bimodule.
Then e ∈ V+ is called an F-order unit for V if given a v ∈ V, we can find
α > 0 and N ∈ N such that (αe, αe)+N ± saN (v) ∈ V+.

We prove that in a non-degenerate ordered F-bimodule V, an F-order
unit cannot exist. Indeed, suppose V has an F-order unit, say e. Then there
exists an n ∈ N such that 1ne1n = e. Let v ∈ V, v 6= 0. Then for some
i and j, e1ivej1 6= 0. Put w = en+1,ivej,n+1. Then w 6= 0 and for any
α > 0, (αe, αe)+n+1 ± san+1(w) /∈ V+ provided V+ is proper. If possible, let
(αe, αe)+n+1 ± san+1(w) ∈ V+. This means

(e1,n+1, e1,n+1)+∗n+1[(αe, αe)+n+1 ± san+1(w))](e1,n+1, e1,n+1)+n+1 ∈ V
+

or
((0, 0)+1 ± sa1(e1,n+1we1,n+1) ∈ V+.
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That is, sa1(e1ivej1) ∈ V+, which is a contradiction. However, in a matrix
ordered space an order unit can exist.

Theorem 3.2. Let (V, e) be a matrix order unit space (see [1]). Let
(V,V+) be the matricial inductive limit of V . Then (V, {en}n∈N) is an F-
approximate order unit bimodule.
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