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MOVING AVERAGES

BY

S. V. BUTLER and J. M. ROSENBLATT (Urbana, IL)

Abstract. In ergodic theory, certain sequences of averages {Akf} may not converge
almost everywhere for all f ∈ L1(X), but a sufficiently rapidly growing subsequence
{Amkf} of these averages will be well behaved for all f . The order of growth of this sub-
sequence that is sufficient is often hyperexponential, but not necessarily so. For example,
if the averages are

Akf(x) =
1

2k

4k+2kX
j=4k+1

f(T jx),

then the subsequence Ak2f will not be pointwise good even on L∞, but the subsequence
A2kf will be pointwise good on L1. Understanding when the hyperexponential rate of
growth of the subsequence is required, and giving simple criteria for this, is the subject
that we want to address here. We give a fairly simple description of a wide class of averaging
operators for which this rate of growth can be seen to be necessary.

1. Introduction. Let (X,B, µ, T ) be a measure-preserving system and
f a µ-almost everywhere finite B-measurable function. We denote by 1B(x)
the characteristic function of B. We will use the notation nk ↗ ∞ for a
non-decreasing unbounded sequence {nk}.

Let {(nk, lk)}∞k=1 be a sequence of pairs of natural numbers. In a number
of articles, the a.e. convergence of averages

Akf(x) =
1
lk

nk+lk∑
j=nk+1

f(T jx)(1)

is considered for specific sequences {(nk, lk)}∞k=1. We need to describe the
background for these types of averages because we will be giving some results
that use them. Our results give examples of when convergence occurs and
when it does not based on the growth rate of various parameters.

In [1] it is shown that for nk = k and lk =
√
k there exists an f ∈ L∞ for

which a.e. convergence of Akf fails. From work in [3] one sees that if nk = 4k

and lk = 2k then convergence fails. On the other hand, it can be shown
that if nk = 22k and lk =

√
nk then a.e. convergence of Akf occurs for all
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f ∈ L1 (see [2]). The above-mentioned results also follow, respectively, from
Theorem 2.5 (with u(k) = log2 log2

√
k), Theorem 2.8 (with u(k) = log2 k),

and Theorem 2.2 in the present paper.
For a non-empty, finite set I of non-negative integers let |I| be the car-

dinality of I. We consider averaging operators

AIf(x) =
1
|I|
∑
i∈I

f(T ix).(2)

If I = {nk + 1, . . . , nk + lk} then the averages (1) and (2) coincide.
For two sets of integers A and B we denote by A−B the set of integers

j for which there is b ∈ B so that j+ b ∈ A; in other words, (j+B)∩A 6= ∅.
Given intervals [a, b], [c, d] we define the interval

[a, b]− [c, d] = [a− d, b− c].
Let {In} be a sequence of finite sets of non-negative integers. Let

Q(n) =
∣∣∣ n⋃
i=1

(In − Ii)
∣∣∣.

Notice that Q(n) ≤
∑n

i=1 |In − Ii|, and that equality occurs if and only if
all sets In − Ii are pairwise disjoint.

Definition 1.1. We say that the strong sweeping out property holds for
operators An if and only if for every ε > 0 there is a set B ∈ B with µ(B) < ε
such that

lim sup
n→∞

An1B(x) = 1 for a.e. x,

lim inf
n→∞

An1B(x) = 0 for a.e. x.

We will need the following theorem and remark. They are Theorem 2.5
and Remark 2.6 respectively in [4].

Theorem 1.2.

(a) Let {In} be a sequence of finite sets of non-negative integers. If

(3) C = sup
n

Q(n)
|In|

<∞

then for any measure-preserving system (X,B, µ, T ), f ∈ L1 and
λ > 0, we have

µ(sup
n
|AInf | > λ) ≤ C

λ
‖f‖L1(X).

(b) Let {In} be a sequence of finite intervals of non-negative integers.
Suppose

(4) lim
n→∞

Q(n)
|In|

=∞.
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Then in every non-atomic ergodic probability measure-preserving sys-
tem (X,B, µ, T ) the operators AIn have the strong sweeping out prop-
erty.

Remark 1.3. In general, assumption (4) cannot be replaced by the
weaker

sup
n

Q(n)
|In|

=∞.(5)

However, if the sequence {|In|} is increasing then property (5) suffices to
deduce the strong sweeping out property.

In Example 2.7 in [4] it is stated that if In = [n2, n2 + n) then the op-
erators AIn have the strong sweeping out property (this result also appears
in [2]). Considering subsequences of AIn , the example shows that the subse-
quence AInsf converges a.e. for f ∈ L1, where ns = [2(1+δ)s ] for a positive δ,
but ns = 2s

t
for a fixed positive integer t gives the subsequence AIns that

has the strong sweeping out property. All these statements are clear from
results in this paper. See Example 2.9 and Remark 2.3.

There is an alternative approach to Theorem 1.2 that is different (at least
formally) and which we will find useful here. Let Ω be an infinite collection
of lattice points with positive second coordinates. Define

Ωα = {(z, s) : |z − y| ≤ α(s− r) for some (y, r) ∈ Ω, (z, s) a lattice point}.
In other words, Ωα is the union of lattice points in cones with aperture α
and vertex in Ω. The cross section of Ωα at integer height λ > 0 is

Ωα(λ) = {k : (k, λ) ∈ Ωα}.
For an ergodic measure preserving point transformation T on (X,B, µ)

define the maximal function associated with the set Ω by

MΩf(x) = sup
(k,n)∈Ω

1
n

k+n∑
j=k+1

|f(T jx)|.

The next two theorems are from [2].

Theorem 1.4.

(a) Assume there exist constants B and α > 0 such that |Ωα(λ)| ≤ Bλ
for every integer λ > 0; then MΩ is weak type (1, 1) and strong type
(p, p) for 1 < p ≤ ∞.

(b) If MΩ is weak type (p, p) for some p > 0 then for every α > 0 there
exists Bα < ∞ such that for every integer λ > 0 we have |Ωα(λ)|
≤ Bαλ.

The linear growth condition for Ωα(·), i.e. the existence of Bα <∞ such
that |Ωα(λ)| ≤ Bαλ for every integer λ, is called the cone condition. It holds
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for a particular α > 0 if and only if it holds for all α > 0. So we may consider
the aperture α = 1. We say that Ω satisfies a linear growth condition if there
exists a constant B < ∞ such that |Ω(λ)| ≤ Bλ for every integer λ, where
Ω(λ) = Ω1(λ).

Theorem 1.5. Let Ω = {(nk, lk) : lk ↗∞}. If the linear growth condi-
tion on |Ωα(λ)| fails, then the operators

Akf =
1
lk

nk+lk∑
j=nk+1

f ◦ T j

have the strong sweeping out property.

In all of the results above, there is a common feature that certain se-
quences of averages may not converge almost everywhere in general, but
a sufficiently rapidly growing subsequence of these averages will be well
behaved. The order of growth of this subsequence is typically hyperexpo-
nential. This is the phenomenon that we want to address here. We describe
1) classes of averaging operators for which this rate of growth can be seen
to be necessary, and 2) other classes for which it is excessive despite all of
the examples.

2. The interval condition. In this section we consider intervals Ik =
[ms

k + 1,ms
k + mt

k], where mk is a non-decreasing sequence of integers and
s > t > 0. The associated averages in this case have the form

Akf =
1
mt
k

msk+m
t
k∑

j=msk+1

f ◦ T j .

They are the averages Akf in (1) with (nk, lk) = (ms
k,m

t
k). Notice that

|Ik| = mt
k,

Ik − Ij = [ms
k −ms

j −mt
j + 1,ms

k +mt
k −ms

j − 1],

and for 1 ≤ j ≤ k,

mt
k ≤ |Ik − Ij | = mt

k +mt
j − 1 ≤ 2mt

k.(6)

Remark 2.1. The intervals Ik − Ij+1 and Ik − Ij intersect if and only if

ms
j+1 −ms

j −mt
j ≤ mt

k − 2.

We say that the intervals Ik− Il, . . . , Ik− Ii, l > i, are linked if the intervals
Ik − Ij+1 and Ik − Ij intersect for j = i, . . . , l − 1. The resulting interval

[ms
k −ms

l −mt
l + 1,ms

k +mt
k −ms

i − 1]

has length
Ll,i = mt

k +ms
l +mt

l −ms
i − 1.
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In particular, if the intervals Ik − I1, . . . , Ik − Il are linked then we obtain
the interval

[ms
k −ms

l −mt
l + 1,ms

k +mt
k −ms

1 − 1]

with the length

Ll = mt
k +ms

l +mt
l −ms

1 − 1.(7)

Here is a convergence result under a hyperexponential condition on the
subsequence being chosen.

Theorem 2.2. Let s > t be integers. If mk = 22k then for every f ∈
L1(X) the sequence of moving averages

Akf =
1
mt
k

msk+m
t
k∑

j=msk+1

f ◦ T j

satisfies the weak (1, 1) maximal inequality

µ(sup
k
|Akf | > λ) ≤ C

λ
‖f‖L1(X).

Proof. The theorem will follow if we show that condition (3) of Theorem
1.2 is satisfied. Let n be a natural number such that s/t ≤ 2n. This is
equivalent to saying that ms

k−n ≤ mt
k, where k > n. Then for j = 1, . . . ,

k − n− 1,

ms
j+1 −ms

j −mt
j ≤ ms

j+1 − 2 ≤ ms
k−n − 2 ≤ mt

k − 2.

By Remark 2.1 the intervals Ik − Ik−n, Ik − Ik−n−1, . . . , Ik − I1 are linked,
and since ms

k−n ≤ mt
k, the resulting interval has the length

Lk−n = mt
k +ms

k−n +mt
k−n −ms

1 − 1 ≤ 3mt
k.

Now we estimate Q(k) using (6):

Q(k) ≤ |Ik − Ik|+ · · ·+ |Ik − Ik−n+1|+ Lk−n

≤ (n− 1)|Ik − Ik|+ Lk−n ≤ (2n+ 1)mt
k.

It is clear that condition (3) of Theorem 1.2 is satisfied.

Remark 2.3. It is easy to see that the previous theorem holds for mk =
[ab

p(k)
] where a, b > 1 and p(k) is a polynomial of degree ≥ 1. The remaining

results in this section are stated for mk = [22u(k)
], but they are also valid for

mk = [ab
u(k)

] where a, b > 1.

Lemma 2.4. Suppose that mk = [22u(k)
], where u(k) is non-decreasing ,

u(k) = o(k), u(k)→∞. Let p < 1. Then for any integer M ,

sup
k

mk−M
mp
k

=∞.(8)
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Proof. Assume that there exists an integer M such that for all k,

mk−M ≤ Dmp
k

for some constant D. For simplicity, we will use C to denote different con-
stants. Let w(k) = 2u(k). Then

2w(k−M) − 1 ≤ mk−M ≤ (D 2w(k))p = 2pw(k)+C .

Consequently,
2w(k−M)(1− 2−w(k−M)) ≤ 2pw(k)+C .

With γ(k) = log2(1− 2−w(k−M)) we have

w(k −M) + γ(k) ≤ pw(k) + C.

For a = log2(1/p) > 0 this gives

2u(k−M) + γ(k) ≤ 2u(k)−a + C,

2u(k−M)(1 + γ(k) · 2−u(k−M)) ≤ 2u(k)−a(1 + C · 2−u(k)+a).
We rewrite it as

2u(k−M)+α(k) ≤ 2u(k)−a+β(k),

where

α(k) = log2(1 + γ(k) · 2−u(k−M)), β(k) = log2(1 + C · 2−u(k)+a).
Now

u(k −M) + α(k) ≤ u(k)− a+ β(k), u(k) ≥ u(k −M) + a+ α(k)− β(k).

Note that α(k)→ 0, β(k)→ 0 as k →∞. Choose k′ such that for all k ≥ k′
we have a+ α(k)− β(k) > a/2. Then for all k ≥ k′,

u(k) > u(k −M) +
a

2
.

Also,
u(k +M) > u(k) +

a

2
.

Then
u(k + 2M) > u(k +M) +

a

2
> u(k) + 2

a

2
> 2

a

2
.

In general,
u(k + jM) > j

a

2
.

Taking k = k′ + jM, j = 1, 2, . . . , we see that
u(k)
k
≥ ja

2(k′ + jM)
→ a

2M
> 0

as j → ∞, i.e. as k → ∞ along the arithmetic progression k = k′ + jM .
This contradicts our assumption that u(k) = o(k). Therefore, (8) holds.
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Here is a companion result to Theorem 2.2 which shows that under suit-
able regularity the hyperexponential condition of Theorem 2.2 is necessary.
The regularity assumption here addresses cases where {mk} is increasing
rather slowly; other cases will be treated later.

Theorem 2.5. Let t be an integer , s = t + 1. Let mk = [22u(k)
], where

u(k) is non-decreasing , u(k) = o(k), u(k) → ∞ and mk+1 − mk ≤ B for
some constant B. Then the operators Ak where

Akf =
1
mt
k

msk+m
t
k∑

j=msk+1

f ◦ T j

have the strong sweeping out property.

Proof. We need to show that

sup
k

Q(k)
mt
k

=∞.(9)

The statement will then follow from Remark 1.3.
For a given k, let J(k) ⊆ {1, . . . , k−1} be the set such that the consecu-

tive intervals Ik−Ij+1 and Ik−Ij are disjoint for j ∈ J(k). If {|J(k)| : k ∈ N}
is unbounded then, by (6),

Q(k) ≥
∑
j∈J(k)

|Ik − Ij | > |J(k)|mt
k,

so (9) is satisfied.
Now suppose that {|J(k)| : k ∈ N} is bounded, i.e. there exists an integer

M such that |J(k)| ≤M for all k. This means that for each k the intervals
Ik − Ij , j = 1, . . . , k, form no more than M + 1 linked pieces. Fix k. Let

k ≥ lN ≥ rN > lN−1 ≥ rN−1 > · · · > l1 ≥ r1 ≥ 1

so that we have N (where N ≤M + 1) linked parts as follows: the intervals
Ik − Il1 , . . . , Ik − Ir1 are linked with the total length

L1 = mt
k +ms

l1 +mt
l1 −m

s
r1 − 1;

the intervals Ik − Il2 , . . . , Ik − Ir2 are linked with the total length

L2 = mt
k +ms

l2 +mt
l2 −m

s
r2 − 1;

and so on, the intervals Ik − IlN−1
, . . . , Ik − IrN−1 are linked with the total

length
LN−1 = mt

k +ms
lN−1

+mt
lN−1
−ms

rN−1
− 1;

and finally, Ik − IlN , . . . , Ik − IrN are linked with the total length

LN = mt
k +ms

lN
+mt

lN
−ms

rN
− 1.(10)
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Now

Q(k) ≥ LN + LN−1 + · · ·+ L2 + L1

= mt
k +ms

lN
+mt

lN
−ms

rN

+mt
k +ms

lN−1
+mt

lN−1
−ms

rN−1
+ · · ·

+mt
k +ms

l2 +mt
l2 −m

s
r2

+mt
k +ms

l1 +mt
l1 −m

s
r1 −N.

Note that r1 ≤M and k −M ≤ lN ≤ k since |J(k)| ≤M . We see that

Q(k) > ms
lN
− (ms

rN
−ms

lN−1
)− (ms

rN−1
−ms

lN−2
)− · · · − (ms

r2 −m
s
l1).

Then

(11)
Q(k)
mt
k

−
ms
lN

mt
k

> −
ms
rN
−ms

lN−1

mt
k

−
ms
rN−1

−ms
lN−2

mt
k

− · · · −
ms
r2 −m

s
l1

mt
k

.

To estimate the terms on the right hand side of (11) suppose we have
r, l ∈ N, l ≤ r ≤ l +M ≤ k. By the assumption of the theorem, mr −ml ≤
MB, so by the binomial formula,

ms
r −ms

l ≤ (mr −ml)sms−1
r = s(mr −ml)mt

r ≤ sMBmt
r.

Therefore,
ms
r −ms

l

mt
k

< sMB

(
mr

mk

)t
≤ sMB.

There are at most M terms in (11). So all these terms are bounded by the
same constant that does not depend on k. Then

Q(k)
mt
k

>
ms
lN

mt
k

− C.

The integer lN depends on k, and we write lN = lN(k). Notice that mk−M ≤
mlN (k) for every k. Using Lemma 2.4 we see that

sup
k

Q(k)
mt
k

≥ sup
k

ms
lN(k)

mt
k

− C ≥ sup
k

ms
k−M
mt
k

− C =∞.

Here is a more general version of the need for hyperexponential growth
on the subsequence. We need this simple observation. Suppose we have two
sets of cones, one with the set of vertices Ω = {(nk, lk)} and the other with
the set of vertices Ω′ = {(n′k, lk)}. Suppose nk+1 − nk ≤ n′k+1 − n′k. Then
at each level λ the cross section Ω′(λ) is not smaller than the cross section
Ω(λ). So if Ω fails the linear growth condition then Ω′ also fails the linear
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growth condition. If Ω′ satisfies the linear growth condition then so does Ω.
See also Lemma 3 in [2].

Theorem 2.6. Let p and t be integers, p > t. Let mk = [22u(k)
], where

u(k) is non-decreasing , u(k) = o(k), u(k)→∞, mk+1 −mk ≤ B for some
constant B. Then the operators

Akf =
1
mt
k

mpk+m
t
k∑

j=mpk+1

f ◦ T j

have the strong sweeping out property.

Proof. For s = t + 1, mk = [22u(k)
], the averages Ak have the strong

sweeping out property by Theorem 2.5. Let Ω = {(ms
k,m

t
k) : k ∈ N} and

Ω′ = {(mp
k,m

t
k) : k ∈ N}. By Theorem 1.4,Ω does not satisfy a linear growth

condition. Taking a = mk+1, b = mk and observing that ap−bp ≥ as−bs we
see from the comment above that forΩ′ the linear growth condition also fails.
Theorem 1.5 then gives the strong sweeping property for the averages Ak.

Example 2.7. The basic example of this result is when u(k) = log2 log2 k.

We can also establish the need for hyperexponential growth of the subse-
quence of alternative regularity assumptions as in the following. This result
is meant to handle cases where {mk} is increasing rather quickly, in contrast
with the previous results.

Theorem 2.8. Let s and t be integers, s > t. Let mk = [22u(k)
], where

u(k) is non-decreasing , u(k) = o(k), u(k) → ∞. If 2u(k+1) − 2u(k) ≥ B
eventually for some constant B > 0 then the operators

Akf =
1
mt
k

msk+m
t
k∑

j=msk+1

f ◦ T j

have the strong sweeping out property.

Proof. The theorem will follow from Remark 1.3 if we show that

sup
k

Q(k)
mt
k

=∞.(12)

We will use notations from the proof of Theorem 2.5. As in that proof, (12)
holds if {|J(k)| : k ∈ N} is unbounded. So assume that |J(k)| ≤ M for
each k. Then from (10) it follows that for each k,

Q(k) ≥ LN = mt
k +ms

lN
+mt

lN
−ms

rN
− 1 ≥ ms

lN
−ms

rN
.

Assume that for all k,
Q(k) ≤ Cmt

k
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for some positive constant C. Then

ms
lN
≤ ms

rN
+ Cmt

k.

Here lN = lN(k), rN = rN(k) depend on k. We will write l(k) = lN(k), r(k) =
rN(k) and w(k) = 2u(k). There is no harm in assuming that l(k) > r(k) and
r(k)→∞ as k →∞. We have

ml(k) ≤ mr(k) + Cm
t/s
k .

Choose E > 1 such that log2E < B/2. Let α = 1/E, β = 1− α. Then

αml(k) + βml(k) ≤ mr(k) + Cm
t/s
k .

Note that k − l(k) ≤ M , so mk−M ≤ ml(k). By Lemma 2.4 we must have

βml(k) ≥ Cm
t/s
k , and hence αml(k) ≤ mr(k), for all k in some infinite set K.

For all k ∈ K we have ml(k) ≤ Emr(k). Then

2w(l(k)) − 1 ≤ E · 2w(r(k)).

So
2w(l(k)) ≤ 2w(r(k))(E + 2−w(r(k))).

Then
w(l(k))− w(r(k)) ≤ log2(E + 2−w(r(k))) ≤ B/2,

which contradicts the assumption w(j + 1)− w(j) ≥ B of the theorem.

Example 2.9. Suppose mk = [2p(k)] or mk = [p(k)], where p is a polyno-
mial of degree at least 1. Then Theorem 2.8 (applied with u(k) = log2 p(k)
and u(k) = log2 log2 p(k) respectively) implies that pointwise convergence
of the averages Akf fails for f the characteristic function of a measurable
set. Notice that Theorem 2.5 does not apply here unless mk = [p(k)] and
the degree of p is one.

At the expense of some additional technicalities, the previous theorem
can be strengthened.

Theorem 2.10. Let s and t be integers, s > t. Let mk = [22u(k)
], where

u(k) = o(k), u(k) is non-decreasing , u(k) → ∞. Suppose 2u(k) − 2u(k−1) ≥
10f(u(k)) where f(z) > 0, f(z) ↘ 0 as z → ∞. If there exists 0 < a <
1− t/s such that f(u(k)) ≥ m−ak then the operators

Akf =
1
mt
k

msk+m
t
k∑

j=msk+1

f ◦ T j

have the strong sweeping out property.
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Proof. The theorem will follow from Remark 1.3 if we show that

sup
k

Q(k)
mt
k

=∞.(13)

We will use notations from the proof of Theorem 2.5. As in that proof, (13)
holds if {|J(k)| : k ∈ N} is unbounded. So assume that |J(k)| ≤ M for
each k. Then from (10) it follows that for each k,

Q(k) ≥ LN = mt
k +ms

lN
+mt

lN
−ms

rN
− 1 ≥ ms

lN
−ms

rN
.

Here (as in Theorem 2.5) lN = lN(k), rN = rN(k) depend on k. We will
write l(k) = lN(k), r(k) = rN(k) and w(k) = 2u(k). We may assume that
l(k) > r(k). Suppose that for all k,

Q(k) ≤ Cmt
k

for some positive constant C. Then

(14) ms
l(k) ≤ m

s
r(k) + Cmt

k.

Let Ek = e3f(u(k)), αk = 1/Ek, βk = 1− αk, p = t/s+ a < 1.
1) We shall show that eventually

(15)
1
βk

=
Ek

Ek − 1
≤ ma

k.

Indeed, ma
k ≤ 2ma

k − 2, so using the fact that

(∗) lim
x→0

log(1 + x)
x

= 1,

and hence eventually x ≥ 2
3 log(1 + x), we see that

f(u(k)) ≥ m−ak ≥
1
2
· 1
ma
k − 1

≥ 1
2
· 2

3
log
(

1 +
1

ma
k − 1

)
.

Since 3f(u(k)) ≥ log(1 + 1/(ma
k − 1)), we have Ek − 1 ≥ 1/(ma

k − 1), and
then

1
βk

=
Ek

Ek − 1
= 1 +

1
Ek − 1

≤ ma
k.

2) By Lemma 2.4, mk−M > 3mp
k > 3ma

k eventually. Therefore,

2w(l(k)) ≥ ml(k) ≥ mk−M > 3ma
k > 2ma

k + 1.

Then 2w(l(k)) − 1 > 2ma
k, so

2
2w(l(k)) − 1

<
1
ma
k

.

Let γ(k) = (2w(l(k)) − 1)2−w(l(k)). Using again (∗) we have

− log2 γ(k) = log2

(
1 +

1
2w(l(k)) − 1

)
<

2
2w(l(k)) − 1

< m−ak ≤ f(u(k)).
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So
− log2 γ(k) < f(u(k)).(16)

3) Note that p = t/s+a < 1. Using Lemma 2.4 and taking an appropriate
subsequence if needed, we may assume that

lim
k→∞

mk−M
mp
k

=∞.

Recall that k −M ≤ l(k) ≤ k. So we also have

lim
k→∞

ml(k)

mp
k

=∞.

Then for all k ≥ k1 (for some k1), ml(k) ≥ Cm
p
k, i.e. by (15),

βkml(k) ≥ Cm
t/s
k .

Since αk + βk = 1, from (14) we see that for all k ≥ k1,
αkml(k) ≤ mr(k).

Then
2w(l(k)) − 1 ≤ ml(k) ≤ 2w(r(k))−log2 αk ,

that is,
w(l(k)) + log2 γ(k) ≤ w(r(k))− log2 αk.

Then by (16) and the definition of αk,
w(l(k))− w(r(k)) ≤ − log2 γ(k)− log2 αk < 7f(u(k)).

On the other hand, by the assumptions of the theorem,
w(l(k))− w(r(k)) ≥ 10f(u(l(k))) ≥ 10f(u(k)).

The contradiction shows that we must have (13).

Example 2.11.

(a) Consider u(k) = o(k) where u(k) = log2(log2 k +
√
k). Then mk =

k[2
√
k]. Note that 2u(k)−2u(k−1) → 0 and mk+1−mk →∞ as k →∞.

We cannot apply Theorem 2.5 or 2.8, but it is easy to see that the
conditions of Theorem 2.10 are satisfied. Hence, the averages Ak
have the strong sweeping out property.

(b) Let u(k) = log2

√
k, or more generally, u(k) = log2 k

α for some
0 < α < 1. In this case mk = [2k

α
]. Note that 2u(k) − 2u(k−1) → 0

and mk+1−mk →∞ as k →∞. Again, while Theorems 2.5 and 2.8
are not applicable, we may use Theorem 2.10 to conclude that the
averages Ak have the strong sweeping out property.

In the previous theorems we needed some extra regularity requirements
in addition to the conditions that u(k) = o(k), u(k) is non-decreasing, and
u(k) → ∞ in order to get the strong sweeping out property for Ak. The
next example shows that in general we do not get the strong sweeping out
property without additional requirements of some sort.
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Example 2.12. Let s = 2, t = 1. Define u(k) = n whenever 2n+1 ≤ k ≤
2n+1, n = 1, 2, . . . . Then u(k) = o(k), u(k) is non-decreasing, u(k)→∞.

Fix k. Say, 2n + 1 ≤ k ≤ 2n+1, so u(k) = n. For any 1 ≤ i ≤ n the
intervals Ik− Ij and Ik− It are equal for 2i+ 1 ≤ j, t ≤ 2i+1. Let 1 ≤ i < n.
If j = 2i, i.e. j + 1 = 2i + 1, then u(j + 1) = i and

m2
j+1 −m2

j −mj ≤ m2
j+1 − 2 = 22i+1 − 2 ≤ 22n − 2 = mk − 2.

By Remark 2.1 the intervals Ik − Ij+1 and Ik − Ij intersect. Let l = 2n, so
m2
l = mk. Notice that all intervals Ik − Il, . . . , Ik − I1 are linked with the

total length, given by (7),

L = mk +m2
l +ml −m2

1 − 1 < 3mk.

Then

Q(k) =
∣∣∣ k⋃
j=1

(Ik − Ij)
∣∣∣ ≤ ∣∣∣ l⋃

j=1

(Ik − Ij)
∣∣∣+
∣∣∣ k⋃
j=l+1

(Ik − Ij)
∣∣∣

≤ 3mk + |Ik − Ik| ≤ 3mk + 2mk = 5mk.

Hence,

sup
k

Q(k)
|Ik|

= sup
k

Q(k)
mk

≤ 5,

and by Theorem 1.2 the sequence {Akf} of moving averages satisfies the
weak (1, 1) maximal inequality.

3. The cone condition. There are several basic properties of subse-
quence results for moving averages that need to be put in the record. These
all relate to the use of Theorem 1.4; they give a general framework in which
to view the technical estimates in the previous section. The arguments given
here also show how to work effectively with the cone condition. See [2] for
additional information and related results. According to the discussion in
the introduction, we may consider cones with aperture 1, and we denote
Ω1(λ) by Ω(λ).

Two cones with vertices (vi, li) and (vj , lj) where vi ≤ vj are disjoint at
the level λ if and only if

vj − vi + lj + li ≥ 2λ.(17)

The cross section of the cone with vertex (vi, li) at the level λ > li is 2(λ−li).
We consider the averages

Akf =
1
lk

vk+lk∑
i=vk+1

f ◦ T i.

Proposition 3.1. Given a sequence l1 < l2 < · · · there exists {vn} such
that the linear growth condition for Ω = {(vk, lk) : k ∈ N} fails.
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Proof. We take any positive v1 ≤ v2 and construct vn’s in dyadic blocks.
Namely, for each k ∈ N let

vi = vi−1 + 2λk

for i = 2k + 1, . . . , 2k+1 where

λk = l22k+1 .

Without loss of generality we may assume that l1 ≥ 2, so l2i − li ≥ 1
2 l

2
i for

all i. Since vi − vi−1 ≥ 2λk for i = 2k + 1, . . . , 2k+1, from (17) we see that
the cones with vertices (vi, li) are all disjoint for i = 2k + 1, . . . , 2k+1 at the
level λk. Note that λk > li for i = 2k + 1, . . . , 2k+1. Then

Ω(λk)
2
≥

2k+1∑
i=2k+1

(λk − li) ≥ 2k(λk − l2k+1) = 2k(l22k+1 − l2k+1)

≥ 2k−1l22k+1 = 2k−1λk.

Hence,
Ω(λk)
λk

≥ 2k.

It is clear that the linear growth condition fails for Ω.

Remark 3.2. This result says that no matter how fast {lk} grows, there
can be {vk} such that {(vk, lk)} does not satisfy the cone condition.

Proposition 3.3. Given vk → ∞ there exists lk → ∞ (not necessarily
strictly increasing) such that the linear growth condition fails for

Ω = {(vk, lk) : k ∈ N}.

Proof. Let Mj ↗ ∞ be a sequence. We construct the sequence lk in
blocks that correspond to the sequence Mj .

Pick vk0 > 0. For i = 1, . . . ,M1 choose vki such that vki − vki−1
≥ 4M1.

Define ln’s in the block corresponding to M1 by ln = M1 for n = 1, . . . , kM1 .
For i = M1 +1, . . . ,M1 +M2 choose vki such that vki−vki−1

≥ 4M2. De-
fine ln’s in the block corresponding to M2 by ln = M2 for n = kM1+1, kM1+1

+ 1, . . . , kM1+M2 .
In general, let j ≥ 3. For i = M1 + · · ·+Mj−1 + 1, . . . ,M1 + · · ·+Mj

choose vki such that vki−vki−1
≥4Mj . Define ln=Mj for n=kM1+···+Mj−1+1,

kM1+···+Mj−1+1 + 1, . . . , kM1+···+Mj .
For λ = 2Mj we have, for i = M1 + · · ·+Mj−1 + 1, . . . ,M1 + · · ·+Mj ,

vki − vki−1
≥ 4Mj > 2λ− lki − lki−1

,

which by (17) means that the cones with vertices (vki , lki) are disjoint for
i = M1 + · · ·+Mj−1 + 1, . . . ,M1 + · · ·+Mj . At the level λ = 2Mj we have
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Mj disjoint cones, each contributing 2(λ− lki) = 2Mj to Ω(λ). Then
Ω(λ)

2
≥M2

j .

So
Ω(λ)
λ
≥

2M2
j

2Mj
= Mj =

λ

2
.

It is obvious that the linear growth condition for Ω = {(vk, lk) : k ∈ N}
fails.

Remark 3.4. This result says that once one moves away from the best
scenario where vk = 0 for all k, then one cannot guarantee that {(vk, lk)}
satisfies the cone condition by just assuming that lk →∞.

Here is an obvious fact, but one that is useful nonetheless.

Lemma 3.5. Suppose we are given {vk}. Then for any {lk} such that
vk/lk is bounded , if lk →∞, then the averages

Akf =
1
lk

vk+lk∑
i=vk+1

f ◦ T i

converge a.e. for every f ∈ L1 to

I(x) = lim
l→∞

1
l

l∑
i=1

f ◦ T i.

Proof. Since {vk/lk} is bounded, the maximal function of {Akf} is finite
a.e. and this is sufficient for the result to follow since lk →∞. More directly,∣∣∣∣ 1
lk

vk+lk∑
i=vk+1

f ◦ T i − I(x)
∣∣∣∣

=
∣∣∣∣vk + lk

lk
· 1
vk + lk

vk+lk∑
i=1

f ◦ T i− vk
lk
· 1
vk

vk∑
i=1

f ◦ T i− vk + lk
lk

I(x)+
vk
lk
I(x)

∣∣∣∣
≤ vk + lk

lk

∣∣∣∣ 1
vk + lk

vk+lk∑
i=1

f ◦ T i − I(x)
∣∣∣∣+

vk
lk

∣∣∣∣ 1
vk

vk∑
i=1

f ◦ T i − I(x)
∣∣∣∣.

Say vk/lk ≤ b. For every ε > 0 the first term in the last line is no larger
than (b+ 1)ε if lk is large enough. Also, the second term is no larger than bε
for large enough k. This follows fairly easily from vk/lk being bounded and
lk →∞ even though {vk} is not assumed to be bounded nor itself going to
infinity.

Now we can easily see that for any vk → ∞, even though there may be
{lk} for which {(vk, lk)} do not satisfy the cone condition, there will be some
{lk} for which they do.
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Corollary 3.6. Given {vk} there exists a rate Lk such that for any
{lk} with lk ≥ Lk the averages

Akf =
1
lk

vk+lk∑
i=vk+1

f ◦ T i

converge a.e. for every f ∈ L1.

Proof. Take Lk = max{k, vk}. Then if lk ≥ Lk, we have vk/lk bounded
and lk →∞. Now apply Lemma 3.5.

Example 3.7. Let vk = k. If lk is strictly increasing then

lk ≥ (k − 1) + l1 ≥ k − 1 ≥ 1
2
k.

By Lemma 3.5 the averages

Akf =
1
lk

vk+lk∑
i=vk+1

f ◦ T i

converge a.e. for every f ∈ L1. This shows why in Proposition 3.3 it may
not be possible to have {lk} strictly increasing as well.
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