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DIRECT LIMIT OF MATRIX ORDER UNIT SPACES

BY

J. V. RAMANI (Agra), ANIL K. KARN (New Delhi) and SUNIL YADAV (Agra)

Abstract. The notion of F-approximate order unit norm for ordered F-bimodules
is introduced and characterized in terms of order-theoretic and geometric concepts. Using
this notion, we characterize the inductive limit of matrix order unit spaces.

1. Introduction. A study of normed F-bimodules as the direct limit
of matrix normed spaces was suggested by B. E. Johnson, as an appropri-
ate model to study the matricial theory of operator spaces. This idea was
appreciated and justified by Effros and Ruan in [2]. The present authors
extended this idea to the order-theoretic context. In [7, 8] they studied the
direct limit of matrix ordered spaces and that of matricially Riesz normed
spaces. Continuing this process, in this paper we discuss the direct limit
of approximate matrix order unit spaces, studied by Karn and Vasudevan
[3, 4]. We also consider the direct limit of matrix order unit spaces (studied
by Choi and Effros [1]).

We recall the following notions discussed in [7, 8] (see also [2]).

Matricial notions. Let V' be a complex vector space. Let M, (V') denote
the set of all n X n matrices with entries from V. For V = C, we denote
M, (C) by M, For o = [ovj] € M,, and v = [v;;] € M, (V') we define

n n
av = [ E aijvjk}, v = |: E Uijajk:| .
J=1 Jj=1

Then M, (V) is an M,-bimodule for all n € N. In particular M, (V) is a
complex vector space for all n € N. For v € M, (V), w € M,,(V), we define

0

v
v@w:[
0 w

| € Mty

Next, we consider the family {M,}. For each n,m € N define o, p4m :
M, — Myim by onpnim(e) = o @ 0. Then oy, p4m is a vector space
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isomorphism with

O'n,n—i-m(aﬂ) = Un,n—&-m(a)o'n,n-l—m(ﬂ)-
Thus we can identify M,, with a subalgebra of M,,4,, for every m € N. More
generally, we may identify M,, with a subset of the set F of co X oo complex
matrices having all but a finite number of entries zero. In this sense, F may
be considered as the direct or inductive limit of the family {M,}. In other
words,

s~ (.

Let e;; denote the oo x oo matrix with 1 at the (4, j)th entry and 0 elsewhere.
Then the collection {e;;} is called the set of matriz units in F. We write
1,, for Z?:l eji. For 1,7, k,l € N, we have e;jer; = d;e;. Note that for any
a € F, there exist complex numbers «;; such that

o= E a;je;;  (a finite sum).
2%

Thus F is an algebra.
For a = Zi,j asje;; € F, we define o = ZiJ ajiei; € F. Then a — o
is an involution. In other words, F is a *-algebra.

DEFINITION 1.1. Let V be a complex vector space. Consider the fam-
ily {M,(V)}. For each n,m € N, define T}, sy, : Mp(V) — Mpim (V) by
Tomam(v) = v @ Opyy 0y, € My (V). Then T}, i1 is an injective homomor-
phism. Let V be the inductive limit of the directed family {M,,(V'), T, ntm}-
Then V is an F-bimodule. We shall call V the matricial inductive limit or
direct limit of V.

DEFINITION 1.2. An F-bimodule V is said to be non-degenerate if for
every v € V there exists an n € N such that 1,,v1,, = v.

The matricial inductive limit of a complex vector space may be charac-
terized in the following sense:

THEOREM 1.3 ([2]). The matricial inductive limit of a complex vec-
tor space is a non-degenerate F-bimodule. Conversely, let W be a non-
degenerate F-bimodule. Put W = e;1Wei1. Then W is a complex vector
space and W is its matricial inductive limit. Moreover,

(a) My,(W)=1,WV1, =W @ M,.
b)) W= M,( W)W R F.

Now we recall the relevant norm structure.

DEFINITION 1.4. Let V' be a complex vector space. Recall that M, (V)
is an M,,-bimodule for all n € N. A matriz norm on V is a sequence {|| - ||}
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such that |||, is a norm on M, (V) for all n € N. We say that (V,{]|-||»}) is

a matriz normed space if ||[v @ O |lntm = ||[v]ln and [[avSB|n < |la] ||v]l. 5]
for all v € M,(V), o, 8 € My, and n,m € N (see [9]).

DEFINITION 1.5. Let V be a non-degenerate F-bimodule. Let || - || be a
norm on V. Then we say that || - || is an F-bimodule norm on V if |avf| <

||| [Jo]| | 8] for any o, 3 € F, v € V. In this case we say that V is a non-
degenerate normed F-bimodule.

THEOREM 1.6. Let (V,{||- ||»}) be a matriz normed space. Let V be the
matricial inductive limit of V. For each v € V, we define ||v|| as follows:
let n € N be such that 1,01, = v. Write ||v|| = ||v||n. This definition is
independent of the choice of n and introduces an F-bimodule norm on V
such that (V, || - ||) is a non-degenerate normed F-bimodule.

Conversely, let (W, || - ||) be a non-degenerate normed F-bimodule and
let W =1,W11 and || - [|ln = || - [l|ag,(w) for all m € N. Then (W, {|| - ||ln}) is

a matriz normed space whose matricial inductive limit is (W, || - ||).
Next, we come to the order structure.

DEFINITION 1.7. A matriz ordered space is a x-vector space V together
with a cone M, (V)t in M,(V)s for all n € N and with the following
property: if v € M, (V)" and v € M,,, then v*vy € M, (V)" for any
n,m € N. Here M,,(V)s, stands for the self-adjoint part of M, (V).

DEFINITION 1.8. Let W be an F-bimodule. Then a map * : W — W is
called an involution on W if for all v,w € W and o € F,

(1) ()" =w,

(2) (v+w)" =v"+w,

(3) (av)* =v*a*, (va)* = a*v*.
In this case W is called a x-F-bimodule. We set We, = {v € W | v = v*}.

DEFINITION 1.9. Let V be a *-F-bimodule. Let VT be a bimodule cone
in Vs,, that is,

1. U1,UQ€V+:>U1+U2 e V.
2.veVt, ae F = a*vaec V.

Then (V, V") will be called an ordered F-bimodule.

THEOREM 1.10. Let (V,{M,(V)*}) be a matriz ordered space. Let V be
the matricial inductive limit of V. Then (V, V1) is a non-degenerate ordered
F-bimodule, where VT = J;2 | M, (V). Conversely, let (W, W) be a non-
degenerate ordered F-bimodule. Put W = 1;W1y and M,(W)* = 1, W1,
for all n € N. Then (W,{M,,(W)*}) is a matriz ordered space with WF =
By Ma ()"
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In the rest of the paper we will be dealing with non-degenerate ordered
F-bimodules. We introduce some more notations. We write .J,, = Z;;l €inti
for any n € N. Note that ||I,|| = ||/n|| =1 and J,I, =0, InJp = Jp, JnJn =0,
Jn i = I,. Let (V,VT) be a non-degenerate ordered F-bimodule. Let
ui,us € VT, and find an n € N such that 1,u11, = u; and 1,u2l, = us. We
denote uy + JusJ, by (u1,us2);. For any v € V and n € N with 1,v1,, = v
we denote L,vJ, + Jrv*I, by sa,(v).

NOTE. In the notation (u1,us);} + sa,(v) € VT, we say that n € N is
suttable provided 1,u11, = ui, 1,ul, = ug and 1,v1, = v. This termino-
logy will be used throughout the paper without any further explanation.

DEFINITION 1.11. Let (V, V") be a positively generated non-degenerate
ordered F-bimodule. Let || - || be an F-bimodule norm on V. We say || - || is
an F-Riesz norm on V if for any v € V,

||v]] = inf{max(||u|], [|us2]|) | (ul,U,Q)j\_[ + san(v) € VT for some ug,uz € VT
and a suitable N € N}.

DEFINITION 1.12. Let (V, V") be an ordered F-bimodule. We say that
Vs proper if VN (=V1) = {0}, and generating if given v € V there exist
Vo, V1, V2, v3 € VT such that v = Zi:o i*vy,, where i2 = —1.

DEFINITION 1.13. Let (V, V™) be a non-degenerate ordered F-bimodule
such that V1 is proper and generating. Assume that || - || is an F-Riesz norm
on V such that VT is norm closed. Then the triple (V, V|| -||) is called an
F-Riesz normed bimodule.

The following characterization of non-degenerate F-Riesz normed bi-
modules can be obtained from [§].

THEOREM 1.14. Let (V.{M,(V)*},{ll - ln}) be a matricially Riesz
normed space. Let (V, V1) be the matricial inductive limit of the matriz or-
dered space (V,{M,,(V)"}) and let (V,|| - ||) be the matricial inductive limit
of matriz normed space (V,{|| - ||n}). Then (V,V*,||-|) is a non-degenerate
F-Riesz normed bimodule. Conversely, let (W, W, ||-||) be a non-degenerate
F-Riesz normed bimodule. Let W = 1,11 and M,(W)* = 1, W1, and
I lln = I~ Wagaqwy for all n € N. Then (W, {Mu(W)*"}{|| - [In}) is a

matricially Riesz normed space whose inductive limit is (W, W+ || - |).

2. Direct limit of approximate matrix order unit spaces. In this
section, we discuss the notion of an approximate order unit and the conse-
quent F-norm in the context of ordered F-bimodules.

DEFINITION 2.1. Let (V,{M,(V)"}) be a matrix ordered space. Then
an increasing net {e)}aep in V7T is called an approzimate order unit for V
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if for any v € V, there are o« > 0 and A € D such that

[ae,\ v

v aey

] € My(V)™T.

When ey = e for all A, we say that e is an order unit for V.

DEFINITION 2.2. Let (V, V) be a non-degenerate, ordered F-bimodule.
An increasing net {e)}rep in V1 is called an approzimate order unit for
V if given a v € V, we can find A € D, a > 0 and N € N such that
(aeyr, aer)} san(v) € VT.

REMARK. If V has an approximate order unit, then V7 is generating.

Construction. Let (V, V1) be a non-degenerate ordered F-bimodule. Put
V' = e11Ve11. Then by Theorem 1.10, (V,{M,(V)"}) is a matrix ordered
space and (V, V1) is its matricial inductive limit. Let {e)}rep be an ap-
proximate order unit for V. For every A € D, put e}\ = e11exe1r- Then the
net {e}} ep is an approximate order unit for V. Define, for each n € N,

n
1 1 1
e?:ek@...@eA:@eA.
=1

Then €Y} has the following representation.

LEMMA 2.3.

n
ey = Z eileieli.
i=1
Proof. For p,q € N, let Jpq = D7 | €;pti, so that Jo, = I, Jpp = Jp,
where J, = >0 | €; pri. Let ug, ..., up € V with 1,,u;lp, = wi, i =1,... k.
Define
k—1
JE— . * . .
UL B Dug = Z(JZQ:O ns,niﬂ) Uz+1(=]z;:0 ns,niﬂ)a
i=0
where ng = 0. This gives

n n—1 n
1 1 Z 1
6? = @6)\ = Z Ji’fle)\,]i,l = ei,le)\eu.
i=1 1=0 i=1
The following two results will be needed.

LEMMA 2.4. If{ex}aep is an approzimate order unit for V, then {eX}xep
is an approximate order unit for M, (V') for all n € N.

Proof. Follows from [4, Lemma 2.6].

LEMMA 2.5. Let (V, V) be a non-degenerate ordered F-bimodule and
{ex}rep be an approximate order unit for V. If v € V, then there exist
neN, A€ D and a > 0 such that (e}, ae})}t +sa,(v) € V.
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Proof. 1t suffices to show that for every p € D, there exist n € N, A € D
and 3 > O such that e, < Be}. Let p € D. Find n € Nsuch that 1neu1n = e,.
Then e, € M, (V). Let eﬁf =eeuejr foralli,j=1,...,n. Then ey € V for
all 7,j = 1,...,n. Thus for each pair (,7), there are )\” eD and a;; >0
such that (awe}\ ,a”e)\ )T Esai(e) € Ma(V)+ C VF. Since D is directed,
there is a A € D such that Xij < Aforalli,j=1,...,n Let @ = max{ay; |
1<i4,j< n} > 0. Thus (ae},ael)] + sap(efl) € MQ(V)+ C VT for all
1,7 =1,...,n. That is,

Z vij (e, ae})] £ sai (el ))%J € My, (V)" c VT,
,j=1
where 7;; = €;1 + enq4j2. This gives
n
Z (en + €n+j,2)[05€}\ + egraeiern + (61163612 + 62163*611)](611' +e2n45)

ij=1
n

1 ij gk 1
= E [eilae,\eli + eileyjel,nJrj + €n+j,16’ﬁf e1; + €n+j,10<€>\€1,n+j]
i,j=1

1 1
= noa E ej1exel; + na g €ntj1€XE1 ntj

=1 Jj=1
n n
+ eileu]elmﬂ + 6n+j71€uj €1;-
i,7=1 i,7=1

Therefore
(nael, nael)d +sa,(e,) € V.

Since e, € VT, e, < nael.
DEFINITION 2.6. Let v € V. Define
[v]|* = inf{a > 0] (ael,aed )} £san(v) € VT
for a suitable N € N and A\ € D}.

In what follows, we shall show that || - [|* is an F-Riesz norm on V.

LEMMA 2.7. Let v € V. Let a € F be such that 1yaly = «. Then
a*oNa < |la?o™.

Proof. Tt is easy to note that vV a = av®, a*vV = vNa*, a*a < ||af|*Iy.

Let 3 = (|a]?Iy — a*@)Y/2. Then 1xB1y = f so that fv¥ = oVg.
Since vV € V*t, we have f*vV 3 € VT. In other words, 520" € V*. Thus
(Jlall? Iy — a*a)v™Y € VT. Therefore, a*avy = a*vNa < ||af/?v?.
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LEMMA 2.8. If (u1,u2)} £say(v) € VT, then, for any k > 0,
(ku1, k™ tug)} £san(v) € V1.
Proof. We have

<\/E1n,

+

5,

J’_

1
((uq, ug)} + san(v)) (\/%In, ﬁ In>N

= (ku1, k™ tug)f £san(v) € V.
LEMMA 2.9. |- [|* is an F-bimodule seminorm.

Proof. Letv eV, a,6€ F,a#0,8#0.Given € > 0, there exist k > 0,
A€ D and N € N such that (kel, kel )L £san(v) € VT and k < [jv]|* +e.
Without loss of generality, we may assume lyaly = « and 1061y = (.
Thus as in Lemma 2.10 of [8§],

(aked o, B*kel B) + san (avpB) € VT.
By Lemma 2.7, akela* < k|a|?e) and p*kelB < k[B|%e}. Thus
(K|l |2e ,/~c||ﬂ||2 NI :i:saN(aUﬁ) € V*. From Lemma 2.8, using ||ﬁ|]/||a||
we obtain (k| «| HﬁHeﬁ\V,k:HaH 18]leN) & £ san(avpB) € V+. By definition

lavB|* < Kllal[ 18] <[l |18]|(|v]|* +¢). Since & > 0 is arbitrary [javf]|[* <
llee]] [lolI*]|B]]- Hence || - ||* is an F-bimodule seminorm.

LEMMA 2.10. || - ||* is an F-Riesz seminorm.

Proof. Let v € V. Let uj,up € VT be such that (u1,uz)} £say(v) € VT
for a suitable N € N. Put k& = max(|ju1]|?, ||uz|?*). Let ¢ > 0. Then by
definition there exists A € D such that u; < (k+e)ed, us < (k+¢)el, and
((k+e)el, (k+e)eN )k £san(v) € VF. That is, [|v]|* < k +e. Since € > 0
is arbitrary, ||v||* < max(||u1]/?,||uz||*). Hence

|v||* < inf{max(||u1||?, [Juz]|?) | (u1, uz)ﬁisa]\/(v) e V1 for some uy, uy € V'
and a suitable N € N}.

For any a > ||v||*, by definition there exist A € D and N € N such that
(ael, ael ) £san(v) € V. Since |[el]|* < 1, we conclude that || - ||* is an
F-Riesz seminorm.

DEFINITION 2.11. The F-Riesz seminorm given by Definition 2.6 is
called an F-approximate order unit seminorm.

We recall the following notions from [8].

DEFINITION 2.12. Let A C V. Then A is called positively bounded if
v € Vsa and v + kpa, € VT for all n € N implies v € VT, where {a,} is a
sequence in A and {k,} is a sequence in (0, c0) with inf k,, = 0.

DEFINITION 2.13. Let A C V. Then A is called almost positively
bounded if (knu?,knug)j\}n +say, (v) € VT for all n € N implies v = 0,
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where {uf}, {uf} are sequences in A, {k,} is a sequence in (0,00) with
inf k,, = 0, and {N, } is a sequence in N.

OBSERVATION. Let n € N. Let u1,ug,v € M, (V) with uy,us € M, (V)"
and (u1,us2); +sa,(v) € V. By a technique used in Lemma 2.10 of [8], for
any 1 <1i,5 < n, we have

(eliuleil, 61jU2€j1)1’— + sal(eliveﬂ) c V+.

LEMMA 2.14. Assume that {€}}rep is almost positively bounded. Then
Il || is a norm on V.

Proof. Let ||v||*=0 for some v €V such that 1yvly = v. For every n € N,
there exists A\, € D such that (2 ey, ,}Leﬂv) +say(v) € VT. Then by the
above observation, for any 1 <i,5 < N, (le}\ , 7116>\ ) +say(evejr) € V.
That is, ejjve;1 = 0 for any 1 <4,j < N. Hence v = 0

LEMMA 2.15. Let VT be proper. If {e}}rep is positively bounded, then
it is almost positively bounded.

Proof. Let v € V and let {\,}, {un} be sequences in D, {k,} be a
sequence of positive numbers with inf k, = 0 and {N,,} be a sequence in N
such that

(kznej)\\i?, k‘neﬁ%)j{,ﬂ +say, (v) € VT
for all n € N. Let M € N be such that 1;v1,; = v. Then
(knedl, kne%)ﬁn +say(v) € V.
Again for each n € N, we can choose ¢, € D such that &, > A\, . Let
zn = (kn e ,knes., Myt +say(v) € VT,

We claim that v = 0. Fix j, k such that 1 < j,k < M. Then by the Obser-
vation, we have

z]k

(kn, 65 ,k}n€5 ) + saq (e1jverr) € yt
for all n € N. Now
(I + Jl)zflk(fl +J1)" = kneén + kneén + (eljvekl + €1kv*€j1)
= Q(kneén + R(eqjver1))
and
(Il + ZJl) (Il + ZJl) = k:neén + k‘ne};n + i(eljvekl — elkv*eﬂ)
= 2(knes £ 1iS(erjver)).
Since {el}rep is positively bounded, we have £R(ejjver1) € V' and
+3(e1ver1) € V. Since VT is proper, R(ejjver;) = 0 and S(eqjver;) =0
for all 1 < j,k < M. That is, v = 0. Hence {e}}rep is almost positively
bounded.
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Summarizing the above results, we obtain the following

THEOREM 2.16. Let (V,V1) be a non-degenerate ordered F-bimodule
such that VT is proper. Let {ex}xep be an approximate order unit for V
such that {e\}xep is positively bounded for all n € N. Then || - ||* is an
F-Riesz norm on V such that V7T is || - ||*-closed.

DEFINITION 2.17. A non-degenerate ordered F-bimodule (V, V1) with
an F-approximate order unit {e)}aep is called an F-approzimate order unit

bimodule if VT is proper and {eX}rep is positively bounded for each n € N.
It will be denoted by (V,{ex}ren)-

DEFINITION 2.18. Let (V,{M,(V)"}) be a matrix ordered space satis-
fying the following conditions:

1. {ex}rep is an approximate order unit for V.
2. VTt is proper.
3. {e¥}rep is positively bounded in M, (V)* for all n € N.

Then (V,{ex}rep) is called an approzimate order unit space [6].

Now we can summarize the results of the section by giving the following
characterization of the direct limit of approximate matrix order unit spaces.

THEOREM 2.19. Let (V,{ex}rep) be an approzimate order unit space.
Let (V,V7T) be the matricial inductive limit of V. Then (V,{e}} xep nen) is
an F-approzimate order unit bimodule. Conversely, let (V,{ex}rep) be an
F-approrimate order unit bimodule. Let V = e;1Ve1r, M,(V)T = 1,V1,
and e&\ = eprexe1r for all X € D. Then (V,M,(V)") is a matriz ordered
space such that (V,{ei}rep) is an approzimate order unit space.

3. Direct limit of matrix order unit spaces

DEFINITION 3.1. Let (V, V™) be a non-degenerate, ordered F-bimodule.
Then e € V7 is called an F-order unit for V if given a v € V, we can find
a >0 and N € N such that (ae, ae)f £san(v) € V.

We prove that in a non-degenerate ordered F-bimodule V, an F-order
unit cannot exist. Indeed, suppose V has an F-order unit, say e. Then there
exists an n € N such that 1,el, = e. Let v € V,v # 0. Then for some
i and j, ejjvej; # 0. Put w = epq1,v€jn41. Then w # 0 and for any
a >0, (ae,ae)l ; +sapi1(w) ¢ VT provided V' is proper. If possible, let

(ae,ae)} | £ sapi1(w) € V. This means

(e1,n+15 61,n+1):i1[(0467 046)2@1 + sany1(w))](e1,nt1, 61,n+1):{+1 eVt

or
((0, O)T +saj (€1 pp1werny1) € VA
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That is, saj(e1;vej1) € VT, which is a contradiction. However, in a matrix
ordered space an order unit can exist.

THEOREM 3.2. Let (V,e) be a matriz order unit space (see [1]). Let
(V, V™) be the matricial inductive limit of V. Then (V,{e"}nen) is an F-
approzimate order unit bimodule.
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