VOL. 113

2008

NO. 2

LINEAR DERIVATIONS WITH RINGS OF CONSTANTS GENERATED BY LINEAR FORMS

BҮ

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. Let k be a field. We describe all linear derivations d of the polynomial algebra $k[x_1, \ldots, x_m]$ such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of char k = 0, (b) over $k[x_1^p, \ldots, x_m^p]$ in the case of char k = p > 0.

Introduction. Throughout this paper k is a field of characteristic $p \ge 0$. We denote by k[X] the polynomial algebra $k[x_1, \ldots, x_m]$ with the natural grading

$$k[X] = \bigoplus_{j=0}^{\infty} k[X]_j,$$

where $k[X]_j$ is the subspace of forms of degree j. We also denote by $k[X^p]$ the subalgebra $k[x_1^p, \ldots, x_m^p]$, but in the case of p = 0 we assume $x_i^p = 1, i = 1, \ldots, m$, and $k[X^p] = k$. If $v_1, \ldots, v_n \in k[X]$, then we denote by $\langle v_1, \ldots, v_n \rangle_k$ the k-linear space spanned by v_1, \ldots, v_n . Throughout this paper we denote by \mathbb{N} the set of nonnegative integers, and by \mathbb{F}_p the prime subfield of k.

A k-linear mapping $d: k[X] \to k[X]$ is called a k-derivation of k[X] if d(fg) = fd(g) + gd(f) for all $f, g \in k[X]$. If d is a k-derivation of k[X], then we denote by $k[X]^d$ the ring of constants of d, that is,

$$k[X]^d = \{ f \in k[X] : d(f) = 0 \}.$$

Note that $k[X^p] \subseteq k[X]^d$, so $k[X]^d$ is a $k[X^p]$ -algebra.

A mapping $d: k[X] \to k[X]$ is called a *linear derivation* if d is a k-derivation of k[X] and $d(k[X]_j) \subseteq k[X]_j$ for j = 0, 1, 2, ... It is clear that a k-derivation d of k[X] is a linear derivation if and only if

$$d(x_j) = \sum_{i=1}^{m} a_{ij} x_i$$
 for $j = 1, ..., m$,

where $a_{ij} \in k$ for i, j = 1, ..., m. A linear derivation d is uniquely determined by the matrix (a_{ij}) .

²⁰⁰⁰ Mathematics Subject Classification: Primary 12H05; Secondary 13N15. Key words and phrases: linear derivation, ring of constants.

In the case of char k = 0, Nowicki ([2]) described the linear derivations of k[X] such that $k[X]^d = k$. He also described such derivations satisfying the condition $k(X)^d = k$, where k(X) is the field of rational functions. In this paper we consider the following, more general problem, concerning polynomial constants of linear derivations. Let $0 \le r \le m$. The problem is to describe all linear derivations d of k[X] such that

$$k[X]^d = k[y_1, \dots, y_r, y_{r+1}^p, \dots, y_m^p]$$

(i.e. $k[X]^d = k[y_1, \ldots, y_r]$ in the case of p = 0) for some k-linear basis y_1, \ldots, y_m of $k[X]_1$.

1. The Jordan case. In this section we consider a special case when the matrix (a_{ij}) of a linear derivation d of $k[X] = k[x_1, \ldots, x_m]$ is already in the Jordan form

$$\begin{pmatrix} J_{m_1}(\varrho_1) & 0 & \cdots & 0\\ 0 & J_{m_2}(\varrho_2) & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ 0 & \cdots & 0 & J_{m_s}(\varrho_s) \end{pmatrix}, \quad J_{m_i}(\varrho_i) = \begin{pmatrix} \varrho_i & 1 & \cdots & 0\\ 0 & \varrho_i & \ddots & \vdots\\ \vdots & \ddots & \ddots & 1\\ 0 & \cdots & 0 & \varrho_i \end{pmatrix},$$

 $i = 1, \ldots, s$, where $s \ge 1$, $m_1 \ge \cdots \ge m_s$, $m_1 + \cdots + m_s = m$, and where $\varrho_1, \ldots, \varrho_s \in k$.

Let $n_1 = 1$ and $n_i = m_1 + \dots + m_{i-1} + 1$ for $i = 2, \dots, s$. Then $d(x_{n_i}) = \rho_i x_{n_i}$ and $d(x_{n_i+l}) = x_{n_i+l-1} + \rho_i x_{n_i+l}$ for $l = 1, \dots, m_i - 1$, whenever $m_i > 1$. Let

$$I = \{1, \dots, s\}, \quad I_0 = \{i \in I : \varrho_i = 0\}.$$

We denote by $d|_{k[X]_1}$ the restriction of d to $k[X]_1$. The kernel of $d|_{k[X]_1}$ is k-linearly spanned by all the elements of the form x_{n_i} , where $i \in I_0$, that is,

$$k[X]^d \cap k[X]_1 = \langle x_{n_i}; i \in I_0 \rangle_k.$$

This implies the following fact.

PROPOSITION 1.1. Assume that $k[X]^d = k[y_1, \ldots, y_r, y_{r+1}^p, \ldots, y_m^p]$ for some k-linear basis y_1, \ldots, y_m of $k[X]_1$. Then $\langle y_1, \ldots, y_r \rangle_k = \langle x_{n_i}; i \in I_0 \rangle_k$ and $k[X]^d$ is generated over $k[X^p]$ by the elements x_{n_i} , where $i \in I_0$, that is,

$$k[X]^d = k[X^p][x_{n_i}; i \in I_0].$$

The aim of this section is to prove the following theorems.

THEOREM 1.2. Let p = 0. The equality $k[X]^d = k[x_{n_i}; i \in I_0]$ holds if and only if the following three conditions are satisfied:

(1) the system $(\varrho_i; i \in I \setminus I_0)$ is linearly independent over \mathbb{N} ,

- (2) $m_i \leq 2$ for every $i \in I_0$,
- (3) $m_i = 2$ for at most one $i \in I_0$.

THEOREM 1.3. Let p > 0. The equality $k[X]^d = k[X^p][x_{n_i}; i \in I_0]$ holds if and only if the following three conditions are satisfied:

- (1) the system $(\varrho_i; i \in I \setminus I_0)$ is linearly independent over \mathbb{F}_p ,
- (2) $m_1 \leq 2 \text{ or } m_1 = 3, p = 2,$
- (3) $m_2 = 1$.

Let $\lambda_1, \ldots, \lambda_m$ be the diagonal elements of the matrix of d, that is, $\lambda_{n_i} = \cdots = \lambda_{n_i+m_i-1} = \varrho_i$ for $i = 1, \ldots, s$. Obviously $d = d_D + d_N$, where d_D and d_N are the linear derivations defined by:

$$d_D(x_j) = \lambda_j x_j \quad \text{for } j = 1, \dots, m,$$

$$d_N(x_j) = \begin{cases} 0 & \text{for } j = n_1, \dots, n_s, \\ x_{j-1} & \text{for } j \neq n_1, \dots, n_s. \end{cases}$$

We see that

$$d_D(x_1^{l_1} \dots x_m^{l_m}) = (l_1 \lambda_1 + \dots + l_m \lambda_m) x_1^{l_1} \dots x_m^{l_m}, d_N(x_1^{l_1} \dots x_m^{l_m}) = \sum_{j \neq n_1, \dots, n_s} l_j x_1^{l_1} \dots x_{j-1}^{l_{j-1}+1} x_j^{l_j-1} \dots x_m^{l_m}.$$

Proposition 1.4. $k[X]^d = k[X]^{d_N} \cap k[X]^{d_D}$.

Proof. In the case of p = 0 this fact is well known ([4, Corollary 2.3] or [3, Corollary 9.4.4]). Assume that p > 0.

The inclusion $k[X]^{d_N} \cap k[X]^{d_D} \subseteq k[X]^d$ is clear. To prove the reverse inclusion, suppose that d(f) = 0 for some $f \in k[X]$. Let l be a positive integer such that $p^l \ge m$, where $m = \dim_k k[X]_1$. Then $(d_N|_{k[X]_1})^{p^l} = 0$, so $d_N^{p^l} = 0$, and we have $d_D^{p^l}(f) = d^{p^l}(f) = 0$.

It is easy to see that all the monomials of the form $x_1^{l_1} \dots x_m^{l_m}$ such that $l_1\lambda_1 + \dots + l_m\lambda_m = 0$ form a k-linear basis of $k[X]^{d_D}$, and all the monomials of the form $x_1^{l_1} \dots x_m^{l_m}$ such that $l_1\lambda_1^{p^l} + \dots + l_m\lambda_m^{p^l} = 0$ form a k-linear basis of $k[X]^{d_D^{p^l}}$. Since $l_1\lambda_1^{p^l} + \dots + l_m\lambda_m^{p^l} = (l_1\lambda_1 + \dots + l_m\lambda_m)^{p^l}$ for every $l_1, \dots, l_m \in \mathbb{Z}$, we have $k[X]^{d_D^{p^l}} = k[X]^{d_D}$. This implies that $d_D(f) = 0$, so $d_N(f) = d(f) - d_D(f) = 0$, and finally $f \in k[X]^{d_N} \cap k[X]^{d_D}$.

Note the following useful proposition.

PROPOSITION 1.5. Let K be a domain of characteristic $p \ge 0$. Let δ be a K-derivation of $K[x_1, \ldots, x_m]$ such that $\delta(x_i) = 0$ for $i \le r$ and $\delta(x_i) = \mu_i x_i$ for i > r, where $\mu_{r+1}, \ldots, \mu_m \in K \setminus \{0\}$ are linearly independent (over \mathbb{F}_p in the case of p > 0, over \mathbb{N} in the case of p = 0). Then $K[x_1, \ldots, x_m]^{\delta} = K[x_1, \ldots, x_r, x_{r+1}^p, \ldots, x_m^m]$.

Proof. It is enough to observe that $d(x_1^{l_1} \dots x_m^{l_m}) = (l_{r+1}\mu_{r+1} + \dots + l_m\mu_m)x_1^{l_1} \dots x_m^{l_m}$ for every $l_1, \dots, l_m \ge 0$, so $K[x_1, \dots, x_m]^{\delta}$ is a free K-module and the monomials $x_1^{l_1} \dots x_m^{l_m}$ such that $l_{r+1}\mu_{r+1} + \dots + l_m\mu_m = 0$ form a basis of this module.

Recall that $I = \{1, ..., s\}$ and $I_0 = \{i \in I : \varrho_i = 0\}$. Let $J = \{1, ..., m\}$ and $J_0 = \{j \in J : \lambda_j = 0\}$.

Proof of Theorem 1.2. (\Rightarrow) (1) Assume that the system $(\varrho_i; i \in I \setminus I_0)$ is linearly dependent over \mathbb{N} . Then there exist $l_1, \ldots, l_s \in \mathbb{N}$ such that $l_1\varrho_1 + \cdots + l_s \varrho_s = 0$ and $l_j > 0$ for some $j \in I \setminus I_0$. In this case $x_{n_1}^{l_1} \ldots x_{n_s}^{l_s} \in k[X]^d \setminus k[x_{n_i}; i \in I_0]$.

(2) The condition $m_i \geq 3$ for some $i \in I_0$ means that $d(x_{n_i}) = 0$, $d(x_{n_i+1}) = x_{n_i}$ and $d(x_{n_i+2}) = x_{n_i+1}$. Then $x_{n_i+1}^2 - 2x_{n_i}x_{n_i+2} \in k[X]^d \setminus k[x_{n_i}; i \in I_0]$.

(3) The condition $m_i, m_j \geq 2$ for some $i, j \in I_0, i \neq j$ means that $d(x_{n_i}) = 0, d(x_{n_i+1}) = x_{n_i}, d(x_{n_j}) = 0$ and $d(x_{n_j+1}) = x_{n_j}$. Then $x_{n_i}x_{n_j+1} - x_{n_i+1}x_{n_j} \in k[X]^d \setminus k[x_{n_i}; i \in I_0]$.

(\Leftarrow) Assume that conditions (1)–(3) hold.

We have $d_D(x_j) = 0$ for $j \in J_0$ and $d_D(x_j) = \lambda_j x_j$ for $j \in J \setminus J_0$, where $\lambda_j = \varrho_i \neq 0, n_i \leq j < n_i + m_i, i \in I \setminus I_0$. The system $(\lambda_j; j \in J \setminus J_0)$ is linearly independent over \mathbb{N} , because $(\varrho_i; i \in I \setminus I_0)$ is, so $k[X]^{d_D} = k[x_j; j \in J_0]$ by Proposition 1.5.

Let d'_N be the restriction of d_N to $k[x_j; j \in J_0]$. Then, by Proposition 1.4, $k[X]^d = (k[X]^{d_D})^{d'_N} = k[x_j; j \in J_0]^{d'_N}$. If $m_{i_0} = 2$ for some $i_0 \in I_0$, then it is easy to see that $k[x_j; j \in J_0]^{d'_N} = k[x_j; j \in J_0 \setminus \{n_{i_0+1}\}] = k[x_{n_i}; i \in I_0]$. If $m_i = 1$ for every $i \in I_0$, then $d'_N = 0$, so $k[x_j; j \in J_0]^{d'_N} = k[x_j; j \in J_0] = k[x_{n_i}; i \in I_0]$.

Proof of Theorem 1.3. (\Rightarrow) (1) Assume that the system $(\varrho_i; i \in I \setminus I_0)$ is linearly dependent over \mathbb{F}_p . Then there exist nonnegative integers l_1, \ldots, l_s < p such that $l_1\varrho_1 + \cdots + l_s\varrho_s = 0$ and $l_j > 0$ for some $j \in I \setminus I_0$. In this case $x_{n_1}^{l_1} \ldots x_{n_s}^{l_s} \in k[X]^d \setminus k[X^p][x_{n_i}; i \in I_0]$.

(2) The condition $m_1 \geq 3$ means that $d(x_1) = \varrho_1 x_1$, $d(x_2) = x_1 + \varrho_1 x_2$ and $d(x_3) = x_2 + \varrho_1 x_3$. Then for p > 2 we have $x_1^{p-2} x_2^2 - 2x_1^{p-1} x_3 \in k[X]^d \setminus k[X^p][x_{n_i}; i \in I_0]$.

The condition $m_1 \ge 4$ means that $d(x_1) = \varrho_1 x_1$, $d(x_2) = x_1 + \varrho_1 x_2$, $d(x_3) = x_2 + \varrho_1 x_3$ and $d(x_4) = x_3 + \varrho_1 x_4$. Then for p = 2 we have $x_1^3 x_4 + x_1^2 x_2 x_3 + x_1 x_2^3 \in k[X]^d \setminus k[X^p][x_{n_i}; i \in I_0]$.

(3) The condition $m_2 \ge 2$ means that $d(x_1) = \varrho_1 x_1, d(x_2) = x_1 + \varrho_1 x_2, d(x_{m_1+1}) = \varrho_2 x_{m_1+1}$ and $d(x_{m_1+2}) = x_{m_1+1} + \varrho_2 x_{m_1+2}$. Then $x_1^{p-1} x_2 x_{m_1+1}^p - x_1^p x_{m_1+1}^{p-1} x_{m_1+2} \in k[X]^d \setminus k[X^p][x_{n_i}; i \in I_0].$

(\Leftarrow) Assume that conditions (1)–(3) hold.

Let d'_D be the restriction of d_D to $k[X^p][x_{n_1}, \ldots, x_{n_s}]$. Recall that $J = \{1, \ldots, m\}$. Consider the set $J' = J \setminus \{n_1, \ldots, n_s\}$. Let $K = k[x_j^p; j \in J']$. We see that d'_D is a K-derivation of $K[x_{n_1}, \ldots, x_{n_s}] = k[X^p][x_{n_1}, \ldots, x_{n_s}]$ such that $d'_D(x_{n_i}) = \varrho_i x_{n_i}$, where $\varrho_i = 0$ for $i \in I_0$, $\varrho_i \neq 0$ for $i \in I \setminus I_0$ and the system $(\varrho_i; i \in I \setminus I_0)$ is linearly independent over \mathbb{F}_p . Proposition 1.5 implies that $k[X^p][x_{n_1}, \ldots, x_{n_s}]^{d'_D} = k[X^p][x_{n_i}; i \in I_0]$. This ends the proof if $m_1 = 1$.

If $m_1 = 2$, then it is easy to see that $k[X]^{d_N} = k[x_1, x_2^p, x_3, ..., x_m] = k[X^p][x_{n_1}, ..., x_{n_s}]$. If p = 2 and $m_1 = 3$, then it is easy to see that $k[X]^{d_N} = k[x_1, x_2^p, x_3^p, x_4, ..., x_m] = k[X^p][x_{n_1}, ..., x_{n_s}]$. In both cases, by Proposition 1.4, $k[X]^d = (k[X]^{d_N})^{d'_D} = k[X^p][x_{n_i}; i \in I_0]$.

2. Some facts about graded algebras. In this section by a graded *k*-algebra we mean a *k*-algebra with a \mathbb{Z} -grading $A = \bigoplus_{j=0}^{\infty} A_j$. Nonzero elements of A_j are called *homogeneous of degree j*.

Note the following well known fact.

LEMMA 2.1. Let $B = \bigoplus_{j=0}^{\infty} B_j$ be a graded commutative k-algebra, $B_0 = k$, and $M = \bigoplus_{j>0} B_j$. Let $f_1, \ldots, f_n \in M$.

- (a) If $B = k[f_1, ..., f_n]$, then $M/M^2 = \langle f_1 + M^2, ..., f_n + M^2 \rangle_k$.
- (b) If f_1, \ldots, f_n are homogeneous elements and $M/M^2 = \langle f_1 + M^2, \ldots, f_n + M^2 \rangle_k$, then $B = k[f_1, \ldots, f_n]$.

The original version of this lemma ([1, II.3.2]) was formulated as an equivalence of three conditions under the assumptions that $k = \mathbb{C}$ and f_1, \ldots, f_n are homogeneous elements. However, the proof is valid for an arbitrary field kand the implication in (a) is true for arbitrary $f_1, \ldots, f_n \in M$.

If elements f_1, \ldots, f_n generate the k-algebra B, with n smallest possible, then we say that f_1, \ldots, f_n form a minimal system of generators of B. Using the previous lemma we can easily establish the following proposition.

PROPOSITION 2.2. Let $B = \bigoplus_{j=0}^{\infty} B_j$ be a graded commutative k-algebra with $B_0 = k$ and let $C_j = \sum_{l=1}^{j-1} B_l \cdot B_{j-l}$ for j > 1, $C_1 = 0$, $C_0 = k$.

- (a) Homogeneous elements f_1, \ldots, f_n form a minimal system of generators of B if and only if for every j the residue classes modulo C_j of all the elements f_i of degree j form a basis of the k-linear space B_j/C_j .
- (b) Let k ⊆ k' be a field extension. Denote by B' the graded k'-algebra k' ⊗_k B. Let C'_j = ∑^{j-1}_{l=1} B'_l · B'_{j-l} for j > 1, C'₁ = 0, C'₀ = k'. Then dim_k B_j/C_j = dim_{k'} B'_j/C'_j for every j. Moreover, if homogeneous

elements f_1, \ldots, f_n form a minimal system of generators of the kalgebra B, then the elements $1 \otimes f_1, \ldots, 1 \otimes f_n$ form a minimal system of generators of the k'-algebra B'.

Proof. (a) Let $M = \bigoplus_{j>0} B_j$. Then $M^2 = \bigoplus_{j>0} C_j$. Lemma 2.1 implies that the elements f_1, \ldots, f_n generate the k-algebra B if and only if their residue classes modulo M generate the linear space $M/M^2 \simeq \bigoplus_j B_j/C_j$. So f_1, \ldots, f_n form a minimal system of generators of B if and only if for every j the residue classes modulo C_j of all the elements f_i of degree j form a basis of B_j/C_j .

(b) For every j > 1 we have a canonical k'-linear isomorphism

$$\sum_{l=1}^{j-1} (k' \otimes_k B_l) \cdot (k' \otimes_k B_{j-l}) \simeq k' \otimes_k \sum_{l=1}^{j-1} B_l \cdot B_{j-l},$$

that is, $C'_j \simeq k' \otimes_k C_j$. This implies that $\dim_k B_j/C_j = \dim_{k'} B'_j/C'_j$.

Let f_{i_1}, \ldots, f_{i_s} be all the elements f_i of degree j. By (a), the residue classes modulo C_j of f_{i_1}, \ldots, f_{i_s} form a k-linear basis of B_j/C_j . Then the residue classes of $1 \otimes f_{i_1}, \ldots, 1 \otimes f_{i_s}$ form a k'-linear basis of B'_j/C'_j . Again by (a), the elements $1 \otimes f_1, \ldots, 1 \otimes f_n$ form a minimal system of generators of the k'-algebra B'.

Note the following immediate consequence of Lemma 2.1 and Proposition 2.2(a).

COROLLARY 2.3. If B is generated by n elements (not necessarily homogeneous), then B is generated by some n homogeneous elements.

Proof. Let M and C_j be defined as in Lemma 2.1 and Proposition 2.2. It is enough to observe that $M/M^2 \simeq \bigoplus_{i=0}^{\infty} B_j/C_j$, so $\sum_{i=0}^{\infty} \dim_k B_j/C_j \le n$.

Now we will prove the following proposition.

PROPOSITION 2.4. Let $k \subseteq k'$ be an extension of fields of arbitrary characteristic $p \ge 0$, let B be a graded subalgebra of k[X] and $B' = k' \otimes_k B$ the corresponding subalgebra of k'[X]. Let $r \in \{0, 1, ..., m\}$. Then the following conditions are equivalent:

- (i) $B = k[y_1, \dots, y_r, y_{r+1}^p, \dots, y_m^p]$ for some k-linear basis y_1, \dots, y_m of $k[X]_1$,
- (ii) $B' = k'[z_1, \ldots, z_r, z_{r+1}^p, \ldots, z_m^p]$ for some k'-linear basis z_1, \ldots, z_m of $k'[X]_1$.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (i). Assume that $B' = k'[z_1, \ldots, z_r, z_{r+1}^p, \ldots, z_m^p]$ for some k'-linear basis z_1, \ldots, z_m of $k'[X]_1$. Let C_j and C'_j be defined as in Proposition 2.2.

Let p = 0. The elements z_1, \ldots, z_r form a minimal system of generators of the k'-algebra B', so $\dim_{k'} B'_1 = r$ and $\dim_{k'} B'_j/C'_j = 0$ for j > 1 by Proposition 2.2(a). Proposition 2.2(b) implies that $\dim_k B_1 = r$ and $\dim_k B_j/C_j = 0$ for j > 1. Let y_1, \ldots, y_r be a k-linear basis of B_1 . Then y_1, \ldots, y_r form a minimal system of generators of the k-algebra B (Proposition 2.2(a)), so $B = k[y_1, \ldots, y_r]$.

Now let p > 0. Using similar arguments to those for p = 0, we show that the elements y_1, \ldots, y_r of a k-linear basis of B_1 together with some elements $t_{r+1}, \ldots, t_m \in B_p$ form a minimal system of generators of the kalgebra B. We can enlarge $\{y_1, \ldots, y_r\}$ to a basis $\{y_1, \ldots, y_m\}$ of $k[X]_1$. Let $V = k[y_1, \ldots, y_r]_p + \langle y_{r+1}^p, \ldots, y_m^p \rangle_k$. Then $V \subseteq B_p$, but we see that $\dim_k V =$ $\dim_k B_p$, so $V = B_p$, that is, $k[y_1, \ldots, y_r]_p + \langle y_{r+1}^p, \ldots, y_m^p \rangle_k = k[y_1, \ldots, y_r]_p +$ $\langle t_{r+1}, \ldots, t_m \rangle_k$. This implies that $B = k[y_1, \ldots, y_r, y_{r+1}^p, \ldots, y_m^p]$.

Recall the following fact.

PROPOSITION ([3, 5.1.1], [2, 2.1]). Let $k \subseteq k'$ be a field extension and let d be a k-derivation of a k-algebra A. Denote by i the inclusion $A^d \hookrightarrow A$. Then $d' = 1 \otimes d$ is a k'-derivation of the k'-algebra $A' = k' \otimes_k A$ and $(1 \otimes i)(k' \otimes_k A^d) = A'^{d'}$.

The way of reducing an arbitrary linear derivation to its Jordan form is given in the following corollary of the above proposition and Proposition 2.4.

COROLLARY 2.5. If d is a k-derivation of k[X] and d' is a k'-derivation of k'[X] such that $d'(x_i) = d(x_i)$ for i = 1, ..., m, then the following conditions are equivalent:

- (i) $k[X]^d = k[y_1, \dots, y_r, y_{r+1}^p, \dots, y_m^p]$ for some k-linear basis y_1, \dots, y_m of $k[X]_1$;
- (ii) $k'[X]^{d'} = k'[z_1, \dots, z_r, z_{r+1}^p, \dots, z_m^p]$ for some k'-linear basis z_1, \dots, z_m of $k'[X]_1$.

3. The general case. Now let d be a linear derivation of k[X]. Using Corollary 2.5 for the algebraic closure \overline{k} of k, Proposition 1.1 and Theorems 1.2 and 1.3 for the Jordan matrix of the endomorphism $d|_{k[X]_1}$ over \overline{k} , we obtain the following theorems.

THEOREM 3.1. Let d be a linear derivation of k[X], where k is a field of characteristic 0. Then

$$k[X]^d = k[y_1, \dots, y_r]$$

for some linearly independent homogeneous polynomials y_1, \ldots, y_m of degree 1 if and only if the Jordan matrix of $d|_{k[X]_1}$ satisfies the following conditions.

(1) There are exactly r Jordan blocks with zero eigenvalues.

- (2) Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly independent over N.
- (3) At most one Jordan block with zero eigenvalue has dimension greater than 1, and if such a block exists, it is of dimension 2. ■

THEOREM 3.2. Let d be a linear derivation of k[X], where k is a field of characteristic p > 0. Then

 $k[X]^d = k[y_1, \dots, y_r, y_{r+1}^p, \dots, y_m^p]$

for some k-linear basis y_1, \ldots, y_m of $k[X]_1$ if and only if the Jordan matrix of $d|_{k[X]_1}$ satisfies the following conditions.

- (1) There are exactly r Jordan blocks with zero eigenvalues.
- (2) Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly independent over \mathbb{F}_p .
- (3) At most one Jordan block has dimension greater than 1, and if such a block exists, then its dimension is 2 in the case of p > 2, and 2 or 3 for p = 2. ■

Note that all the rings of constants mentioned in Theorems 3.1 and 3.2 are polynomial k-algebras. It is well known that in the case of char k = 0 there exist linear derivations of k[X] with rings of constants being polynomial k-algebras not generated by linear forms. Let us end with the following question.

QUESTION. Does there exist a linear derivation of k[X], where char k = p > 0, such that $k[X]^d$ is a polynomial k-algebra not of the form mentioned in Theorem 3.2?

REFERENCES

- H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig, 1985.
- [2] A. Nowicki, On the nonexistence of rational first integrals for systems of linear differential equations, Linear Algebra Appl. 235 (1996) 107–120.
- [3] —, Polynomial Derivations and Their Rings of Constants, UMK, Toruń, 1994.
- [4] A. Nowicki and A. Tyc, On semisimple derivations in characteristic zero, Comm. Algebra 29 (2001), 5115–5130.

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: pjedrzej@mat.uni.torun.pl

> Received 13 September 2007; revised 6 February 2008

(4960)