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BOCHNER’S FORMULA FOR HARMONIC MAPS
FROM FINSLER MANIFOLDS

BY

JINTANG LI (Xiamen)

Abstract. Let ¢ : (M, F) — (N, h) be a harmonic map from a Finsler manifold to
any Riemannian manifold. We establish Bochner’s formula for the energy density of ¢
and maximum principle on Finsler manifolds, from which we deduce some properties of
harmonic maps ¢.

1. Introduction. Let (M, F') be a Finsler manifold, SM the projective
sphere bundle of M, with canonical projection map « : SM — M given
by (z,[y]) — x, and let S, M := 7~1(z) be the projective sphere at z. We
denote the pull-backs of TM and T*M by #*T'M and 7*T* M, respectively.
Let ¢ : (M,F) — (N,h) be a smooth map from a Finsler manifold to a
Riemannian manifold. The energy density of ¢ is the function e(¢) : SM
— R defined by

c(0)(a. 1) = 5 3 h(oci, e,

where {e;} is an orthonormal basis with respect to ¢ (the fundamental tensor
of F) at (x,[y]). The tension field of ¢ is (see [3])

(1.1) 7(¢) := —(d¢p,n) + Tr Dd¢ € I'((¢p o w)*TN),

where 7 (resp. Dd¢) denotes the Cartan form (resp. the second fundamental
form) of ¢ and the dot “-” denotes the covariant derivative along the Hilbert
form.

PROPOSITION 1 ([4]). ¢ is a harmonic map if and only if T7(¢) = 0.

In this paper, we shall establish Bochner’s formula for e(¢) and the max-
imum principle on Finsler manifolds, from which we deduce some properties
of harmonic maps ¢.
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2. Bochner’s formula. Let
1<d,5,...<m, 1<puv,...<m-1, 1<a,8,...<n,

where m = dim M and n = dim N.

Take a g-orthonormal frame field {e;} for 7*T'M and let {w;} be a local
coframe. Let {w;;} and {%w;;} be the Chern connection 1-form and the
Berwald connection 1-form, respectively. We have (see [1])

(2.1) bwij = wj; + Aijuw,uv
(2.2) "RMq = R+ Aijus — Aijin + AipeApjt — A Apji,
where A = A, wiw,w, is the Cartan tensor of M and “|” denotes the

horizontal covariant differentials with respect to the Chern connection.

LEMMA 1 ([4]). For X =% xyw; € I'(7*T*M),
divX = 2+ Y 2Py
i LA

where div X denotes the divergence of X on SM with respect to the Rie-
mannian metric G on SM, and Py, = —Axu is the Landsberg curvature

of M.

Let ¢ : (M, F) — (N, h) be a smooth map. Set h =>__ 62 € I'(®@>*T*N)
and ¢*0, = ), aqiw;. The covariant differentials of an; with respect to the
Berwald connection and the Chern connection are defined by, respectively,

(2.3) Da; = dag; — Zaa] wij — Zaglgb Oap
= Z Qai,jWj + Z G uWrnps
(2.4) Da,; = dam Zaa]ww Zagﬂﬁ 0ap
= Z Q| W5 + Z A Wy
where “” denotes the horizontal covariant differentials with respect to the

Berwald connection.

LEMMA 2 ([4]). The second fundamental form of ¢ : (M, F) — (N,h)
satisfies aq;|j = Qqjli and aqiy =0 for all o, 1, j, p.
LEMMA 3. For X =3 xw; € I'(m*T*M), we have

ij = ifj + pbiju.
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Proof. The covariant differentials of x; with respect to the Berwald con-
nection and the Chern connection are defined by, respectively,

(2.5) dx; — x; bwij = Tj jWj + Ti;uWmp,
(2.6) dr; — Tjwij = ;Wi + Ti;pWmpy-
Using (2.1) and (2.5), we obtain
(2.7) Ti jWj + Tipuwmy = dx; — Tiwij + T Piuwa.
Combining (2.6) and (2.7) completes the proof.
From (2.3) and Lemma 2, we have
(2.8)  daqij Nwj+ aqijdw;
= —dagi Nwij — a0id wij + dag; A 9*0up + apid*dbags
= (—Qaj Wk — Gak ‘Wit + 30 0ap) A Pwij
— aa;(3 bRi\szwk Awp 4 PPyrpwr A iy + Pwik A bwkj)
+ (api gwi + gk "wik, — a4i0*0p,) A " 0up
+api¢" (53 Ka50 A s + 05y 1\ Oya)
= (—Qaj kWi — Gak bwjk + agjd*0ag) N wij
— Qqj (% bRi‘;fklwk A wp + bPijkuwk A Wiy + bwik A bwkj)
+ (api gwi + agr ‘wik, — a4i0*0p,) A ¢*0up
+ ag; ¢ (%a,ykaglKo%75wk Awy+ 03y A 0704).
Define the covariant derivative of aq;; by
(2.9) @i jkWk + GaijipWmpy = dGaij — ok, b e — Qovi e bwjk +agi ;0" 0ap-
From (2.8) and (2.9), we obtain
(2.10)  @qijpwj AWk — GaijipwWi A Wmp
= %agiawjagkl(%wwj N wp — %be\fklwk AWy — Qg iji;wwk A Wiy
Thus we have the following result:

LEMMA 4. The second fundamental form of ¢ : (M, F) — (N,h) satis-
fies

_ N bpM
{ Qaiyjk = Qaik,j = —ABi0yj sk g5 + Gat "Ry s,

_ b
Qai s = Gak Phiju-
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Define w := [De,e(¢)lwi = aqjaajiw;. Then w is a global section of
71" M. By Lemmas 1-4, we have
(2.11) divw = (amaai,j)u + aaiaaiyuPMu
= (Aaiaij),j = (De;dd, De,dd) + aaitai,j,
= <D6j d¢7 Dejd¢> + Aailag,i,j
= (De,do, Dejd¢>"’aaiaaj,j,i_aaiaﬁjaW%ng@"yé+a0‘ia0¢le§\;jji'
From 7(¢) = 0, we have a;); + @apPar, = 0 for all o, thus by (2.9) and
Lemma 3 we obtain
(212) aajJJ» =0.
Now (2.2), (2.11) and (2.12) yield
PROPOSITION 2 (Bochner’s formula). Let ¢ : (M,F) — (N,h) be a
harmonic map from a Finsler manifold to any Riemannian manifold. Then
div[De,e(¢)]w; = divw
= (De;dp, De,dd) — (R (dde;, dpe;)dge;, dpe;) + (dp(RicY (e)), de;),
where RicM (X) = Dk Rf\fijixk/(X,X> for X = x,e; € TM.
PROPOSITION 3 (Maximum principle). Let M be a compact Finsler man-
ifold and suppose f € C*°(SM) satisfies div((De, f)wi) > 0. Then f|p is
constant.

Proof. Set f = f — fuin, Where fuin = mingas f. Then

(2.13) | div((De, F)wi) = | div(2f fiw)
SM SM

= S {(foz)\z + 2]?f,uP/\)\u}

SM

= S {2f% + foz‘\i + 2f fuPoxu}
SM
= | {2/ +2f div((De, f)wi)}.
SM
By (213), since f € C%(SM) satisfies div((De, flur) > 0, we have flys =
const.

3. The properties

THEOREM 1. Let ¢ : (M, F) — (N, h) be a harmonic map from a com-

pact Finsler manifold to a Riemannian manifold. Suppose Ric™ > 0 and
Riem” < 0. Then

(a) ¢ is totally geodesic.
(b) If Ric™ is strictly positive definite at some point, then ¢ is constant.
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(c) If Riem < 0, then ¢ is either constant or of rank one, in which
case its image is a closed geodesic.

REMARK 1. When (M, F) is a Riemannian manifold, this theorem be-
comes the theorem of J. Eells and J. H. Sampson [3].

Proof. Integrating the formula of Proposition 2, we get

3.1) | (De,d¢,D,de)
SM
= | {(RN(dge;, de;)dde;, dpe;) — (dp(Ric™ (e;)), de;)}.
SM
The left-hand side of (3.1) is nonnegative and the right-hand side of (3.1) is
nonpositive, so that D.,d¢ = 0 for all 7 and ¢ is totally geodesic.

If Ric™ > 0 at a point = € M, then by (3.1) we get e(¢) = 0 at . On the
other hand, by the formula of Proposition 2, div(De,e(¢p)w;) = divw > 0,
and Proposition 3 shows that e(¢)|ys is constant, hence e(¢)|yr = 0 and ¢
is constant by Lemma 2.

If Riem” < 0, then (RN (doe;, doe;)doe;, dpe;) = 0 implies that the rank
of ¢ is zero or one. In the first case, ¢ is constant; and in the second case,
the fact that ¢ is totally geodesic implies that the image of ¢ is a closed
geodesic.

THEOREM 2. Let ¢ : (M, F) — (N,h) be a harmonic map from a com-

pact Finsler manifold to a Riemannian manifold. Suppose Ric™ > a > 0
and Riem™ < b (b > 0). If

max{the rank of ¢} <p (p > 2)

and

pa
e(¢) < m>

then ¢ is either constant or totally geodesic; in particular, when e(¢) < a/2b,
¢ is constant.

REMARK 2. When (M, F') is a Riemannian manifold, this theorem be-
comes the theorem of H. C. J. Sealey [5].

Proof. Fix a point € M and diagonalize (¢*h) at the point = so that
(doe;, dpe;) = Aidi;. Suppose the rank of ¢ is ¢. By the Schwarz inequality
and Proposition 2, we obtain

(3.2) divw= (De,d¢, De,dp) + R} (de;, dpe;)
— (|dgei|*|dge;|? — (de;, dpe;) (dpe;, dpe; ) Riem™(doe;, dpe;)
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> (De,do, D,ds) +2ae(6) — b4(e(9))* = > N2
s=1
> (De,do, De,dd) + 2(0) [a = 2(1’;1) be(d))] >0,
By Proposition 3 and (3.2), e(¢) is constant and
(3.3) (De,d¢, De,d¢) = 0,
(3.4) e(9) [a - 2(p_l)be(gb)] = 0.

If e(¢) < a/2b, then by (3.4),we get e(¢) = 0.
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