LINEAR DERIVATIONS WITH RINGS OF CONSTANTS
GENERATED BY LINEAR FORMS

BY

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. Let k be a field. We describe all linear derivations d of the polynomial algebra $k[x_1, \ldots, x_m]$ such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of $\text{char } k = 0$, (b) over $k[x_1^p, \ldots, x_m^p]$ in the case of $\text{char } k = p > 0$.

Introduction. Throughout this paper k is a field of characteristic $p \geq 0$. We denote by $k[X]$ the polynomial algebra $k[x_1, \ldots, x_m]$ with the natural grading $k[X] = \bigoplus_{j=0}^{\infty} k[X]_j$, where $k[X]_j$ is the subspace of forms of degree j. We also denote by $k[X^p]$ the subalgebra $k[x_1^p, \ldots, x_m^p]$, but in the case of $p = 0$ we assume $x_i^p = 1$, $i = 1, \ldots, m$, and $k[X^p] = k$. If $v_1, \ldots, v_n \in k[X]$, then we denote by $\langle v_1, \ldots, v_n \rangle_k$ the k-linear space spanned by v_1, \ldots, v_n. Throughout this paper we denote by \mathbb{N} the set of nonnegative integers, and by \mathbb{F}_p the prime subfield of k.

A k-linear mapping $d: k[X] \to k[X]$ is called a k-derivation of $k[X]$ if $d(fg) = fd(g) + gd(f)$ for all $f, g \in k[X]$. If d is a k-derivation of $k[X]$, then we denote by $k[X]^d$ the ring of constants of d, that is, $k[X]^d = \{ f \in k[X] : d(f) = 0 \}$. Note that $k[X^p] \subseteq k[X]^d$, so $k[X]^d$ is a $k[X^p]$-algebra.

A mapping $d: k[X] \to k[X]$ is called a linear derivation if d is a k-derivation of $k[X]$ and $d(k[X]_j) \subseteq k[X]_j$ for $j = 0, 1, 2, \ldots$. It is clear that a k-derivation d of $k[X]$ is a linear derivation if and only if $d(x_j) = \sum_{i=1}^{m} a_{ij}x_i$ for $j = 1, \ldots, m$, where $a_{ij} \in k$ for $i, j = 1, \ldots, m$. A linear derivation d is uniquely determined by the matrix (a_{ij}).

2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N15.

Key words and phrases: linear derivation, ring of constants.
In the case of \(\text{char } k = 0 \), Nowicki ([2]) described the linear derivations of \(k[X] \) such that \(k[X]^d = k \). He also described such derivations satisfying the condition \(k(X)^d = k \), where \(k(X) \) is the field of rational functions. In this paper we consider the following, more general problem, concerning polynomial constants of linear derivations. Let \(0 \leq r \leq m \). The problem is to describe all linear derivations \(d \) of \(k[X] \) such that

\[
\begin{align*}
\ k[X]^d &= k[y_1, \ldots, y_r, y_{r+1}^p, \ldots, y_m^p] \\
\end{align*}
\]

(i.e. \(k[X]^d = k[y_1, \ldots, y_r] \) in the case of \(p = 0 \)) for some \(k \)-linear basis \(y_1, \ldots, y_m \) of \(k[X]_1 \).

1. The Jordan case. In this section we consider a special case when the matrix \((a_{ij}) \) of a linear derivation \(d \) of \(k[X] = k[x_1, \ldots, x_m] \) is already in the Jordan form

\[
\begin{pmatrix}
J_{m_1}(\varrho_1) & 0 & \cdots & 0 \\
0 & J_{m_2}(\varrho_2) & \cdots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{m_s}(\varrho_s)
\end{pmatrix},
\]

\[
J_{m_i}(\varrho_i) = \begin{pmatrix}
\varrho_i & 1 & \cdots & 0 \\
0 & \varrho_i & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & \varrho_i
\end{pmatrix}_{m_i},
\]

\(i = 1, \ldots, s \), where \(s \geq 1 \), \(m_1 \geq \cdots \geq m_s \), \(m_1 + \cdots + m_s = m \), and where \(\varrho_1, \ldots, \varrho_s \in k \).

Let \(n_1 = 1 \) and \(n_i = m_1 + \cdots + m_{i-1} + 1 \) for \(i = 2, \ldots, s \). Then \(d(x_{n_i}) = \varrho_i x_{n_i} \) and \(d(x_{n_i+l}) = x_{n_i+l-1} + \varrho_i x_{n_i+l} \) for \(l = 1, \ldots, m_i - 1 \), whenever \(m_i > 1 \).

Let

\[
I = \{1, \ldots, s\}, \quad I_0 = \{i \in I : \varrho_i = 0\}.
\]

We denote by \(d|_{k[X]_1} \) the restriction of \(d \) to \(k[X]_1 \). The kernel of \(d|_{k[X]_1} \) is \(k \)-linearly spanned by all the elements of the form \(x_{n_i} \), where \(i \in I_0 \), that is,

\[
k[X]^d \cap k[X]_1 = \langle x_{n_i} : i \in I_0 \rangle_k.
\]

This implies the following fact.

Proposition 1.1. Assume that \(k[X]^d = k[y_1, \ldots, y_r, y_{r+1}^p, \ldots, y_m^p] \) for some \(k \)-linear basis \(y_1, \ldots, y_m \) of \(k[X]_1 \). Then \(\langle y_1, \ldots, y_r \rangle_k = \langle x_{n_i} : i \in I_0 \rangle_k \) and \(k[X]^d \) is generated over \(k[X]^p \) by the elements \(x_{n_i} \), where \(i \in I_0 \), that is,

\[
k[X]^d = k[X]^p[x_{n_i} : i \in I_0].
\]

The aim of this section is to prove the following theorems.

Theorem 1.2. Let \(p = 0 \). The equality \(k[X]^d = k[x_{n_i} : i \in I_0] \) holds if and only if the following three conditions are satisfied:

1. the system \((\varrho_i : i \in I \setminus I_0) \) is linearly independent over \(\mathbb{N} \),
Theorem 1.3. Let \(p > 0 \). The equality \(k[X]^d = k[X^p]|_{x_{i^+}^p \equiv x_i} \) holds if and only if the following three conditions are satisfied:

1. The system \((g_i; i \in I \setminus I_0) \) is linearly independent over \(\mathbb{F}_p \),
2. \(m_1 \leq 2 \) or \(m_1 = 3, p = 2 \),
3. \(m_2 = 1 \).

Let \(\lambda_1, \ldots, \lambda_m \) be the diagonal elements of the matrix of \(d \), that is, \(\lambda_{n_i} = \cdots = \lambda_{n_i + m_i - 1} = g_i \) for \(i = 1, \ldots, s \). Obviously, \(d = d_D + d_N \), where \(d_D \) and \(d_N \) are the linear derivations defined by:

\[
\begin{align*}
d_D(x_j) &= \lambda_j x_j & \text{for} & \ j = 1, \ldots, m, \\
d_N(x_j) &= \begin{cases} 0 & \text{for} & j = n_1, \ldots, n_s, \\
x_j-1 & \text{for} & j \neq n_1, \ldots, n_s. \end{cases}
\end{align*}
\]

We see that

\[
d_D(x_1^{l_1} \ldots x_m^{l_m}) = (l_1 \lambda_1 + \cdots + l_m \lambda_m)x_1^{l_1} \ldots x_m^{l_m},
\]

\[
d_N(x_1^{l_1} \ldots x_m^{l_m}) = \sum_{j \neq n_1, \ldots, n_s} l_j x_1^{l_j-1} x_j^{-1} \ldots x_m^{l_m}.
\]

Proposition 1.4. \(k[X]^d = k[X]^{d_N} \cap k[X]^{d_D} \).

Proof. In the case of \(p = 0 \) this fact is well known ([4, Corollary 2.3] or [3, Corollary 9.4.4]). Assume that \(p > 0 \).

The inclusion \(k[X]^{d_N} \cap k[X]^{d_D} \subseteq k[X]^d \) is clear. To prove the reverse inclusion, suppose that \(d(f) = 0 \) for some \(f \in k[X] \). Let \(l \) be a positive integer such that \(p^l \geq m \), where \(m = \dim_k k[X]_1 \). Then \((d_N|_{k[X]})^p = 0 \), so \(d_N^p = 0 \), and we have \(d_D^p (f) = d^p (f) = 0 \).

It is easy to see that all the monomials of the form \(x_1^{l_1} \ldots x_m^{l_m} \) such that \(l_1 \lambda_1 + \cdots + l_m \lambda_m = 0 \) form a \(k \)-linear basis of \(k[X]^{d_D} \), and all the monomials of the form \(x_1^{l_1} \ldots x_m^{l_m} \) such that \(l_1 \lambda_1^p + \cdots + l_m \lambda_m^p = 0 \) form a \(k \)-linear basis of \(k[X]^{d_D^p} \). Since \(l_1 \lambda_1^p + \cdots + l_m \lambda_m^p = (l_1 \lambda_1 + \cdots + l_m \lambda_m)^p \) for every \(l_1, \ldots, l_m \in \mathbb{Z} \), we have \(k[X]^{d_D^p} = k[X]^{d_D} \). This implies that \(d_D(f) = 0, \) so \(d_N(f) = d(f) - d_D(f) = 0, \) and finally \(f \in k[X]^{d_N} \cap k[X]^{d_D} \).

Note the following useful proposition.

Proposition 1.5. Let \(K \) be a domain of characteristic \(p \geq 0 \). Let \(\delta \) be a \(K \)-derivation of \(K[x_1, \ldots, x_m] \) such that \(\delta(x_i) = 0 \) for \(i \leq r \) and \(\delta(x_i) = \mu_i x_i \) for \(i > r \), where \(\mu_{r+1}, \ldots, \mu_m \in K \setminus \{0\} \) are linearly independent (over \(\mathbb{F}_p \) in the case of \(p > 0 \), over \(\mathbb{N} \) in the case of \(p = 0 \)). Then \(K[x_1, \ldots, x_m]^\delta = K[x_1, \ldots, x_r, x_{r+1}^p, \ldots, x_m^p] \).
Proof. It is enough to observe that \(d(x_1^l_1 \ldots x_m^l_m) = (l_{r+1}\mu_{r+1} + \cdots + l_m\mu_m)x_1^{l_1} \ldots x_m^{l_m}\) for every \(l_1, \ldots, l_m \geq 0\), so \(K[x_1, \ldots, x_m]^\delta\) is a free \(K\)-module and the monomials \(x_1^{l_1} \ldots x_m^{l_m}\) such that \(l_{r+1}\mu_{r+1} + \cdots + l_m\mu_m = 0\) form a basis of this module. ■

Recall that \(I = \{1, \ldots, s\}\) and \(I_0 = \{i \in I : \varrho_i = 0\}\). Let \(J = \{1, \ldots, m\}\) and \(J_0 = \{j \in J : \lambda_j = 0\}\).

Proof of Theorem 1.2. (\(\Rightarrow\)) (1) Assume that the system \((\varrho_i; i \in I \setminus I_0)\) is linearly dependent over \(\mathbb{N}\). Then there exist \(l_1, \ldots, l_s \in \mathbb{N}\) such that \(l_1\varrho_1 + \cdots + l_s\varrho_s = 0\) and \(l_j > 0\) for some \(j \in I \setminus I_0\). In this case \(x_1^{l_1} \ldots x_n^{l_s} \in k[X]^d \setminus k[x_n; i \in I_0]\).

(2) The condition \(m_i \geq 3\) for some \(i \in I_0\) means that \(d(x_n_i) = 0\), \(d(x_{n_i+1}) = x_{n_i}\) and \(d(x_{n_i+2}) = x_{n_i+1}\). Then \(x_{n_i+1} - 2x_n x_{n_i+2} \in k[X]^d \setminus k[x_n; i \in I_0]\).

(3) The condition \(m_i, m_j \geq 2\) for some \(i, j \in I_0\), \(i \neq j\) means that \(d(x_n_i) = 0\), \(d(x_{n_i+1}) = x_{n_i}\), \(d(x_{n_j}) = 0\) and \(d(x_{n_j+1}) = x_{n_j}\). Then \(x_{n_i} x_{n_j+1} - x_{n_i+1} x_{n_j} \in k[X]^d \setminus k[x_n; i \in I_0]\).

(\(\Leftarrow\)) Assume that conditions (1)–(3) hold.

We have \(d_N(x_j) = 0\) for \(j \in J_0\) and \(d_N(x_j) = \lambda_j x_j\) for \(j \in I \setminus J_0\), where \(\lambda_j = \varrho_i \neq 0\), \(n_i \leq j < n_i + m_i\), \(i \in I \setminus I_0\). The system \((\lambda_j; j \in J \setminus J_0)\) is linearly independent over \(\mathbb{N}\), because \((\varrho_i; i \in I \setminus I_0)\) is, so \(k[X]^d N = k[x_j; j \in J_0]\) by Proposition 1.5.

Let \(d_N'\) be the restriction of \(d_N\) to \(k[x_j; j \in J_0]\). Then, by Proposition 1.4, \(k[X]^d = (k[X]^d N)^d N = k[x_j; j \in J_0]^d N\). If \(m_{i_0} = 2\) for some \(i_0 \in I_0\), then it is easy to see that \(k[x_j; j \in J_0]^d N = k[x_j; j \in J_0 \setminus \{m_{i_0+1}\}] = k[x_n; i \in I_0]\).

If \(m_i = 1\) for every \(i \in I_0\), then \(d_N' = 0\), so \(k[x_j; j \in J_0]^d N = k[x_j; j \in J_0] = k[x_n; i \in I_0]\). ■

Proof of Theorem 1.3. (\(\Rightarrow\)) (1) Assume that the system \((\varrho_i; i \in I \setminus I_0)\) is linearly dependent over \(\mathbb{F}_p\). Then there exist nonnegative integers \(l_1, \ldots, l_s < p\) such that \(l_1\varrho_1 + \cdots + l_s\varrho_s = 0\) and \(l_j > 0\) for some \(j \in I \setminus I_0\). In this case \(x_1^{l_1} \ldots x_n^{l_s} \in k[X]^d \setminus k[X^p][x_n; i \in I_0]\).

(2) The condition \(m_1 \geq 3\) means that \(d(x_1) = \varrho_1 x_1\), \(d(x_2) = x_1 + \varrho_1 x_2\) and \(d(x_3) = x_2 + \varrho_1 x_3\). Then for \(p > 2\) we have \(x_1^{p-2} x_2^2 - 2x_1^{p-1} x_3 \in k[X]^d \setminus k[X^p][x_n; i \in I_0]\).

The condition \(m_1 \geq 4\) means that \(d(x_1) = \varrho_1 x_1\), \(d(x_2) = x_1 + \varrho_1 x_2\), \(d(x_3) = x_2 + \varrho_1 x_3\) and \(d(x_4) = x_3 + \varrho_1 x_4\). Then for \(p = 2\) we have \(x_1^3 x_4 + x_1^2 x_2 x_3 + x_1 x_2^2 \in k[X]^d \setminus k[X^p][x_n; i \in I_0]\).

(3) The condition \(m_2 \geq 2\) means that \(d(x_1) = \varrho_1 x_1\), \(d(x_2) = x_1 + \varrho_1 x_2\), \(d(x_{m_1+1}) = \varrho_2 x_{m_1+1}\) and \(d(x_{m_1+2}) = x_{m_1+1} + \varrho_2 x_{m_1+2}\). Then \(x_1^{p-1} x_2 x_{m_1+1} - x_1 x_{m_1+1} x_{m_1+2} \in k[X]^d \setminus k[X^p][x_n; i \in I_0]\).
(⇐) Assume that conditions (1)–(3) hold.

Let \(d'_D\) be the restriction of \(d_D\) to \(k[X^p][x_{n_1}, \ldots, x_{n_s}]\). Recall that \(J = \{1, \ldots, m\}\). Consider the set \(J' = J \setminus \{n_1, \ldots, n_s\}\). Let \(K = k[x_j^p; j \in J']\).

We see that \(d'_D\) is a \(K\)-derivation of \(K[x_{n_1}, \ldots, x_{n_s}] = k[X^p][x_{n_1}, \ldots, x_{n_s}]\) such that \(d'_D(x_{n_i}) = g_i x_{n_i}\), where \(g_i = 0\) for \(i \in I_0\), \(g_i \neq 0\) for \(i \in I \setminus I_0\) and the system \((g_i; i \in I \setminus I_0)\) is linearly independent over \(\mathbb{F}_p\). Proposition 1.5 implies that \(k[X^p][x_{n_1}, \ldots, x_{n_s}]^{d'_D} = k[X^p][x_{n_i}; i \in I_0]\). This ends the proof if \(m_1 = 1\).

If \(m_1 = 2\), then it is easy to see that \(k[X]^{d_N} = k[x_1, x_2^p, x_3, \ldots, x_m] = k[X^p][x_{n_1}, \ldots, x_{n_s}]\). If \(p = 2\) and \(m_1 = 3\), then it is easy to see that \(k[X]^{d_N} = k[x_1, x_2^p, x_3^p, x_4, \ldots, x_m] = k[X^p][x_{n_1}, \ldots, x_{n_s}]\). In both cases, by Proposition 1.4, \(k[X]^d = (k[X]^{d_N})^{d_D} = k[X^p][x_{n_i}; i \in I_0]\).

2. Some facts about graded algebras. In this section by a graded \(k\)-algebra we mean a \(k\)-algebra with a \(\mathbb{Z}\)-grading \(A = \bigoplus_{j=0}^\infty A_j\). Nonzero elements of \(A_j\) are called homogeneous of degree \(j\).

Note the following well known fact.

Lemma 2.1. Let \(B = \bigoplus_{j=0}^\infty B_j\) be a graded commutative \(k\)-algebra, \(B_0 = k\), and \(M = \bigoplus_{j > 0} B_j\). Let \(f_1, \ldots, f_n \in M\).

(a) If \(B = k[f_1, \ldots, f_n]\), then \(M/M^2 = \langle f_1 + M^2, \ldots, f_n + M^2 \rangle_k\).

(b) If \(f_1, \ldots, f_n\) are homogeneous elements and \(M/M^2 = \langle f_1 + M^2, \ldots, f_n + M^2 \rangle_k\), then \(B = k[f_1, \ldots, f_n]\). ■

The original version of this lemma ([1, II.3.2]) was formulated as an equivalence of three conditions under the assumptions that \(k = \mathbb{C}\) and \(f_1, \ldots, f_n\) are homogeneous elements. However, the proof is valid for an arbitrary field \(k\) and the implication in (a) is true for arbitrary \(f_1, \ldots, f_n \in M\).

If elements \(f_1, \ldots, f_n\) generate the \(k\)-algebra \(B\), with \(n\) smallest possible, then we say that \(f_1, \ldots, f_n\) form a minimal system of generators of \(B\). Using the previous lemma we can easily establish the following proposition.

Proposition 2.2. Let \(B = \bigoplus_{j=0}^\infty B_j\) be a graded commutative \(k\)-algebra with \(B_0 = k\) and let \(C_j = \sum_{l=1}^{j-1} B_l \cdot B_{j-l}\) for \(j > 1\), \(C_1 = 0\), \(C_0 = k\).

(a) Homogeneous elements \(f_1, \ldots, f_n\) form a minimal system of generators of \(B\) if and only if for every \(j\) the residue classes modulo \(C_j\) of all the elements \(f_i\) of degree \(j\) form a basis of the \(k\)-linear space \(B_j/C_j\).

(b) Let \(k \subseteq k'\) be a field extension. Denote by \(B'\) the graded \(k'\)-algebra \(k' \otimes_k B\). Let \(C'_j = \sum_{l=1}^{j-1} B'_l \cdot B'_{j-l}\) for \(j > 1\), \(C'_1 = 0\), \(C'_0 = k'\). Then \(\dim_k B_j/C_j = \dim_{k'} B'_j/C'_j\) for every \(j\). Moreover, if homogeneous
elements f_1, \ldots, f_n form a minimal system of generators of the k-algebra B, then the elements $1 \otimes f_1, \ldots, 1 \otimes f_n$ form a minimal system of generators of the k'-algebra B'.

Proof. (a) Let $M = \bigoplus_{j>0} B_j$. Then $M^2 = \bigoplus_{j>0} C_j$. Lemma 2.1 implies that the elements f_1, \ldots, f_n generate the k-algebra B if and only if their residue classes modulo M generate the linear space $M/M^2 \simeq \bigoplus_j B_j/C_j$. So f_1, \ldots, f_n form a minimal system of generators of B if and only if for every j the residue classes modulo C_j of all the elements f_i of degree j form a basis of B_j/C_j.

(b) For every $j > 1$ we have a canonical k'-linear isomorphism

$$
\sum_{l=1}^{j-1} (k' \otimes_k B_i) \cdot (k' \otimes_k B_{j-l}) \simeq k' \otimes_k \sum_{l=1}^{j-1} B_i \cdot B_{j-l},
$$

that is, $C'_j \simeq k' \otimes_k C_j$. This implies that $\dim_k B_j/C_j = \dim_{k'} B'_j/C'_j$.

Let f_{i_1}, \ldots, f_{i_s} be all the elements f_i of degree j. By (a), the residue classes modulo C_j of f_{i_1}, \ldots, f_{i_s} form a k-linear basis of B_j/C_j. Then the residue classes of $1 \otimes f_{i_1}, \ldots, 1 \otimes f_{i_s}$ form a k'-linear basis of B'_j/C'_j. Again by (a), the elements $1 \otimes f_1, \ldots, 1 \otimes f_n$ form a minimal system of generators of the k'-algebra B'.

Note the following immediate consequence of Lemma 2.1 and Proposition 2.2(a).

Corollary 2.3. If B is generated by n elements (not necessarily homogeneous), then B is generated by some n homogeneous elements.

Proof. Let M and C_j be defined as in Lemma 2.1 and Proposition 2.2. It is enough to observe that $M/M^2 \simeq \bigoplus_{j=0}^\infty B_j/C_j$, so $\sum_{j=0}^\infty \dim_k B_j/C_j \leq n$.

Now we will prove the following proposition.

Proposition 2.4. Let $k \subseteq k'$ be an extension of fields of arbitrary characteristic $p \geq 0$, let B be a graded subalgebra of $k[X]$ and $B' = k' \otimes_k B$ the corresponding subalgebra of $k'[X]$. Let $r \in \{0, 1, \ldots, m\}$. Then the following conditions are equivalent:

(i) $B = k[y_1, \ldots, y_r, y_{r+1}^p, \ldots, y_m^p]$ for some k-linear basis y_1, \ldots, y_m of $k[X]_1$,

(ii) $B' = k'[z_1, \ldots, z_r, z_{r+1}^p, \ldots, z_m^p]$ for some k'-linear basis z_1, \ldots, z_m of $k'[X]_1$.

Proof. (i)\Rightarrow(ii) is obvious.

(ii)\Rightarrow(i). Assume that $B' = k'[z_1, \ldots, z_r, z_{r+1}^p, \ldots, z_m^p]$ for some k'-linear basis z_1, \ldots, z_m of $k'[X]_1$. Let C_j and C'_j be defined as in Proposition 2.2.
Let \(p = 0 \). The elements \(z_1, \ldots, z_r \) form a minimal system of generators of the \(k' \)-algebra \(B' \), so \(\dim_{k'} B'_j = r \) and \(\dim_{k'} B'_j/C'_j = 0 \) for \(j > 1 \) by Proposition 2.2(a). Proposition 2.2(b) implies that \(\dim_k B_1 = r \) and \(\dim_k B_j/C_j = 0 \) for \(j > 1 \). Let \(y_1, \ldots, y_r \) be a \(k \)-linear basis of \(B_1 \). Then \(y_1, \ldots, y_r \) form a minimal system of generators of the \(k \)-algebra \(B \) (Proposition 2.2(a)), so \(B = k[y_1, \ldots, y_r] \).

Now let \(p > 0 \). Using similar arguments to those for \(p = 0 \), we show that the elements \(y_1, \ldots, y_r \) of a \(k \)-linear basis of \(B_1 \) together with some elements \(t_{r+1}, \ldots, t_m \in B_p \) form a minimal system of generators of the \(k \)-algebra \(B \). We can enlarge \(\{y_1, \ldots, y_r\} \) to a basis \(\{y_1, \ldots, y_m\} \) of \(k[X]_1 \). Let \(V = k[y_1, \ldots, y_r]_p + \langle y^p_{r+1}, \ldots, y^p_m \rangle_k \). Then \(V \subseteq B_p \), but we see that \(\dim_k V = \dim_k B_p \), so \(V = B_p \), that is, \(k[y_1, \ldots, y_r]_p + \langle y^p_{r+1}, \ldots, y^p_m \rangle_k = k[y_1, \ldots, y_r]_p + \langle t_{r+1}, \ldots, t_m \rangle_k \). This implies that \(B = k[y_1, \ldots, y_r, y^p_{r+1}, \ldots, y^p_m] \).

Recall the following fact.

Proposition ([3, 5.1.1], [2, 2.1]). Let \(k \subseteq k' \) be a field extension and let \(d \) be a \(k \)-derivation of a \(k \)-algebra \(A \). Denote by \(i \) the inclusion \(A^d \rightarrow A \). Then \(d' = 1 \otimes d \) is a \(k' \)-derivation of the \(k' \)-algebra \(A' = k' \otimes_k A \) and \((1 \otimes i)(k' \otimes_k A^d) = A'^{d'} \).

The way of reducing an arbitrary linear derivation to its Jordan form is given in the following corollary of the above proposition and Proposition 2.4.

Corollary 2.5. If \(d \) is a \(k \)-derivation of \(k[X] \) and \(d' \) is a \(k' \)-derivation of \(k'[X] \) such that \(d'(x_i) = d(x_i) \) for \(i = 1, \ldots, m \), then the following conditions are equivalent:

(i) \(k[X]_d^d = k[y_1, \ldots, y_r, y^p_{r+1}, \ldots, y^p_m] \) for some \(k \)-linear basis \(y_1, \ldots, y_m \) of \(k[X]_1 \);

(ii) \(k'[X]_d^d = k'[z_1, \ldots, z_r, z^p_{r+1}, \ldots, z^p_m] \) for some \(k' \)-linear basis \(z_1, \ldots, z_m \) of \(k'[X]_1 \).

3. The general case. Now let \(d \) be a linear derivation of \(k[X] \). Using Corollary 2.5 for the algebraic closure \(\overline{k} \) of \(k \), Proposition 1.1 and Theorems 1.2 and 1.3 for the Jordan matrix of the endomorphism \(d|_{k[X]} \) over \(\overline{k} \), we obtain the following theorems.

Theorem 3.1. Let \(d \) be a linear derivation of \(k[X] \), where \(k \) is a field of characteristic 0. Then

\[
k[X]^d = k[y_1, \ldots, y_r]
\]

for some linearly independent homogeneous polynomials \(y_1, \ldots, y_m \) of degree 1 if and only if the Jordan matrix of \(d|_{k[X]} \) satisfies the following conditions.

(1) There are exactly \(r \) Jordan blocks with zero eigenvalues.
Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly independent over \mathbb{N}.

At most one Jordan block with zero eigenvalue has dimension greater than 1, and if such a block exists, it is of dimension 2.

Theorem 3.2. Let d be a linear derivation of $k[X]$, where k is a field of characteristic $p > 0$. Then

$$k[X]^d = k[y_1, \ldots, y_r, y_{r+1}^p, \ldots, y_m^p]$$

for some k-linear basis y_1, \ldots, y_m of $k[X]$ if and only if the Jordan matrix of $d|_{k[X]}$ satisfies the following conditions.

1. There are exactly r Jordan blocks with zero eigenvalues.
2. Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly independent over \mathbb{F}_p.
3. At most one Jordan block has dimension greater than 1, and if such a block exists, then its dimension is 2 in the case of $p > 2$, and 2 or 3 for $p = 2$.

Note that all the rings of constants mentioned in Theorems 3.1 and 3.2 are polynomial k-algebras. It is well known that in the case of char $k = 0$ there exist linear derivations of $k[X]$ with rings of constants being polynomial k-algebras not generated by linear forms. Let us end with the following question.

Question. Does there exist a linear derivation of $k[X]$, where char $k = p > 0$, such that $k[X]^d$ is a polynomial k-algebra not of the form mentioned in Theorem 3.2?

REFERENCES

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pjedrzej@mat.uni.torun.pl

Received 13 September 2007; revised 6 February 2008