LINEAR DERIVATIONS WITH RINGS OF CONSTANTS GENERATED BY LINEAR FORMS

BY
PIOTR JĘDRZEJEWICZ (Toruń)

Abstract

Let k be a field. We describe all linear derivations d of the polynomial algebra $k\left[x_{1}, \ldots, x_{m}\right]$ such that the algebra of constants with respect to d is generated by linear forms: (a) over k in the case of char $k=0$, (b) over $k\left[x_{1}^{p}, \ldots, x_{m}^{p}\right]$ in the case of char $k=p>0$.

Introduction. Throughout this paper k is a field of characteristic $p \geq 0$. We denote by $k[X]$ the polynomial algebra $k\left[x_{1}, \ldots, x_{m}\right]$ with the natural grading

$$
k[X]=\bigoplus_{j=0}^{\infty} k[X]_{j}
$$

where $k[X]_{j}$ is the subspace of forms of degree j. We also denote by $k\left[X^{p}\right]$ the subalgebra $k\left[x_{1}^{p}, \ldots, x_{m}^{p}\right]$, but in the case of $p=0$ we assume $x_{i}^{p}=1, i=$ $1, \ldots, m$, and $k\left[X^{p}\right]=k$. If $v_{1}, \ldots, v_{n} \in k[X]$, then we denote by $\left\langle v_{1}, \ldots, v_{n}\right\rangle_{k}$ the k-linear space spanned by v_{1}, \ldots, v_{n}. Throughout this paper we denote by \mathbb{N} the set of nonnegative integers, and by \mathbb{F}_{p} the prime subfield of k.

A k-linear mapping $d: k[X] \rightarrow k[X]$ is called a k-derivation of $k[X]$ if $d(f g)=f d(g)+g d(f)$ for all $f, g \in k[X]$. If d is a k-derivation of $k[X]$, then we denote by $k[X]^{d}$ the ring of constants of d, that is,

$$
k[X]^{d}=\{f \in k[X]: d(f)=0\}
$$

Note that $k\left[X^{p}\right] \subseteq k[X]^{d}$, so $k[X]^{d}$ is a $k\left[X^{p}\right]$-algebra.
A mapping $d: k[X] \rightarrow k[X]$ is called a linear derivation if d is a k derivation of $k[X]$ and $d\left(k[X]_{j}\right) \subseteq k[X]_{j}$ for $j=0,1,2, \ldots$. It is clear that a k-derivation d of $k[X]$ is a linear derivation if and only if

$$
d\left(x_{j}\right)=\sum_{i=1}^{m} a_{i j} x_{i} \quad \text { for } j=1, \ldots, m
$$

where $a_{i j} \in k$ for $i, j=1, \ldots, m$. A linear derivation d is uniquely determined by the matrix $\left(a_{i j}\right)$.

In the case of char $k=0$, Nowicki ([2]) described the linear derivations of $k[X]$ such that $k[X]^{d}=k$. He also described such derivations satisfying the condition $k(X)^{d}=k$, where $k(X)$ is the field of rational functions. In this paper we consider the following, more general problem, concerning polynomial constants of linear derivations. Let $0 \leq r \leq m$. The problem is to describe all linear derivations d of $k[X]$ such that

$$
k[X]^{d}=k\left[y_{1}, \ldots, y_{r}, y_{r+1}^{p}, \ldots, y_{m}^{p}\right]
$$

(i.e. $k[X]^{d}=k\left[y_{1}, \ldots, y_{r}\right]$ in the case of $p=0$) for some k-linear basis y_{1}, \ldots, y_{m} of $k[X]_{1}$.

1. The Jordan case. In this section we consider a special case when the matrix $\left(a_{i j}\right)$ of a linear derivation d of $k[X]=k\left[x_{1}, \ldots, x_{m}\right]$ is already in the Jordan form

$$
\left(\begin{array}{cccc}
J_{m_{1}}\left(\varrho_{1}\right) & 0 & \cdots & 0 \\
0 & J_{m_{2}}\left(\varrho_{2}\right) & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{m_{s}}\left(\varrho_{s}\right)
\end{array}\right), \quad J_{m_{i}}\left(\varrho_{i}\right)=\left(\begin{array}{cccc}
\varrho_{i} & 1 & \cdots & 0 \\
0 & \varrho_{i} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & \varrho_{i}
\end{array}\right),
$$

$i=1, \ldots, s$, where $s \geq 1, m_{1} \geq \cdots \geq m_{s}, m_{1}+\cdots+m_{s}=m$, and where $\varrho_{1}, \ldots, \varrho_{s} \in k$.

Let $n_{1}=1$ and $n_{i}=m_{1}+\cdots+m_{i-1}+1$ for $i=2, \ldots, s$. Then $d\left(x_{n_{i}}\right)=$ $\varrho_{i} x_{n_{i}}$ and $d\left(x_{n_{i}+l}\right)=x_{n_{i}+l-1}+\varrho_{i} x_{n_{i}+l}$ for $l=1, \ldots, m_{i}-1$, whenever $m_{i}>1$.

Let

$$
I=\{1, \ldots, s\}, \quad I_{0}=\left\{i \in I: \varrho_{i}=0\right\} .
$$

We denote by $\left.d\right|_{k[X]_{1}}$ the restriction of d to $k[X]_{1}$. The kernel of $\left.d\right|_{k[X]_{1}}$ is k-linearly spanned by all the elements of the form $x_{n_{i}}$, where $i \in I_{0}$, that is,

$$
k[X]^{d} \cap k[X]_{1}=\left\langle x_{n_{i}} ; i \in I_{0}\right\rangle_{k} .
$$

This implies the following fact.
Proposition 1.1. Assume that $k[X]^{d}=k\left[y_{1}, \ldots, y_{r}, y_{r+1}^{p}, \ldots, y_{m}^{p}\right]$ for some k-linear basis y_{1}, \ldots, y_{m} of $k[X]_{1}$. Then $\left\langle y_{1}, \ldots, y_{r}\right\rangle_{k}=\left\langle x_{n_{i}} ; i \in I_{0}\right\rangle_{k}$ and $k[X]^{d}$ is generated over $k\left[X^{p}\right]$ by the elements $x_{n_{i}}$, where $i \in I_{0}$, that is,

$$
k[X]^{d}=k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right] .
$$

The aim of this section is to prove the following theorems.
Theorem 1.2. Let $p=0$. The equality $k[X]^{d}=k\left[x_{n_{i}} ; i \in I_{0}\right]$ holds if and only if the following three conditions are satisfied:
(1) the system $\left(\varrho_{i} ; i \in I \backslash I_{0}\right)$ is linearly independent over \mathbb{N},
(2) $m_{i} \leq 2$ for every $i \in I_{0}$,
(3) $m_{i}=2$ for at most one $i \in I_{0}$.

Theorem 1.3. Let $p>0$. The equality $k[X]^{d}=k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$ holds if and only if the following three conditions are satisfied:
(1) the system ($\varrho_{i} ; i \in I \backslash I_{0}$) is linearly independent over \mathbb{F}_{p},
(2) $m_{1} \leq 2$ or $m_{1}=3, p=2$,
(3) $m_{2}=1$.

Let $\lambda_{1}, \ldots, \lambda_{m}$ be the diagonal elements of the matrix of d, that is, $\lambda_{n_{i}}=$ $\cdots=\lambda_{n_{i}+m_{i}-1}=\varrho_{i}$ for $i=1, \ldots, s$. Obviously $d=d_{D}+d_{N}$, where d_{D} and d_{N} are the linear derivations defined by:

$$
\begin{aligned}
& d_{D}\left(x_{j}\right)=\lambda_{j} x_{j} \quad \text { for } j=1, \ldots, m \\
& d_{N}\left(x_{j}\right)= \begin{cases}0 & \text { for } j=n_{1}, \ldots, n_{s} \\
x_{j-1} & \text { for } j \neq n_{1}, \ldots, n_{s}\end{cases}
\end{aligned}
$$

We see that

$$
\begin{aligned}
d_{D}\left(x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}\right) & =\left(l_{1} \lambda_{1}+\cdots+l_{m} \lambda_{m}\right) x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}, \\
d_{N}\left(x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}\right) & =\sum_{j \neq n_{1}, \ldots, n_{s}} l_{j} x_{1}^{l_{1}} \ldots x_{j-1}^{l_{j-1}+1} x_{j}^{l_{j}-1} \ldots x_{m}^{l_{m}} .
\end{aligned}
$$

Proposition 1.4. $k[X]^{d}=k[X]^{d_{N}} \cap k[X]^{d_{D}}$.
Proof. In the case of $p=0$ this fact is well known ([4, Corollary 2.3] or [3, Corollary 9.4.4]). Assume that $p>0$.

The inclusion $k[X]^{d_{N}} \cap k[X]^{d_{D}} \subseteq k[X]^{d}$ is clear. To prove the reverse inclusion, suppose that $d(f)=0$ for some $f \in k[X]$. Let l be a positive integer such that $p^{l} \geq m$, where $m=\operatorname{dim}_{k} k[X]_{1}$. Then $\left(\left.d_{N}\right|_{k[X]_{1}}\right)^{p^{l}}=0$, so $d_{N}^{p^{l}}=0$, and we have $d_{D}^{p^{l}}(f)=d^{p^{l}}(f)=0$.

It is easy to see that all the monomials of the form $x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}$ such that $l_{1} \lambda_{1}+\cdots+l_{m} \lambda_{m}=0$ form a k-linear basis of $k[X]^{d_{D}}$, and all the monomials of the form $x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}$ such that $l_{1} \lambda_{1}^{p^{l}}+\cdots+l_{m} \lambda_{m}^{p^{l}}=0$ form a k-linear basis of $k[X]_{D}^{d_{D}^{p^{l}}}$. Since $l_{1} \lambda_{1}^{p^{l}}+\cdots+l_{m} \lambda_{m}^{p^{l}}=\left(l_{1} \lambda_{1}+\cdots+l_{m} \lambda_{m}\right)^{p^{l}}$ for every $l_{1}, \ldots, l_{m} \in \mathbb{Z}$, we have $k[X]^{d_{D}^{p^{l}}}=k[X]^{d_{D}}$. This implies that $d_{D}(f)=0$, so $d_{N}(f)=d(f)-d_{D}(f)=0$, and finally $f \in k[X]^{d_{N}} \cap k[X]^{d_{D}}$.

Note the following useful proposition.
Proposition 1.5. Let K be a domain of characteristic $p \geq 0$. Let δ be a K-derivation of $K\left[x_{1}, \ldots, x_{m}\right]$ such that $\delta\left(x_{i}\right)=0$ for $i \leq r$ and $\delta\left(x_{i}\right)=\mu_{i} x_{i}$ for $i>r$, where $\mu_{r+1}, \ldots, \mu_{m} \in K \backslash\{0\}$ are linearly independent (over \mathbb{F}_{p} in the case of $p>0$, over \mathbb{N} in the case of $p=0$). Then $K\left[x_{1}, \ldots, x_{m}\right]^{\delta}=$ $K\left[x_{1}, \ldots, x_{r}, x_{r+1}^{p}, \ldots, x_{m}^{p}\right]$.

Proof. It is enough to observe that $d\left(x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}\right)=\left(l_{r+1} \mu_{r+1}+\cdots+\right.$ $\left.l_{m} \mu_{m}\right) x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}$ for every $l_{1}, \ldots, l_{m} \geq 0$, so $K\left[x_{1}, \ldots, x_{m}\right]^{\delta}$ is a free K module and the monomials $x_{1}^{l_{1}} \ldots x_{m}^{l_{m}}$ such that $l_{r+1} \mu_{r+1}+\cdots+l_{m} \mu_{m}=0$ form a basis of this module.

Recall that $I=\{1, \ldots, s\}$ and $I_{0}=\left\{i \in I: \varrho_{i}=0\right\}$. Let $J=\{1, \ldots, m\}$ and $J_{0}=\left\{j \in J: \lambda_{j}=0\right\}$.

Proof of Theorem 1.2. $(\Rightarrow)(1)$ Assume that the system $\left(\varrho_{i} ; i \in I \backslash I_{0}\right)$ is linearly dependent over \mathbb{N}. Then there exist $l_{1}, \ldots, l_{s} \in \mathbb{N}$ such that $l_{1} \varrho_{1}+$ $\cdots+l_{s} \varrho_{s}=0$ and $l_{j}>0$ for some $j \in I \backslash I_{0}$. In this case $x_{n_{1}}^{l_{1}} \ldots x_{n_{s}}^{l_{s}} \in$ $k[X]^{d} \backslash k\left[x_{n_{i}} ; i \in I_{0}\right]$.
(2) The condition $m_{i} \geq 3$ for some $i \in I_{0}$ means that $d\left(x_{n_{i}}\right)=0$, $d\left(x_{n_{i}+1}\right)=x_{n_{i}}$ and $d\left(x_{n_{i}+2}\right)=x_{n_{i}+1}$. Then $x_{n_{i}+1}^{2}-2 x_{n_{i}} x_{n_{i}+2} \in k[X]^{d} \backslash$ $k\left[x_{n_{i}} ; i \in I_{0}\right]$.
(3) The condition $m_{i}, m_{j} \geq 2$ for some $i, j \in I_{0}, i \neq j$ means that $d\left(x_{n_{i}}\right)=0, d\left(x_{n_{i}+1}\right)=x_{n_{i}}, d\left(x_{n_{j}}\right)=0$ and $d\left(x_{n_{j}+1}\right)=x_{n_{j}}$. Then $x_{n_{i}} x_{n_{j}+1}-$ $x_{n_{i}+1} x_{n_{j}} \in k[X]^{d} \backslash k\left[x_{n_{i}} ; i \in I_{0}\right]$.
(\Leftarrow) Assume that conditions (1)-(3) hold.
We have $d_{D}\left(x_{j}\right)=0$ for $j \in J_{0}$ and $d_{D}\left(x_{j}\right)=\lambda_{j} x_{j}$ for $j \in J \backslash J_{0}$, where $\lambda_{j}=\varrho_{i} \neq 0, n_{i} \leq j<n_{i}+m_{i}, i \in I \backslash I_{0}$. The system ($\lambda_{j} ; j \in J \backslash J_{0}$) is linearly independent over \mathbb{N}, because $\left(\varrho_{i} ; i \in I \backslash I_{0}\right)$ is, so $k[X]^{d_{D}}=k\left[x_{j} ; j \in J_{0}\right]$ by Proposition 1.5.

Let d_{N}^{\prime} be the restriction of d_{N} to $k\left[x_{j} ; j \in J_{0}\right]$. Then, by Proposition 1.4, $k[X]^{d}=\left(k[X]^{d_{D}}\right)^{d_{N}^{\prime}}=k\left[x_{j} ; j \in J_{0}\right]^{d_{N}^{\prime}}$. If $m_{i_{0}}=2$ for some $i_{0} \in I_{0}$, then it is easy to see that $k\left[x_{j} ; j \in J_{0}\right]^{d_{N}^{\prime}}=k\left[x_{j} ; j \in J_{0} \backslash\left\{n_{i_{0}+1}\right\}\right]=k\left[x_{n_{i}} ; i \in I_{0}\right]$. If $m_{i}=1$ for every $i \in I_{0}$, then $d_{N}^{\prime}=0$, so $k\left[x_{j} ; j \in J_{0}\right]^{d_{N}^{\prime}}=k\left[x_{j} ; j \in J_{0}\right]=$ $k\left[x_{n_{i}} ; i \in I_{0}\right]$.

Proof of Theorem 1.3. (\Rightarrow) (1) Assume that the system $\left(\varrho_{i} ; i \in I \backslash I_{0}\right)$ is linearly dependent over \mathbb{F}_{p}. Then there exist nonnegative integers l_{1}, \ldots, l_{s} $<p$ such that $l_{1} \varrho_{1}+\cdots+l_{s} \varrho_{s}=0$ and $l_{j}>0$ for some $j \in I \backslash I_{0}$. In this case $x_{n_{1}}^{l_{1}} \ldots x_{n_{s}}^{l_{s}} \in k[X]^{d} \backslash k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$.
(2) The condition $m_{1} \geq 3$ means that $d\left(x_{1}\right)=\varrho_{1} x_{1}, d\left(x_{2}\right)=x_{1}+\varrho_{1} x_{2}$ and $d\left(x_{3}\right)=x_{2}+\varrho_{1} x_{3}$. Then for $p>2$ we have $x_{1}^{p-2} x_{2}^{2}-2 x_{1}^{p-1} x_{3} \in k[X]^{d} \backslash$ $k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$.

The condition $m_{1} \geq 4$ means that $d\left(x_{1}\right)=\varrho_{1} x_{1}, d\left(x_{2}\right)=x_{1}+\varrho_{1} x_{2}$, $d\left(x_{3}\right)=x_{2}+\varrho_{1} x_{3}$ and $d\left(x_{4}\right)=x_{3}+\varrho_{1} x_{4}$. Then for $p=2$ we have $x_{1}^{3} x_{4}+$ $x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{3} \in k[X]^{d} \backslash k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$.
(3) The condition $m_{2} \geq 2$ means that $d\left(x_{1}\right)=\varrho_{1} x_{1}, d\left(x_{2}\right)=x_{1}+\varrho_{1} x_{2}$, $d\left(x_{m_{1}+1}\right)=\varrho_{2} x_{m_{1}+1}$ and $d\left(x_{m_{1}+2}\right)=x_{m_{1}+1}+\varrho_{2} x_{m_{1}+2}$. Then $x_{1}^{p-1} x_{2} x_{m_{1}+1}^{p}-$ $x_{1}^{p} x_{m_{1}+1}^{p-1} x_{m_{1}+2} \in k[X]^{d} \backslash k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$.
(\Leftarrow) Assume that conditions (1)-(3) hold.
Let d_{D}^{\prime} be the restriction of d_{D} to $k\left[X^{p}\right]\left[x_{n_{1}}, \ldots, x_{n_{s}}\right]$. Recall that $J=$ $\{1, \ldots, m\}$. Consider the set $J^{\prime}=J \backslash\left\{n_{1}, \ldots, n_{s}\right\}$. Let $K=k\left[x_{j}^{p} ; j \in J^{\prime}\right]$. We see that d_{D}^{\prime} is a K-derivation of $K\left[x_{n_{1}}, \ldots, x_{n_{s}}\right]=k\left[X^{p}\right]\left[x_{n_{1}}, \ldots, x_{n_{s}}\right]$ such that $d_{D}^{\prime}\left(x_{n_{i}}\right)=\varrho_{i} x_{n_{i}}$, where $\varrho_{i}=0$ for $i \in I_{0}, \varrho_{i} \neq 0$ for $i \in I \backslash I_{0}$ and the system $\left(\varrho_{i} ; i \in I \backslash I_{0}\right)$ is linearly independent over \mathbb{F}_{p}. Proposition 1.5 implies that $k\left[X^{p}\right]\left[x_{n_{1}}, \ldots, x_{n_{s}}\right]^{d_{D}^{\prime}}=k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$. This ends the proof if $m_{1}=1$.

If $m_{1}=2$, then it is easy to see that $k[X]^{d_{N}}=k\left[x_{1}, x_{2}^{p}, x_{3}, \ldots, x_{m}\right]=$ $k\left[X^{p}\right]\left[x_{n_{1}}, \ldots, x_{n_{s}}\right]$. If $p=2$ and $m_{1}=3$, then it is easy to see that $k[X]^{d_{N}}=k\left[x_{1}, x_{2}^{p}, x_{3}^{p}, x_{4}, \ldots, x_{m}\right]=k\left[X^{p}\right]\left[x_{n_{1}}, \ldots, x_{n_{s}}\right]$. In both cases, by Proposition 1.4, $k[X]^{d}=\left(k[X]^{d_{N}}\right)^{d_{D}^{\prime}}=k\left[X^{p}\right]\left[x_{n_{i}} ; i \in I_{0}\right]$.
2. Some facts about graded algebras. In this section by a graded k-algebra we mean a k-algebra with a \mathbb{Z}-grading $A=\bigoplus_{j=0}^{\infty} A_{j}$. Nonzero elements of A_{j} are called homogeneous of degree j.

Note the following well known fact.
Lemma 2.1. Let $B=\bigoplus_{j=0}^{\infty} B_{j}$ be a graded commutative k-algebra, $B_{0}=k$, and $M=\bigoplus_{j>0} B_{j}$. Let $f_{1}, \ldots, f_{n} \in M$.
(a) If $B=k\left[f_{1}, \ldots, f_{n}\right]$, then $M / M^{2}=\left\langle f_{1}+M^{2}, \ldots, f_{n}+M^{2}\right\rangle_{k}$.
(b) If f_{1}, \ldots, f_{n} are homogeneous elements and $M / M^{2}=\left\langle f_{1}+M^{2}, \ldots\right.$ $\left.\ldots, f_{n}+M^{2}\right\rangle_{k}$, then $B=k\left[f_{1}, \ldots, f_{n}\right]$.
The original version of this lemma ([1, II.3.2]) was formulated as an equivalence of three conditions under the assumptions that $k=\mathbb{C}$ and f_{1}, \ldots, f_{n} are homogeneous elements. However, the proof is valid for an arbitrary field k and the implication in (a) is true for arbitrary $f_{1}, \ldots, f_{n} \in M$.

If elements f_{1}, \ldots, f_{n} generate the k-algebra B, with n smallest possible, then we say that f_{1}, \ldots, f_{n} form a minimal system of generators of B. Using the previous lemma we can easily establish the following proposition.

Proposition 2.2. Let $B=\bigoplus_{j=0}^{\infty} B_{j}$ be a graded commutative k-algebra with $B_{0}=k$ and let $C_{j}=\sum_{l=1}^{j-1} B_{l} \cdot B_{j-l}$ for $j>1, C_{1}=0, C_{0}=k$.
(a) Homogeneous elements f_{1}, \ldots, f_{n} form a minimal system of generators of B if and only if for every j the residue classes modulo C_{j} of all the elements f_{i} of degree j form a basis of the k-linear space B_{j} / C_{j}.
(b) Let $k \subseteq k^{\prime}$ be a field extension. Denote by B^{\prime} the graded k^{\prime}-algebra $k^{\prime} \otimes_{k} B$. Let $C_{j}^{\prime}=\sum_{l=1}^{j-1} B_{l}^{\prime} \cdot B_{j-l}^{\prime}$ for $j>1, C_{1}^{\prime}=0, C_{0}^{\prime}=k^{\prime}$. Then $\operatorname{dim}_{k} B_{j} / C_{j}=\operatorname{dim}_{k^{\prime}} B_{j}^{\prime} / C_{j}^{\prime}$ for every j. Moreover, if homogeneous
elements f_{1}, \ldots, f_{n} form a minimal system of generators of the k algebra B, then the elements $1 \otimes f_{1}, \ldots, 1 \otimes f_{n}$ form a minimal system of generators of the k^{\prime}-algebra B^{\prime}.

Proof. (a) Let $M=\bigoplus_{j>0} B_{j}$. Then $M^{2}=\bigoplus_{j>0} C_{j}$. Lemma 2.1 implies that the elements f_{1}, \ldots, f_{n} generate the k-algebra B if and only if their residue classes modulo M generate the linear space $M / M^{2} \simeq \bigoplus_{j} B_{j} / C_{j}$. So f_{1}, \ldots, f_{n} form a minimal system of generators of B if and only if for every j the residue classes modulo C_{j} of all the elements f_{i} of degree j form a basis of B_{j} / C_{j}.
(b) For every $j>1$ we have a canonical k^{\prime}-linear isomorphism

$$
\sum_{l=1}^{j-1}\left(k^{\prime} \otimes_{k} B_{l}\right) \cdot\left(k^{\prime} \otimes_{k} B_{j-l}\right) \simeq k^{\prime} \otimes_{k} \sum_{l=1}^{j-1} B_{l} \cdot B_{j-l}
$$

that is, $C_{j}^{\prime} \simeq k^{\prime} \otimes_{k} C_{j}$. This implies that $\operatorname{dim}_{k} B_{j} / C_{j}=\operatorname{dim}_{k^{\prime}} B_{j}^{\prime} / C_{j}^{\prime}$.
Let $f_{i_{1}}, \ldots, f_{i_{s}}$ be all the elements f_{i} of degree j. By (a), the residue classes modulo C_{j} of $f_{i_{1}}, \ldots, f_{i_{s}}$ form a k-linear basis of B_{j} / C_{j}. Then the residue classes of $1 \otimes f_{i_{1}}, \ldots, 1 \otimes f_{i_{s}}$ form a k^{\prime}-linear basis of $B_{j}^{\prime} / C_{j}^{\prime}$. Again by (a), the elements $1 \otimes f_{1}, \ldots, 1 \otimes f_{n}$ form a minimal system of generators of the k^{\prime}-algebra B^{\prime}.

Note the following immediate consequence of Lemma 2.1 and Proposition 2.2(a).

Corollary 2.3. If B is generated by n elements (not necessarily homogeneous), then B is generated by some n homogeneous elements.

Proof. Let M and C_{j} be defined as in Lemma 2.1 and Proposition 2.2. It is enough to observe that $M / M^{2} \simeq \bigoplus_{j=0}^{\infty} B_{j} / C_{j}$, so $\sum_{j=0}^{\infty} \operatorname{dim}_{k} B_{j} / C_{j} \leq n$.

Now we will prove the following proposition.
Proposition 2.4. Let $k \subseteq k^{\prime}$ be an extension of fields of arbitrary characteristic $p \geq 0$, let B be a graded subalgebra of $k[X]$ and $B^{\prime}=k^{\prime} \otimes_{k} B$ the corresponding subalgebra of $k^{\prime}[X]$. Let $r \in\{0,1, \ldots, m\}$. Then the following conditions are equivalent:
(i) $B=k\left[y_{1}, \ldots, y_{r}, y_{r+1}^{p}, \ldots, y_{m}^{p}\right]$ for some k-linear basis y_{1}, \ldots, y_{m} of $k[X]_{1}$,
(ii) $B^{\prime}=k^{\prime}\left[z_{1}, \ldots, z_{r}, z_{r+1}^{p}, \ldots, z_{m}^{p}\right]$ for some k^{\prime}-linear basis z_{1}, \ldots, z_{m} of $k^{\prime}[X]_{1}$.

Proof. (i) \Rightarrow (ii) is obvious.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Assume that $B^{\prime}=k^{\prime}\left[z_{1}, \ldots, z_{r}, z_{r+1}^{p}, \ldots, z_{m}^{p}\right]$ for some k^{\prime}-linear basis z_{1}, \ldots, z_{m} of $k^{\prime}[X]_{1}$. Let C_{j} and C_{j}^{\prime} be defined as in Proposition 2.2.

Let $p=0$. The elements z_{1}, \ldots, z_{r} form a minimal system of generators of the k^{\prime}-algebra B^{\prime}, so $\operatorname{dim}_{k^{\prime}} B_{1}^{\prime}=r$ and $\operatorname{dim}_{k^{\prime}} B_{j}^{\prime} / C_{j}^{\prime}=0$ for $j>1$ by Proposition 2.2(a). Proposition 2.2(b) implies that $\operatorname{dim}_{k} B_{1}=r$ and $\operatorname{dim}_{k} B_{j} / C_{j}=0$ for $j>1$. Let y_{1}, \ldots, y_{r} be a k-linear basis of B_{1}. Then y_{1}, \ldots, y_{r} form a minimal system of generators of the k-algebra B (Proposition 2.2(a)), so $B=k\left[y_{1}, \ldots, y_{r}\right]$.

Now let $p>0$. Using similar arguments to those for $p=0$, we show that the elements y_{1}, \ldots, y_{r} of a k-linear basis of B_{1} together with some elements $t_{r+1}, \ldots, t_{m} \in B_{p}$ form a minimal system of generators of the k algebra B. We can enlarge $\left\{y_{1}, \ldots, y_{r}\right\}$ to a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of $k[X]_{1}$. Let $V=k\left[y_{1}, \ldots, y_{r}\right]_{p}+\left\langle y_{r+1}^{p}, \ldots, y_{m}^{p}\right\rangle_{k}$. Then $V \subseteq B_{p}$, but we see that $\operatorname{dim}_{k} V=$ $\operatorname{dim}_{k} B_{p}$, so $V=B_{p}$, that is, $k\left[y_{1}, \ldots, y_{r}\right]_{p}+\left\langle y_{r+1}^{p}, \ldots, y_{m}^{p}\right\rangle_{k}=k\left[y_{1}, \ldots, y_{r}\right]_{p}+$ $\left\langle t_{r+1}, \ldots, t_{m}\right\rangle_{k}$. This implies that $B=k\left[y_{1}, \ldots, y_{r}, y_{r+1}^{p}, \ldots, y_{m}^{p}\right]$.

Recall the following fact.
Proposition ([3, 5.1.1], [2, 2.1]). Let $k \subseteq k^{\prime}$ be a field extension and let d be a k-derivation of a k-algebra A. Denote by i the inclusion $A^{d} \hookrightarrow A$. Then $d^{\prime}=1 \otimes d$ is a k^{\prime}-derivation of the k^{\prime}-algebra $A^{\prime}=k^{\prime} \otimes_{k} A$ and $(1 \otimes i)\left(k^{\prime} \otimes_{k} A^{d}\right)=A^{\prime d^{\prime}}$.

The way of reducing an arbitrary linear derivation to its Jordan form is given in the following corollary of the above proposition and Proposition 2.4.

Corollary 2.5. If d is a k-derivation of $k[X]$ and d^{\prime} is a k^{\prime}-derivation of $k^{\prime}[X]$ such that $d^{\prime}\left(x_{i}\right)=d\left(x_{i}\right)$ for $i=1, \ldots, m$, then the following conditions are equivalent:
(i) $k[X]^{d}=k\left[y_{1}, \ldots, y_{r}, y_{r+1}^{p}, \ldots, y_{m}^{p}\right]$ for some k-linear basis y_{1}, \ldots, y_{m} of $k[X]_{1}$;
(ii) $k^{\prime}[X]^{d^{\prime}}=k^{\prime}\left[z_{1}, \ldots, z_{r}, z_{r+1}^{p}, \ldots, z_{m}^{p}\right]$ for some k^{\prime}-linear basis z_{1}, \ldots, z_{m} of $k^{\prime}[X]_{1}$.
3. The general case. Now let d be a linear derivation of $k[X]$. Using Corollary 2.5 for the algebraic closure \bar{k} of k, Proposition 1.1 and Theorems 1.2 and 1.3 for the Jordan matrix of the endomorphism $\left.d\right|_{k[X]_{1}}$ over \bar{k}, we obtain the following theorems.

Theorem 3.1. Let d be a linear derivation of $k[X]$, where k is a field of characteristic 0 . Then

$$
k[X]^{d}=k\left[y_{1}, \ldots, y_{r}\right]
$$

for some linearly independent homogeneous polynomials y_{1}, \ldots, y_{m} of degree 1 if and only if the Jordan matrix of $\left.d\right|_{k[X]_{1}}$ satisfies the following conditions.
(1) There are exactly r Jordan blocks with zero eigenvalues.
(2) Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly independent over \mathbb{N}.
(3) At most one Jordan block with zero eigenvalue has dimension greater than 1, and if such a block exists, it is of dimension 2.

Theorem 3.2. Let d be a linear derivation of $k[X]$, where k is a field of characteristic $p>0$. Then

$$
k[X]^{d}=k\left[y_{1}, \ldots, y_{r}, y_{r+1}^{p}, \ldots, y_{m}^{p}\right]
$$

for some k-linear basis y_{1}, \ldots, y_{m} of $k[X]_{1}$ if and only if the Jordan matrix of $\left.d\right|_{k[X]_{1}}$ satisfies the following conditions.
(1) There are exactly r Jordan blocks with zero eigenvalues.
(2) Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly independent over \mathbb{F}_{p}.
(3) At most one Jordan block has dimension greater than 1, and if such a block exists, then its dimension is 2 in the case of $p>2$, and 2 or 3 for $p=2$.
Note that all the rings of constants mentioned in Theorems 3.1 and 3.2 are polynomial k-algebras. It is well known that in the case of char $k=0$ there exist linear derivations of $k[X]$ with rings of constants being polynomial k-algebras not generated by linear forms. Let us end with the following question.

Question. Does there exist a linear derivation of $k[X]$, where char $k=$ $p>0$, such that $k[X]^{d}$ is a polynomial k-algebra not of the form mentioned in Theorem 3.2?

REFERENCES

[1] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig, 1985.
[2] A. Nowicki, On the nonexistence of rational first integrals for systems of linear differential equations, Linear Algebra Appl. 235 (1996) 107-120.
[3] -, Polynomial Derivations and Their Rings of Constants, UMK, Toruń, 1994.
[4] A. Nowicki and A. Tyc, On semisimple derivations in characteristic zero, Comm. Algebra 29 (2001), 5115-5130.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pjedrzej@mat.uni.torun.pl

