COLLOQUIUM MATHEMATICUM
 VOL. $113 \quad 2008 \quad$ NO. 2

TILTING SLICE MODULES
 OVER MINIMAL 2-FUNDAMENTAL ALGEBRAS

BY
ZYGMUNT POGORZAŁY (Toruń) and KAROLINA SZMYT (Bydgoszcz)

Abstract

A class of finite-dimensional algebras whose Auslander-Reiten quivers have starting but not generalized standard components is investigated. For these components the slices whose slice modules are tilting are considered. Moreover, the endomorphism algebras of tilting slice modules are characterized.

Introduction. We shall denote by K a fixed algebraically closed field. Moreover, we shall only consider finite-dimensional associative K-algebras with a unit element that will be assumed to be basic and connected.

For a given algebra A we shall denote by $\bmod (A)$ the category of finitedimensional left A-modules, and by Γ_{A} the Auslander-Reiten quiver of A $[2,3]$. We shall denote by $\underline{\bmod }(A)$ (respectively, $\overline{\bmod }(A))$ the stable category of $\bmod (A)$ modulo projectives (resp., injectives). If $f \in \operatorname{Hom}_{A}(X, Y)$ then \underline{f} (resp., \bar{f}) denotes its coset modulo projectives (resp., injectives).

We are interested in minimal 2-fundamental algebras, introduced in [8]. In many cases, their Auslander-Reiten quiver contains a component at the beginning that is not generalized standard in the sense of Skowroński [12] and contains projective vertices. Therefore it is reasonable to generalize the notion of slice introduced in [7] and study when a slice module is a tilting module. That was done in [9], where a postprojective (resp., preinjective) slice \mathcal{S} was defined and a slice module $M_{\mathcal{S}}$ considered. It was shown that there are only finitely many postprojective (resp., preinjective) slices \mathcal{S} whose slice modules $M_{\mathcal{S}}$ are tilting (resp., cotilting).

In the present paper our objective is to provide a detailed description of such slices \mathcal{S}. Our first main result is

Theorem 1. For a minimal 2-fundamental algebra A let \mathcal{C} be the starting (resp., ending) component in Γ_{A} that is not generalized standard. Let $\mathcal{S}=$

[^0]$\left\{X_{i}\right\}_{i=1}^{t}$ be a postprojective (resp., preinjective) slice in \mathcal{C}. Then the slice module $X_{\mathcal{S}}=\bigoplus_{i=1}^{t} X_{i}$ is a tilting (resp., cotilting) A-module if and only if \mathcal{S} is contained in the postprojective starting cone C_{sc} (resp., preinjective ending cone C_{ec}) in \mathcal{C}.

We also have the following characterization for $\operatorname{End}_{A}\left(X_{\mathcal{S}}\right)^{\mathrm{op}}$, where \mathcal{S} is a postprojective (resp., preinjective) slice contained in $C_{\text {sc }}$ (resp., $C_{\text {ec }}$).

Theorem 2. For a minimal 2-fundamental algebra A let \mathcal{C} be the starting (resp., ending) component in Γ_{A} that is not generalized standard. Let \mathcal{S} be a postprojective (resp., preinjective) slice in \mathcal{C}, contained in C_{sc} (resp., C_{ec}). Then $\operatorname{End}_{A}\left(X_{\mathcal{S}}\right)^{\mathrm{op}}$ is a (t, p, s)-algebra (resp., $(t, p, s)^{\mathrm{op}}$-algebra).

The definitions of a (t, p, s)-algebra (resp., $(t, p, s)^{\text {op }}$-algebra) are given in Section 3. The integers t, p, s are uniquely determined by the algebra A.

We shall use freely all information on Auslander-Reiten sequences and irreducible homomorphisms that can be found in [2,3]. For background on the representation theory of algebras we refer to $[1,3,10,11]$.

1. Preliminaries. Following Gabriel [6] one can associate a bound quiver $\left(Q_{A}, I_{A}\right)$ to a finite-dimensional basic K-algebra A in such a way that $A \cong$ $K Q_{A} / I_{A}$, where $K Q_{A}$ is the path algebra of Q_{A} and I_{A} is a two-sided ideal in $K Q_{A}$ contained in the square of the two-sided ideal generated by the arrows. The algebra A is said to be triangular if Q_{A} has no oriented cycle. We shall use the standard notation. To every vertex x of Q_{A} we can attach a simple A-module S_{x}, its projective cover P_{x} and its injective envelope E_{x}.

An algebra A is said to be special biserial (see [13]) if there exists a bound quiver $\left(Q_{A}, I_{A}\right)$ with $A \cong K Q_{A} / I_{A}$ such that:
(1) Every vertex of Q_{A} is the source of at most two arrows.
(2) Every vertex of Q_{A} is the sink of at most two arrows.
(3) For every arrow α in Q_{A} there exists at most one arrow β (respectively, γ) such that $\alpha \beta \notin I_{A}$ (resp., $\gamma \alpha \notin I_{A}$).

Throughout the paper we shall always consider special biserial algebras of the form $K Q_{A} / I_{A}$ with $\left(Q_{A}, I_{A}\right)$ satisfying the above conditions.

Let $A=K Q_{A} / I_{A}$ be special biserial. Then A is called a string algebra (see [4]) if I_{A} is generated only by paths. For a string algebra A there is a full classification of indecomposable finite-dimensional left A-modules [5, 14]. Every such module X is a string module or a band module. In the first case X is induced by a walk w in $\left(Q_{A}, I_{A}\right)$, which is denoted by writing $X=X(w)$. The other case will not be used here. Moreover, an algorithm for computing Auslander-Reiten sequences for string modules is due to Skowroński and Waschbüsch [13]. Recall that if $X(w)$ is a noninjective string A-module then
we have the Auslander-Reiten sequence

$$
0 \rightarrow X(w) \rightarrow X\left(w_{L}\right) \oplus X\left(w_{R}\right) \rightarrow X\left(w_{L R}\right)=\tau^{-1}(X(w)) \rightarrow 0 .
$$

If $X(w)$ is nonprojective then we have the Auslander-Reiten sequence

$$
0 \rightarrow \tau(X(w))=X\left(w_{L^{-1} R^{-1}}\right) \rightarrow X\left(w_{L^{-1}} \oplus X\left(w_{R^{-1}}\right) \rightarrow X(w) \rightarrow 0 .\right.
$$

A triangular string algebra $A=K Q_{A} / I_{A}$ is said to be $\tilde{\mathbb{A}}_{m}$-separated provided that for any two subquivers $Q^{\prime}, Q^{\prime \prime}$ in Q_{A} of type $\tilde{\mathbb{A}}_{m}$ such that $K Q^{\prime} \cap I_{A}=0=K Q^{\prime \prime} \cap I_{A}$ we have $Q_{0}^{\prime} \cap Q_{0}^{\prime \prime}=\emptyset$, where $Q_{0}^{\prime}, Q_{0}^{\prime \prime}$ denote the sets of vertices of $Q^{\prime}, Q^{\prime \prime}$, respectively.

A triangular string $\tilde{\mathbb{A}}_{m}$-separated algebra $A=K Q_{A} / I_{A}$ is said to be 2 -fundamental [8] if it is connected and the following conditions are satisfied:
(i) There exist exactly two full subquivers $Q^{\prime}, Q^{\prime \prime}$ of type $\tilde{\mathbb{A}}_{m}$ in $\left(Q_{A}, I_{A}\right)$ such that $K Q^{\prime} \cap I_{A}=0=K Q^{\prime \prime} \cap I_{A}$ and the quiver \bar{Q}_{A} obtained from Q_{A} by removing the arrows from Q^{\prime} and $Q^{\prime \prime}$ and identifying the vertices of Q^{\prime} with a vertex 0^{\prime} and the vertices of $Q^{\prime \prime}$ with a vertex $0^{\prime \prime}$ is a tree.
(ii) For $0^{j}=0^{\prime}$ or $0^{\prime \prime}$ there exists either a maximal path v in \bar{Q}_{A} starting at 0^{j} such that $v \notin I_{A}$, or a maximal path u in \bar{Q}_{A} ending at 0^{j} such that $u \notin I_{A}$. If v (treated as a path in Q_{A}) starts at some vertex x in Q^{j} that is a sink of two maximal paths v_{1}, v_{2} in Q^{j} then $v_{1} v \notin I_{A}$ or $v_{2} v \notin I_{A}$. If u (treated as a path in Q_{A}) ends at some vertex y in Q^{j} that is a source of two maximal paths u_{1}, u_{2} in Q^{j} then $u u_{1} \notin I_{A}$ or $u u_{2} \notin I_{A}$.

A 2-fundamental algebra A is said to be minimal if the graph obtained from the quiver \bar{Q}_{A} by forgetting orientations of the arrows is of the form $0^{\prime}-\cdots-0^{\prime \prime}$.

Following Auslander and Reiten [2, 3] we can attach to any K-algebra A its Auslander-Reiten quiver Γ_{A}. We shall not distinguish between indecomposable A-modules and vertices of Γ_{A}. A component in Γ_{A} will always mean a connected component. A component \mathcal{C} of Γ_{A} is said to be starting (resp., ending) (see [8]) if there is no nonzero morphism $f: X \rightarrow Y$ between indecomposable modules X, Y such that $Y \in \mathcal{C}$ and $X \notin \mathcal{C}$ (resp., $X \in \mathcal{C}$ and $Y \notin \mathcal{C})$.

We say that a component \mathcal{C} of Γ_{A} is generalized standard (see [12]) if $\operatorname{rad}^{\infty}(X, Y)=0$ for any indecomposable $X, Y \in \mathcal{C}$. Recall that $\operatorname{rad}^{\infty}(\bmod (A))$ is the intersection of all positive powers of the Jacobson radical $\operatorname{rad}(\bmod (A))$.

Let $\underline{p}=\left(p_{1}, \ldots, p_{q}\right), \underline{s}=\left(s_{1}, \ldots, s_{r}\right)$ and $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ be strictly increasing sequences of nonnegative integers. Let $l_{1}, l_{2} \geq 1$ be integers. Con-
sider a quiver $Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ of the following form:

Let $I_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ be the two-sided ideal of $K Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ generated by the paths $\alpha_{1, z} \alpha_{1,1}^{\prime \prime}, \alpha_{1, a}^{\prime} \alpha_{n, 1}^{\prime \prime}$. Set $A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}=K Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)} / I_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$. We can also consider the quiver $Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ dual to $Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$. Let $I_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ denote the two-sided ideal in $K Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ generated by $\alpha_{1,1}^{\prime \prime} \alpha_{1, z}, \alpha_{n, 1}^{\prime \prime} \alpha_{1, a}^{\prime}$. Set $A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}=K Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)} / \bar{I}_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$.

Recall from [9] the following lemma.
Lemma 1.1. Let A be a minimal 2-fundamental algebra.
(1) If Γ_{A} contains a starting component that is not generalized standard then there are strictly increasing sequences $\underline{p}, \underline{x}, \underline{s}$ of nonnegative integers and integers $l_{1}, l_{2} \geq 1$ such that $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$.
(2) If Γ_{A} contains an ending component that is not generalized standard then there are strictly increasing sequences $\underline{p}, \underline{x}, \underline{s}$ of nonnegative integers and integers $l_{1}, l_{2} \geq 1$ such that $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$.
Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$, and consider the unique starting component \mathcal{C} in Γ_{A}. Then \mathcal{C} contains all indecomposable projective left A-modules and it is not
generalized standard (see [8; Theorem 5.7]). A postprojective slice in \mathcal{C} is a set $\mathcal{S}=\left\{N_{1}, \ldots, N_{t}\right\}$ of vertices of \mathcal{C} such that:
(0) \mathcal{S} consists only of postprojective modules.
(1) There is no oriented cycle of irreducible morphisms in \mathcal{C} between modules from \mathcal{S}.
(2) If $M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{m}$ is a path in \mathcal{C} such that $M_{0}, M_{m} \in \mathcal{S}$ then $M_{1}, \ldots, M_{m-1} \in \mathcal{S}$.
(3) \mathcal{S} contains exactly one representative of every τ-orbit of projective A-modules.

For $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ one can dually define a preinjective slice in the unique ending component of Γ_{A}.

If \mathcal{S} is a postprojective (resp., preinjective) slice in \mathcal{C}, then $X_{\mathcal{S}}=\bigoplus_{i=1}^{t} N_{i}$ is called the postprojective (resp., preinjective) slice module of \mathcal{S}.
2. Slices in cones. For $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ (resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and the starting (resp., ending) component \mathcal{C} in Γ_{A} we define some walks in $Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$. First consider the case of $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$. Then we put $u=\alpha_{1, z+1} \alpha_{1, z+2} \ldots \alpha_{1, p_{1}}$ in $Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ if $z \neq p_{1}$, and $u=p_{1}$ if $z=p_{1}$. Further, $v=\alpha_{1, a+1}^{\prime} \alpha_{1, a+2}^{\prime} \ldots \alpha_{1, s_{1}}^{\prime}$ if $a \neq s_{1}$, and $v=s_{1}^{\prime}$ if $a=s_{1}$. Now consider the case $A \cong A_{\left(\underline{\left.\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}\right.}^{(2)}$. Then we put $u=\alpha_{1, p_{1}} \ldots \alpha_{1, z+1}$ in $Q_{\left(\underline{p}, l_{1}, \underline{x}, \mathbf{s}, l_{2}\right)}^{(2)}$ if $z \neq p_{1}$, and $u=p_{1}$ if $z=p_{1}$. Further, $v=\alpha_{1, s_{1}}^{\prime} \ldots \alpha_{1, a+1}^{\prime}$ if $a \neq s_{1}$, and $v=s_{1}^{\prime}$ if $a=s_{1}$.

For a starting (resp., ending) component \mathcal{C} in Γ_{A} we define the postprojective (resp., preinjective) starting cone C_{sc} (resp., ending cone C_{ec}) in \mathcal{C} to consist of all vertices X of \mathcal{C} such that:
(1) X is postprojective (resp., preinjective).
(2) There is an integer $i_{X} \geq 0$ and a path (maybe trivial) in \mathcal{C} from X to $X\left(u_{R^{i} X}^{-1}\right)$ (resp., from $X\left(u_{L^{-i_{X}}}\right)$ to $\left.X\right)$.
(3) There is an integer $j_{X} \geq 0$ and a path (maybe trivial) in \mathcal{C} from X to $X\left(v_{L^{j} X}\right)$ (resp., from $X\left(v_{R^{-j} X}^{-1}\right)$ to X).

A module X in C_{sc} or C_{ec} is defined to be inner if $i_{X} \geq 1$ or $j_{X} \geq 1$ respectively.

For the quiver $Q_{\left(\underline{p}, l_{1}, \underline{\underline{c}, \underline{s},}, l_{2}\right)}^{(1)}$ we define

$$
\begin{aligned}
& p=p_{2}-p_{1}+p_{4}-p_{3}+\cdots+p_{q-1}-p_{q-2}+l_{1}, \\
& s=s_{2}-s_{1}+s_{4}-s_{3}+\cdots+s_{r-1}-s_{r-2}+l_{2},
\end{aligned}
$$

$$
\begin{aligned}
p^{\prime} & =p_{q}-p_{q-1}+p_{q-2}-p_{q-3}+\cdots+p_{3}-p_{2}+p_{1} \\
s^{\prime} & =s_{r}-s_{r-1}+s_{r-2}-s_{r-3}+\cdots+s_{3}-s_{2}+s_{1}
\end{aligned}
$$

LEMMA 2.1. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$.
(1) For any integers $j, i \geq 0$ we have

$$
X\left(\left(u^{-1}\right)_{L^{j} R^{p^{\prime}+i}}\right) / X\left(\left(\alpha_{1,2}^{\prime \prime} \ldots \alpha_{1, x_{1}}^{\prime \prime}\right)_{R^{i}}\right) \cong X\left(\left(u^{-1}\right)_{L^{p+j}}\right)
$$

(2) For any integers $j, i \geq 0$ we have

$$
X\left(v_{L^{s^{\prime}+i} R^{j}}\right) / X\left(\left(\alpha_{n, x_{n}-x_{n-1}}^{\prime \prime-1} \ldots \alpha_{n, 2}^{\prime \prime-1}\right)_{L^{i}}\right) \cong X\left(v_{R^{s+j}}\right)
$$

Proof. First we prove the condition in (1) for $i=0$ by induction on $j \geq 0$. If $j=0$ then

$$
\begin{aligned}
& X\left(\left(u^{-1}\right)_{R^{p^{\prime}}}\right) \cong X\left(u^{-1} \alpha_{1, z}^{-1} \ldots \alpha_{1,1}^{-1} \alpha_{0,1} \ldots \alpha_{0, l_{1}} \alpha_{q, p_{q}-p_{q-1}}^{-1} \ldots \alpha_{q, 1}^{-1} \alpha_{q-1,1} \ldots\right. \\
& \left.\quad \ldots \alpha_{q-1, p_{q-1}-p_{q-2}} \alpha_{q-2, p_{q-2}-p_{q-3}}^{-1} \ldots \alpha_{2, p_{2}-p_{1}} \alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} \ldots \alpha_{1, x_{1}}^{\prime \prime}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
X\left(\left(u^{-1}\right)_{L^{p}}\right) \cong & X\left(\alpha_{1, p_{1}}^{-1} \cdots \alpha_{1,1}^{-1} \alpha_{0,1} \ldots \alpha_{0, l_{1}} \alpha_{q, p_{q}-p_{q-1}}^{-1} \ldots \alpha_{q, 1}^{-1} \alpha_{q-1,1} \ldots\right. \\
& \left.\ldots \alpha_{q-1, p_{q-1}-p_{q-2}} \alpha_{q-2, p_{q-2}-p_{q-3}}^{-1} \ldots \alpha_{2, p_{2}-p_{1}} \alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1}\right)
\end{aligned}
$$

Hence it is clear that $X\left(\left(u^{-1}\right)_{R^{p^{\prime}}}\right) / X\left(\alpha_{1,2}^{\prime \prime} \ldots \alpha_{1, x_{1}}^{\prime \prime}\right) \cong X\left(\left(u^{-1}\right)_{L^{p}}\right)$.
Now we assume that the condition in (1) holds for some $j_{0} \geq 0$ and set $j=j_{0}+1$. Then $X\left(\left(u^{-1}\right)_{L^{j_{0}+1} R^{p^{\prime}}}\right) \cong X\left(\left(\left(u^{-1}\right)_{L^{j_{0} R^{p^{\prime}}}}\right)_{L}\right)$. Similarly, $X\left(\left(u^{-1}\right)_{L^{p+j_{0}+1}}\right) \cong X\left(\left(\left(u^{-1}\right)_{L^{p+j_{0}}}\right)_{L}\right)$. Furthermore, by the inductive assumption, $X\left(\left(u^{-1}\right)_{L^{j_{0} R^{p^{\prime}}}}\right) / X\left(\alpha_{1,2}^{\prime \prime} \cdots \alpha_{1, x_{1}}^{\prime \prime}\right) \cong X\left(\left(u^{-1}\right)_{L^{p+j_{0}}}\right)$. Then the Sko-wroński-Waschbüsch algorithm gives $X\left(\left(\left(u^{-1}\right)_{L^{j_{0}} R^{p^{\prime}}}\right)_{L}\right) / X\left(\alpha_{1,2}^{\prime \prime} \ldots \alpha_{1, x_{1}}^{\prime \prime}\right) \cong$ $\left.X\left(\left(u^{-1}\right)_{L^{p+j_{0}}}\right)_{L}\right)$, which finishes the proof of (1) in the case $i=0$.

Now, applying the Skowroński-Waschbüsch algorithm, we get (1) for all i, j.

Similarly one can prove (2).
Lemma 2.2. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$.
(1) For any integers $j, i \geq 0$ we have

$$
X\left(u_{L^{-j} R^{-p^{\prime}-i}}\right) / X\left(u_{L^{-j-p}}\right) \cong X\left(\left(\alpha_{1,2}^{\prime \prime-1} \cdots \alpha_{1, x_{1}}^{\prime \prime-1}\right)_{R^{-i}}\right)
$$

(2) For any integers $j, i \geq 0$ we have

$$
X\left(\left(v^{-1}\right)_{L^{-s^{\prime}-i} R^{-j}}\right) / X\left(\left(v^{-1}\right)_{R^{-s-j}}\right) \cong X\left(\left(\alpha_{n, x_{n}-x_{n-1}}^{\prime \prime} \ldots \alpha_{n, 2}^{\prime \prime}\right)_{L^{-i}}\right)
$$

Proof. Use arguments dual to those in the proof of Lemma 2.1.
For a fixed postprojective (resp., preinjective) slice \mathcal{S}, we shall consider the slice module $X_{\mathcal{S}}=\bigoplus_{i=1}^{t} X\left(w_{i}\right)$. Moreover, we shall fix an indexing of the walks w_{1}, \ldots, w_{t} in such a way that $X\left(w_{1}\right)$ belongs to the τ^{-1}-orbit of
P_{z-1} (resp., τ-orbit of E_{z-1}) and $X\left(w_{t}\right)$ belongs to the τ^{-1}-orbit of $P_{(a-1)^{\prime}}$ (resp., τ-orbit of $E_{(a-1)^{\prime}}$). Then we can identify \mathcal{S} with the set of vertices of a subquiver $X\left(w_{1}\right)-X\left(w_{2}\right)-\cdots-X\left(w_{t}\right)$ in \mathcal{C}, where - stands for a left or right arrow. For $X\left(w_{i}\right), X\left(w_{j}\right) \in \mathcal{S}$ with $i<j$ we define $l_{\mathcal{S}}\left(X\left(w_{i}\right), X\left(w_{j}\right)\right)$ and $r_{\mathcal{S}}\left(X\left(w_{i}\right), X\left(w_{j}\right)\right)$ to be the numbers of left and of right arrows in $X\left(w_{i}\right)-\cdots-X\left(w_{j}\right)$, respectively.

Let \mathcal{S}_{0} denote the postprojective (resp., preinjective) slice formed by the projective (resp., injective) vertices of \mathcal{C}.

Lemma 2.3. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} be the starting component in Γ_{A}. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a postprojective slice in \mathcal{C}.
(1) If $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right)$ and $X\left(w_{i_{0}}\right) \cong \tau^{-d}\left(P_{z}\right)$ then

$$
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+c-d, \quad r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p^{\prime}+d-c .
$$

(2) If $X\left(w_{t}\right) \cong \tau^{-e}\left(P_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{0}}\right) \cong \tau^{-f}\left(P_{a^{\prime}}\right)$ then

$$
l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right)=s^{\prime}+f-e, \quad r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right)=s+e-f .
$$

(3) If $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right)$ and $X\left(w_{i_{0}}\right) \cong \tau^{-d}\left(P_{i}\right)$ for some $i \in\{0,1, \ldots$, $\left.p_{q}+l_{1}-1\right\} \backslash\{z-1\}$, then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right) & =l_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)+c-d, \\
r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right) & =r_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)+d-c .
\end{aligned}
$$

(4) If $X\left(w_{t}\right) \cong \tau^{-c}\left(P_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{0}}\right) \cong \tau^{-d}\left(P_{i^{\prime}}\right)$ for some $i \in\{0,1, \ldots$, $\left.s_{r}+l_{2}-1\right\} \backslash\{a-1\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right) & =l_{\mathcal{S}_{0}}\left(P_{i^{\prime}}, P_{(a-1)^{\prime}}\right)+c-c, \\
r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right) & =r_{\mathcal{S}_{0}}\left(P_{i^{\prime}}, P_{(a-1)^{\prime}}\right)+c-d .
\end{aligned}
$$

Proof. We prove (1) by induction on $c+d$. If $c+d=0$ then $c=0=d$. Thus $X\left(w_{1}\right) \cong P_{z-1}$ and $X\left(w_{i_{0}}\right) \cong P_{z}$. Furthermore, replacement of $X\left(w_{i}\right)$ with $\tau^{-1}\left(X\left(w_{i}\right)\right)$ does not affect $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)$ and $r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)$ for $1<i<i_{0}$. Therefore $l_{\mathcal{S}}\left(P_{z-1}, P_{z}\right)=p$ and $r_{\mathcal{S}}\left(P_{z-1}, P_{z}\right)=p^{\prime}$ as desired.

Now assume that (1) holds for $c+d \leq n_{0}$, and let $c+d=n_{0}+1$. Then either $\tau(\mathcal{S})=\left\{\tau\left(X\left(w_{i}\right)\right)\right\}_{i=1}^{t}$ is a postprojective slice in \mathcal{C}, or there is $X\left(w_{j_{0}}\right) \in \mathcal{S}$ that is projective.

If $\tau(\mathcal{S})$ is a postprojective slice in \mathcal{C} then by the inductive assumption

$$
l_{\tau(\mathcal{S})}\left(\tau\left(X\left(w_{1}\right)\right), \tau\left(X\left(w_{i_{0}}\right)\right)\right)=p+(c-1)-(d-1)=p+c-d .
$$

But the left hand side equals $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)$. Similarly we show that $r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p^{\prime}+d-c$.

If there is a projective vertex $X\left(w_{j_{0}}\right) \in \mathcal{S}$ then choose one with j_{0} minimal. If $j_{0}=1$ then $X\left(w_{1}\right) \cong P_{z-1}$. Then it is easily seen that every shift of P_{z} along its τ^{-1}-orbit decreases $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)$ by 1 and increases
$r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)$ by 1 . Moreover, shifts of the other indecomposable projective A-modules along their τ^{-1}-orbits do not affect these numbers. Therefore (1) is satisfied. If $j_{0}>1$ then we proceed similarly.

The proofs of (2)-(4) are similar.
LEMMA 2.4. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ and \mathcal{C} be the ending component in Γ_{A}. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a preinjective slice in \mathcal{C}.
(1) If $X\left(w_{1}\right) \cong \tau^{c}\left(E_{z-1}\right)$ and $X\left(w_{i_{0}}\right) \cong \tau^{d}\left(E_{z}\right)$ then

$$
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p^{\prime}+d-c, \quad r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+c-d
$$

(2) If $X\left(w_{t}\right) \cong \tau^{e}\left(E_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{0}}\right) \cong \tau^{f}\left(E_{A^{\prime}}\right)$ then

$$
l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right)=s+e-f, \quad r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right)=s^{\prime}+f-e
$$

(3) If $X\left(w_{1}\right) \cong \tau^{c}\left(E_{z-1}\right)$ and $X\left(w_{i_{0}}\right) \cong \tau^{d}\left(E_{i}\right)$ for some $i \in\{0,1, \ldots$, $\left.p_{q}+l_{1}-1\right\} \backslash\{z-1\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right) & =l_{\mathcal{S}_{0}}\left(E_{z-1}, E_{i}\right)+d-c \\
r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right) & =r_{\mathcal{S}_{0}}\left(E_{z-1}, E_{i}\right)+c-d
\end{aligned}
$$

(4) If $X\left(w_{t}\right) \cong \tau^{e}\left(E_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{0}}\right) \cong \tau^{f}\left(E_{i^{\prime}}\right)$ for some $i \in\{0,1, \ldots$, $\left.s_{r}+l_{2}-1\right\} \backslash\{a-1\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right) & =l_{\mathcal{S}_{0}}\left(E_{i^{\prime}}, E_{(a-1)^{\prime}}\right)+e-f \\
r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right) & =r_{\mathcal{S}_{0}}\left(E_{i^{\prime}}, E_{(a-1)^{\prime}}\right)+f-e
\end{aligned}
$$

Proof. Dual to the proof of Lemma 2.3.
LEMMA 2.5. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} be the starting component in Γ_{A}. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a postprojective slice in \mathcal{C}.
(1) If $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right)$ and $X\left(w_{i_{1}}\right) \cong \tau^{-e}\left(P_{j^{\prime \prime}}\right)$ for some $j \in\{1, \ldots$, $\left.x_{n}-1\right\}$ then

$$
\begin{aligned}
& l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{1}}\right)\right)=p+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+c-e \\
& r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{1}}\right)\right)=p^{\prime}+r_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+e-c
\end{aligned}
$$

(2) If $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right)$ and $X\left(w_{i_{2}}\right) \cong \tau^{-f}\left(P_{j^{\prime}}\right)$ for some $j \in\{0,1, \ldots$, $\left.s_{r}+l_{2}-1\right\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{2}}\right)\right) & =p+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime}}\right)+c-f \\
r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{2}}\right)\right) & =p^{\prime}+r_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime}}\right)+f-c
\end{aligned}
$$

(3) If $X\left(w_{t}\right) \cong \tau^{-e}\left(P_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{1}}\right) \cong \tau^{-d}\left(P_{i^{\prime \prime}}\right)$ for some $i \in\{1, \ldots$, $\left.x_{n}-1\right\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{j_{1}}\right), X\left(w_{t}\right)\right) & =s^{\prime}+l_{\mathcal{S}_{0}}\left(P_{i^{\prime \prime}}, P_{a^{\prime}}\right)+d-e \\
r_{\mathcal{S}}\left(X\left(w_{j_{1}}\right), X\left(w_{t}\right)\right) & \left.=s+r_{\mathcal{S}_{0}}\left(P_{i^{\prime \prime}}, P_{a^{\prime}}\right)\right)+e-d
\end{aligned}
$$

(4) If $X\left(w_{t}\right) \cong \tau^{-e}\left(P_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{2}}\right) \cong \tau^{-c}\left(P_{i}\right)$ for some $i \in\{0,1, \ldots$, $\left.p_{q}+l_{1}-1\right\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{j_{2}}\right), X\left(w_{t}\right)\right) & =s^{\prime}+l_{\mathcal{S}_{0}}\left(P_{i}, P_{a^{\prime}}\right)+c-e \\
r_{\mathcal{S}}\left(X\left(w_{j_{2}}\right), X\left(w_{t}\right)\right) & =s+r_{\mathcal{S}_{0}}\left(P_{i}, P_{a^{\prime}}\right)+e-c
\end{aligned}
$$

Proof. To prove (1), observe that for $X\left(w_{i_{0}}\right) \cong \tau^{-d}\left(P_{z}\right)$ the arguments from the proof of Lemma 2.3 yield

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{i_{0}}\right), X\left(w_{i_{1}}\right)\right) & =l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+d-e \\
r_{\mathcal{S}}\left(X\left(w_{i_{0}}\right), X\left(w_{i_{1}}\right)\right) & =r_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+e-d
\end{aligned}
$$

Then the equalities $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+c-d$ and $r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=$ $p^{\prime}+d-c$ from Lemma 2.3 imply

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{1}}\right)\right. & =l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)+l_{\mathcal{S}}\left(X\left(w_{i_{0}}\right), X\left(w_{i_{1}}\right)\right) \\
& =p+c-d+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+d-e \\
& =p+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+c-e
\end{aligned}
$$

and

$$
\begin{aligned}
r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{1}}\right)\right. & =r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)+r_{\mathcal{S}}\left(X\left(w_{i_{0}}\right), X\left(w_{i_{1}}\right)\right) \\
& =p^{\prime}+d-c+r_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+e-d \\
& =p^{\prime}+r_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+e-c .
\end{aligned}
$$

Similar arguments yield (2)-(4).
Lemma 2.6. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ and \mathcal{C} be the ending component in Γ_{A}. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a preinjective slice in \mathcal{C}.
(1) If $X\left(w_{1}\right) \cong \tau^{c}\left(E_{z-1}\right)$ and $X\left(w_{i_{1}}\right) \cong \tau^{e}\left(E_{j^{\prime \prime}}\right)$ for some $j \in\{1, \ldots$, $\left.x_{n}-1\right\}$ then

$$
\begin{array}{r}
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{1}}\right)\right)=p^{\prime}+l_{\mathcal{S}_{0}}\left(E_{z}, E_{j^{\prime \prime}}\right)+e-c, \\
r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{1}}\right)\right)=p+r_{\mathcal{S}_{0}}\left(E_{z}, E_{j^{\prime \prime}}\right)+c-e .
\end{array}
$$

(2) If $X\left(w_{1}\right) \cong \tau^{c}\left(E_{z-1}\right)$ and $X\left(w_{i_{2}}\right) \cong \tau^{f}\left(E_{j^{\prime}}\right)$ for some $j \in\{0,1, \ldots$, $\left.s_{r}+l_{2}-1\right\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{2}}\right)\right) & =p^{\prime}+l_{\mathcal{S}_{0}}\left(E_{z}, E_{j^{\prime}}\right)+f-c \\
r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{2}}\right)\right) & =p+l_{\mathcal{S}_{0}}\left(E_{z}, E_{j^{\prime}}\right)+c-f
\end{aligned}
$$

(3) If $X\left(w_{t}\right) \cong \tau^{e}\left(E_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{1}}\right) \cong \tau^{d}\left(E_{i^{\prime \prime}}\right)$ for some $i \in\{1, \ldots$, $\left.x_{n}-1\right\}$ then

$$
\begin{aligned}
l_{\mathcal{S}}\left(X\left(w_{j_{1}}\right), X\left(w_{t}\right)\right) & =s+l_{\mathcal{S}_{0}}\left(E_{i^{\prime \prime}}, E_{a^{\prime}}\right)+e-d \\
r_{\mathcal{S}}\left(X\left(w_{j_{1}}\right), X\left(w_{t}\right)\right) & =s^{\prime}+r_{\mathcal{S}_{0}}\left(E_{i^{\prime \prime}}, E_{a^{\prime}}\right)+d-e
\end{aligned}
$$

(4) If $X\left(w_{t}\right) \cong \tau^{e}\left(E_{(a-1)^{\prime}}\right)$ and $X\left(w_{j_{2}}\right) \cong \tau^{c}\left(E_{i}\right)$ for some $i \in\{0,1, \ldots$, $\left.p_{q}+l_{1}-1\right\}$ then

$$
\begin{aligned}
& l_{\mathcal{S}}\left(X\left(w_{j_{2}}\right), X\left(w_{t}\right)\right)=s+l_{\mathcal{S}_{0}}\left(E_{i}, E_{a^{\prime}}\right)+e-c, \\
& r_{\mathcal{S}}\left(X\left(w_{j_{2}}\right), X\left(w_{t}\right)\right)=s^{\prime}+r_{\mathcal{S}_{0}}\left(E_{i}, E_{a^{\prime}}\right)+c-e .
\end{aligned}
$$

Proof. Dual to the proof of Lemma 2.5.
For a given postprojective (resp., preinjective) slice $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ in the starting (resp., ending) component \mathcal{C} we can define $\mathcal{S}^{\prime}=\left\{X\left(v_{i}\right)\right\}_{i=1}^{t}$, where for each $i=1, \ldots, t$ the walk v_{i} satisfies:

$$
X\left(v_{i}\right)= \begin{cases}\tau\left(X\left(w_{i}\right)\right) & \text { if } X\left(w_{i}\right) \text { is not projective } \\ X\left(w_{i}\right) & \text { otherwise }\end{cases}
$$

(resp.,

$$
X\left(v_{i}\right)= \begin{cases}\tau^{-1}\left(X\left(w_{i}\right)\right) & \text { if } X\left(w_{i}\right) \text { is not injective } \\ X\left(w_{i}\right) & \text { otherwise })\end{cases}
$$

Lemma 2.7. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(p, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A}. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a postprojective (resp., preinjective) slice in \mathcal{C}. Then $\mathcal{S}^{\prime}=\left\{X\left(v_{i}\right)\right\}_{i=1}^{t}$ is a postprojective (resp., preinjective) slice in \mathcal{C}.

Proof. It is easily seen that if \mathcal{S} consists only of postprojective A-modules then so does \mathcal{S}^{\prime}. Furthermore by [9; Lemma 3.2] there is no finite oriented cycle in \mathcal{C} consisting of modules from \mathcal{S}^{\prime}.

Consider a path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{m}$ in \mathcal{C} such that $X_{0}, X_{m} \in \mathcal{S}^{\prime}$. If $X_{0}=\tau\left(X_{0}^{\prime}\right)$ and $X_{m}=\tau\left(X_{m}^{\prime}\right)$ for some $X_{0}^{\prime}, X_{m}^{\prime} \in \mathcal{S}$ then we have the path $X_{0}^{\prime} \rightarrow X_{1}^{\prime} \rightarrow \cdots \rightarrow X_{m-1}^{\prime} \rightarrow X_{m}^{\prime}$ in \mathcal{C}, where $\tau\left(X_{i}^{\prime}\right)=X_{i}$ for each $i=1, \ldots, m-1$. Since \mathcal{S} is a postprojective slice, we have $X_{1}^{\prime}, \ldots, X_{m-1}^{\prime} \in \mathcal{S}$ and they are not projective, because $\tau\left(X_{i}^{\prime}\right)=X_{i}$. Thus $X_{1}, \ldots, X_{m-1} \in \mathcal{S}^{\prime}$.

If $X_{0}=\tau\left(X_{0}^{\prime}\right)$ and $X_{m}=X_{m}^{\prime}$ is projective, and $X_{0}^{\prime}, X_{m}^{\prime} \in \mathcal{S}$, then each X_{i} is projective, because the above path in \mathcal{C} connects postprojective modules. Now we show inductively on m that $X_{1}, \ldots, X_{m-1} \in \mathcal{S}^{\prime}$. If $m=1$ this is obvious. Assume that this holds for all paths with the above properties whose length is m_{0}. Let $X_{0} \rightarrow \cdots \rightarrow X_{m_{0}+1}$ be a path with $X_{0}, \ldots, X_{m_{0}+1}$ postprojective such that $X_{0}, X_{m_{0}+1} \in \mathcal{S}^{\prime}$ and $X_{m_{0}+1} \in \mathcal{S}$ is projective. Then so is $X_{m_{0}}$. If $X_{m_{0}} \notin \mathcal{S}$ then we use the fact that \mathcal{S} contains exactly one representative of any τ^{-1}-orbit of projective A-modules and that a path in \mathcal{C} whose source and target belong to \mathcal{S} passes only through vertices from \mathcal{S}. These two facts imply that $\tau^{-1}\left(X_{m_{0}}\right) \in \mathcal{S}$. Thus $X_{m_{0}} \in \mathcal{S}^{\prime}$ and so $X_{1}, \ldots, X_{m_{0}-1} \in \mathcal{S}^{\prime}$ by the inductive assumption. Similarly if $X_{m_{0}} \in \mathcal{S}$ then $X_{m_{0}} \in \mathcal{S}^{\prime}$, and we obtain the same conclusion.

If $X_{0} \in \mathcal{S}$ is projective and $X_{m}=\tau\left(X_{m}^{\prime}\right)$ for some $X_{m}^{\prime} \in \mathcal{S}$ that is not projective, then we shall prove the required condition inductively on the
length m of paths with these properties. The case $m=1$ is obvious. Assume that, for every path of length m_{0} in \mathcal{C} which starts at a projective $X_{0} \in \mathcal{S}$ and ends at $X_{m_{0}} \in \mathcal{S}^{\prime}$ such that $X_{m_{0}}=\tau\left(X_{m_{0}}^{\prime}\right)$ with $X_{m_{0}}^{\prime} \in \mathcal{S}$, we have all $X_{1}, \ldots, X_{m_{0}-1}$ in \mathcal{S}^{\prime}. Consider now a path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{m_{0}+1}$ with the above properties. If X_{1} is projective and $X_{1} \in \mathcal{S}$ then it is clear that $X_{1} \in \mathcal{S}^{\prime}$, and $X_{2}, \ldots, X_{m_{0}} \in \mathcal{S}^{\prime}$ by the inductive assumption. If X_{1} is projective and $X_{1} \notin \mathcal{S}$ then as above we find that X_{1} must belong to \mathcal{S}^{\prime}, because \mathcal{S} is a postprojective slice, and so contains a representative of the τ^{-1}-orbit of X_{1}. Since any path starting at X_{0} and ending at that representative can only pass through vertices from \mathcal{S}, the representative must be X_{1}.

If X_{1} is not projective then $X_{1}=\tau\left(X_{1}^{\prime}\right)$ for some nonprojective $X_{1}^{\prime} \in \mathcal{S}$. But we have the path $X_{0} \rightarrow X_{1} \rightarrow X \rightarrow X_{1}^{\prime}$, where X is from the τ^{-1} orbit of X_{0}. Thus $X_{1}, X \in \mathcal{S}$, which is impossible, because $X_{0} \in \mathcal{S}$. This contradiction finishes the proof in the case in question.

Since \mathcal{S} contains exactly one representative from every τ^{-1}-orbit of indecomposable projective A-modules, the same holds for \mathcal{S}^{\prime} by construction. Consequently, \mathcal{S}^{\prime} is a postprojective slice in \mathcal{C}.

If \mathcal{S} is a preinjective slice in \mathcal{C}, one proceeds dually.
Proposition 2.8. Suppose that the assumptions of Lemma 2.7 hold.
(1) If $A \cong A_{\left(p, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(p, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right)$, $X\left(w_{i_{0}}\right) \cong \tau^{-e}(P)\left(\right.$ resp., $\left.X\left(w_{1}\right) \cong \tau^{c}\left(E_{z-1}\right), X\left(w_{i_{0}}\right) \cong \tau^{e}(E)\right)$ for some indecomposable projective (resp., injective) A-module P (resp., E) and $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+1\left(\right.$ resp., $\left.r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+1\right)$ then there is a nonzero homomorphism $f: \tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \rightarrow X\left(w_{1}\right)$ (resp., $g: X\left(w_{1}\right) \rightarrow \tau\left(X\left(w_{i_{0}}\right)\right)$) such that $\underline{f} \neq 0$ (resp., $\bar{g} \neq 0$) for $c \neq 0$.
(2) If $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(p, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and $X\left(w_{t}\right) \cong \tau^{-e}\left(P_{(a-1)^{\prime}}\right)$, $X\left(w_{j_{0}}\right) \cong \tau^{-d}(P)\left(\right.$ resp. $\left., X\left(w_{t}\right) \cong \tau^{e}\left(E_{(a-1)^{\prime}}\right), X\left(w_{j_{0}}\right) \cong \tau^{d}(E)\right)$ for some indecomposable projective (resp., injective) A-module P (resp., $E)$ and $r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right)=s+1\left(\right.$ resp., $\left.l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), X\left(w_{t}\right)\right)=s+1\right)$ then there is a nonzero homomorphism $f: \tau^{-1}\left(X\left(w_{j_{0}}\right)\right) \rightarrow X\left(w_{t}\right)$ (resp., $g: X\left(w_{t}\right) \rightarrow \tau\left(X\left(w_{j_{0}}\right)\right)$) such that $f \neq 0$ (resp., $\bar{g} \neq 0$) for $e \neq 0$.
Proof. Assume that $A \cong A_{\left(\underline{p}, l_{1}, \underline{p}, \underline{s}, l_{2}\right)}^{(1)}$ and $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right), X\left(w_{i_{0}}\right) \cong$ $\tau^{-e}(P)$ for some indecomposable projective A-module P. Furthermore, assume that $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+1$. Thus $P \not \not P_{z-1}$.

The first case we consider is $P \cong P_{i}$ for some $i \in\left\{0,1, \ldots, p_{q}+l_{1}-1\right\} \backslash$ $\{z-1\}$. Then $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=l_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)+c-e=p+1$ by Lemma 2.3 , hence $c=e-l_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)+p+1$. Now we prove (1) inductively on c. If
$c=1$ then the equation $l_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)=e+p$ has exactly one solution in the case $e=0$ and $i=z$. Define $f: \tau^{-1}\left(P_{z}\right) \rightarrow \tau^{-1}\left(P_{z-1}\right)$ to be the composition of an epimorphism $f_{1}: \tau^{-1}\left(P_{z}\right) \rightarrow X\left(\left(u^{-1}\right)_{L}\right)$ and a monomorphism f_{2} : $X\left(\left(u^{-1}\right)_{L}\right) \rightarrow \tau^{-1}\left(P_{z-1}\right)$. It is clear that $\underline{f}=\underline{f_{2} f_{1}} \neq 0$ as desired.

Now assume that for any $c \leq c_{0}$ the desired f can be found and let $c=c_{0}+1$. Then we deduce from $c_{0}+1=e-l_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)+p+1$ that $c_{0}=e-$ $l_{\mathcal{S}_{0}}\left(P_{z-1}, P_{i}\right)+p$. If $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+1$ then either $X\left(w_{i_{0}}\right)$ is not projective and $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), X\left(\left(w_{i_{0}}\right)_{L^{-1} R^{-1}}\right)\right)=p+1$, or $X\left(w_{i_{0}}\right)$ is projective by Lemma 2.7. If $X\left(w_{i_{0}}\right)$ is projective but not simple then there exists an irreducible homomorphism $P_{i+1} \rightarrow P_{i}$ and $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), P_{i+1}\right)=p+1$. If $X\left(w_{i_{0}}\right)$ is a simple projective A-module then $X\left(w_{i_{0}}\right) \cong S_{p_{j}}$ for an odd j and we replace either $S_{p_{j}}$ with $P_{p_{j-1}-1}$, or $S_{p_{1}}$ with P_{z}. In the former case, for $j>0$, we obviously have $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), P_{p_{j-1}-1}\right)=p+1$. In the latter case $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), P_{z}\right)=p$, which means that $X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right) \cong P_{z-1}$. Then, as above, we obtain a homomorphism $f: \tau^{-1}\left(P_{z}\right) \rightarrow X\left(w_{1}\right) \cong$ $X\left(\left(u^{-1}\right)_{L R^{2}}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L}\right)$ but not through $X\left(u^{-1}\right)$, which shows that $\underline{f} \neq 0$.

Now we can consider the other subcases. If $X\left(w_{i_{0}}\right)$ is not projective, then $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), X\left(\left(w_{i_{0}}\right)_{L^{-1} R^{-1}}\right)\right)=p+1$ and by the inductive assumption there is a nonzero homomorphism $f^{\prime}: \tau^{-1}\left(X\left(\left(w_{i_{0}}\right)_{L^{-1} R^{-1}}\right)\right)$ $\rightarrow X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right)$ such that $\underline{f}^{\prime} \neq 0$. Then $\underline{f}=\tau^{-1}\left(\underline{f}^{\prime}\right) \neq 0$ as desired (in fact, it factorizes through $\left.\bar{X}\left(\left(u^{-1}\right)_{L^{c_{0}+1}}\right)\right)$.

If $X\left(w_{i_{0}}\right)$ is projective but not simple then $X\left(w_{i_{0}}\right) \cong P_{i}$ and we have $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), P_{i+1}\right)=p+1$. Then the inductive assumption yields a nonzero homomorphism $f^{\prime}: \tau^{-1}\left(P_{i+1}\right) \rightarrow X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right)$ that factorizes through $X\left(\left(u^{-1}\right) L^{c_{0}}\right)$ and satisfies $\underline{f}^{\prime} \neq 0$. But then for $P_{i+1} \cong X(w)$ we have $w_{i_{0}}=w_{L}$. Therefore there is a nonzero homomorphism $f^{\prime \prime}: \tau^{-1}\left(P_{i}\right) \rightarrow$ $X\left(w_{1}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{c_{0}+1}}\right)$ and satisfies $\underline{f}^{\prime \prime} \neq 0$.

If $X\left(w_{i_{0}}\right)$ is a simple projective A-module and $X\left(w_{i_{0}}\right) \cong S_{p_{j}}$ for an odd $j>1$ and we have replaced $S_{p_{j}}$ by $P_{p_{j-1}-1}$, then $l_{\mathcal{S}^{\prime}}\left(X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right), P_{p_{j-1}-1}\right)$ $=p+1$. The inductive assumption yields a nonzero homomorphism h : $\tau^{-1}\left(P_{p_{j-1}-1}\right) \rightarrow X\left(\left(w_{1}\right)_{L^{-1} R^{-1}}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{c_{0}}}\right)$ and satisfies $\underline{h} \neq 0$. Further, we have an inclusion $h_{1}: S_{p_{j}} \rightarrow \tau^{-1}\left(P_{p_{j-1}-1}\right)$ that induces an embedding $h_{2}: \tau^{-1}\left(S_{p_{j}}\right) \rightarrow \tau^{-2}\left(P_{p_{j-1}-1}\right)$. Moreover, h induces a homomorphism $h^{\prime}: \tau^{-2}\left(P_{p_{j-1}-1}\right) \rightarrow X\left(w_{1}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{c_{0}+1}}\right)$ and satisfies $\tau^{-1}(\underline{h})=\underline{h}^{\prime}$. Then $h^{\prime} h_{2}: \tau^{-1}\left(S_{p_{j}}\right) \rightarrow X\left(w_{1}\right)$ is nonzero and does not factorize through $X\left(\left(u^{-1}\right)_{L^{c_{0}}}\right)$. Thus $\underline{h^{\prime} h_{2}} \neq 0$. This finishes the inductive proof of the first case.

Now we consider the second case: $P \cong P_{j^{\prime \prime}}$ for some $j \in\left\{1, \ldots, x_{n}-1\right\}$. Then $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+c-e=p+1$ by Lemma 2.5, and hence $l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+c-e=1$. In this case we shall prove inductively
on c that there is a nonzero homomorphism $f: \tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \rightarrow X\left(w_{1}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{c}}\right)$ and satisfies $\underline{f} \neq 0$ for $c \geq 1$.

If $c=0$ then $l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)-e=1$, hence $l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)-1=e$. Thus it is easy to verify that, for $\tau^{-e}\left(P_{j^{\prime \prime}}\right) \cong X\left(w_{i_{0}}\right)$, there is a walk w^{\prime} such that $w_{i_{0}}=\alpha_{1,2}^{\prime \prime} w^{\prime}$ provided $x_{1}>1$, and $w_{i_{0}}=e_{x_{1}^{\prime \prime}} w^{\prime}$ provided $x_{1}=1$, where $e_{x_{1}^{\prime \prime}}$ is the trivial walk attached to the vertex $x_{1}^{\prime \prime}$. Thus $\tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \cong$ $X\left(\left(w_{i_{0}}\right)_{L R}\right)$, where $\left(w_{i_{0}}\right)_{L R}=\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime}\left(w_{i_{0}}\right)_{R}$. Hence there is a nonzero homomorphism $f: \tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \rightarrow P_{z-1}$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{0}}\right)=X\left(u^{-1}\right)$. Thus $\underline{f}=0$, but $c=0$ and the required condition is satisfied.

Assume that for every postprojective slice \mathcal{S} of \mathcal{C} and any $c \leq c_{0}$ the required condition holds. Consider now any postprojective slice \mathcal{S} of \mathcal{C} with the above $X\left(w_{i_{0}}\right), X\left(w_{1}\right)$ such that $c=c_{0}+1$. Then, since $p+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+$ $c_{0}+1-e=p+1$, we have $l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime \prime}}\right)+c_{0}=e$. As in the case $c=0$, it is easily seen that $w_{i_{0}}=\left(u^{-1}\right)_{L^{c_{0}}} \alpha_{1,1}^{\prime \prime} w^{\prime \prime}$. Thus $\tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \cong X\left(\left(w_{i_{0}}\right)_{L R}\right)$, where $\left(w_{i_{0}}\right)_{L R}=\left(u^{-1}\right)_{L^{c_{0}+1}} \alpha_{1,1}^{\prime \prime} w_{R}^{\prime}$, which shows that there is a nonzero homomorphism $f: \tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \rightarrow X\left(w_{1}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{c_{0}+1}}\right)$ but not through $X\left(\left(u^{-1}\right)_{L^{c_{0}}}\right)$, because $w_{1}=\left(u^{-1}\right)_{L^{c_{0}} R^{c_{0}+1}}$. Thus $\underline{f} \neq 0$ and the second case is proved.

Finally, consider the third case: $P \cong P_{j^{\prime}}$ for some $j \in\left\{0,1, \ldots, s_{r}+l_{2}-1\right\}$. Then $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime}}\right)+c-e=p+1$ by Lemma 2.5. Hence $e=l_{\mathcal{S}_{0}}\left(\left(P_{z}, P_{j^{\prime}}\right)+c-1\right.$. Further, it is easy to verify that $\tau^{-l_{\mathcal{S}_{0}}\left(P_{z}, P_{j^{\prime}}\right)+1}\left(P_{j^{\prime}}\right) \cong$ $X(w)$, where $w=\alpha_{1,2}^{\prime \prime} w^{\prime}$ provided $x_{2}-x_{1}>1$, and $w=\alpha_{2, x_{3}-x_{2}}^{\prime \prime-1} w^{\prime}$ provided $x_{2}-x_{1}=1$. Thus $\tau^{-e}\left(P_{j^{\prime}}\right) \cong \tau^{-l} \mathcal{S}_{0}\left(P_{z}, P_{j^{\prime}}\right)+1-c\left(P_{j^{\prime}}\right) \cong X\left(w_{L^{c} R^{c}}\right)$ and $w_{L^{c} R^{c}}=u_{L^{c-1}} \alpha_{1,1}^{\prime \prime} w_{R^{c}}$. Moreover, $X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right) \cong X\left(\left(u^{-1}\right)_{L^{c} R^{c+1}}\right)$, yielding an obvious nonzero homomorphism $f: \tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \rightarrow X\left(w_{1}\right)$ that factorizes through $X\left(\left(u^{-1}\right)_{L^{c}}\right)$ but not through $X\left(\left(u^{-1}\right)_{L^{c-1}}\right)$, because $w_{i_{0}}=$ $w_{L^{c} R^{c}}=u_{L^{c-1}} \alpha_{1,1}^{\prime \prime} w_{R^{c}}$ and $\tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \cong X\left(\left(w_{i_{0}}\right)_{L R}\right)$ with $\left(w_{i_{0}}\right)_{L R}=$ $u_{L^{c}} \alpha_{1,1}^{\prime \prime} w_{R^{c+1}}$. Consequently, $\underline{f} \neq 0$ as desired.

Dual arguments show (1) if $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$. Similarly one can prove (2). We omit the details.
3. Proofs of the main results. For a finite-dimensional K-algebra C, we recall the notions of tilting and cotilting C-module, introduced by Happel and Ringel [7] (see also [1]). A finite-dimensional C-module ${ }_{C} T$ is said to be tilting (respectively, cotilting) if:
(1) $\operatorname{proj} \operatorname{dim}\left({ }_{C} T\right) \leq 1$ (resp., inj $\left.\operatorname{dim}\left({ }_{C} T\right) \leq 1\right)$,
(2) $\operatorname{Ext}_{C}^{1}(T, T)=0$,
(3) The number of nonisomorphic indecomposable summands of ${ }_{C} T$ equals the rank of the Grothendieck group $K_{0}(C)$.

LEMMA 3.1. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A}. Let $X, Y \in \mathcal{C}$ be indecomposable postprojective (resp., preinjective) A-modules with $Y \in C_{\mathrm{sc}}$ (resp., $X \in C_{\mathrm{ec}}$). If there is a nonzero nonisomorphism $f: X \rightarrow Y$ such that $f \neq 0$ (resp., $\bar{f} \neq 0$) then there is a finite path $X \rightarrow \cdots \rightarrow Y$ in \mathcal{C}.

Proof. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} be the starting component in Γ_{A}. Suppose that $X, Y \in \mathcal{C}$ are postprojective with $Y \in C_{\mathrm{sc}}$. We shall argue by induction on $n=\operatorname{dim}_{K}(Y)$.

If $n=1$ then Y is a simple A-module that is postprojective. Thus Y is projective, and the assertion is obvious.

Now assume that the assertion holds for all Y as above with $\operatorname{dim}_{K}(Y)$ $\leq n_{0}$. Consider $Y \in C_{\text {sc }}$ with $\operatorname{dim}_{K}(Y)=n_{0}+1$. Suppose that there is a nonzero nonisomorphism $f: X \rightarrow Y$ such that $\underline{f} \neq 0$. Since $\underline{f} \neq 0, Y$ is not projective. Consider the Auslander-Reiten sequence

$$
0 \rightarrow Y\left(w_{L^{-1} R^{-1}}\right) \rightarrow Y\left(w_{L^{-1}}\right) \oplus Y\left(w_{R^{-1}}\right) \xrightarrow{\left(i_{1}, i_{2}\right)} Y(w) \rightarrow 0
$$

where w is a walk in $Q_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ such that $Y \cong Y(w)$. Then there are homomorphisms $f_{1}: X \rightarrow Y \overline{\left(w_{L^{-1}}\right)}$ and $f_{2}: X \rightarrow Y\left(w_{R^{-1}}\right)$ such that

$$
f=\left(i_{1}, i_{2}\right)\binom{f_{1}}{f_{2}}
$$

Furthermore, $\underline{f}_{1}, \underline{f}_{2}$ are not both zero, because $\underline{f} \neq 0$. Suppose that $\underline{f}_{1} \neq 0$. By the Skowronski-Waschbüsch algorithm, for \bar{Y} postprojective, i_{1}, i_{2} are monomorphisms. Therefore $\operatorname{dim}_{K}\left(Y\left(w_{L^{-1}}\right)\right) \leq n_{0}$. If f_{1} is not an isomorphism then the inductive assumption yields a finite path $X \rightarrow \cdots \rightarrow Y\left(w_{L^{-1}}\right)$, because $\underline{f}_{1} \neq 0$ and it is clear that $Y\left(w_{L^{-1}}\right) \in C_{\mathrm{sc}}$. Thus we have a finite path $X \rightarrow \cdots \rightarrow Y\left(w_{L^{-1}}\right) \rightarrow Y$ in \mathcal{C}. If f_{1} is an isomorphism then $X \cong Y\left(w_{L^{-1}}\right)$ and we have the path $X \rightarrow Y$ in \mathcal{C}. This finishes the proof for $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$.

If $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ one proceeds dually; we omit the details.
LEMMA 3.2. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A} that is not generalized standard. Let $\mathcal{S}=\left\{X_{i}\right\}_{i=1}^{t}$ be a postprojective (resp., preinjective) slice in \mathcal{C}, contained in the postprojective starting cone C_{sc} (resp., preinjective ending cone C_{ec}) in \mathcal{C}. Then the slice module $X_{\mathcal{S}}=\bigoplus_{i=1}^{t} X_{i}$ is tilting (resp., cotilting).

Proof. We give the proof for $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} the starting component in Γ_{A}. If $\mathcal{S}=\left\{X_{i}\right\}_{i=1}^{t}$ is a postprojective slice in C_{sc}, then proj $\operatorname{dim}\left(X_{\mathcal{S}}\right)$
≤ 1 from [9; Corollary 2.5]. Since $\mathcal{S} \subset C_{\text {sc }}$ and there is a nonzero homomorphism $f: \tau^{-1}\left(X_{i_{0}}\right) \rightarrow X_{i_{1}}$, suppose that $\underline{f} \neq 0$. Then Lemma 3.1 yields a finite path $\tau^{-1}\left(X_{i_{0}}\right) \rightarrow \cdots \rightarrow X_{i_{1}}$ in \mathcal{C}. Thus we have a path $X_{i_{0}} \rightarrow Y \rightarrow \tau^{-1}\left(X_{i_{0}}\right) \rightarrow \cdots \rightarrow X_{i_{1}}$ in \mathcal{C} with $X_{i_{0}}, X_{i_{1}} \in \mathcal{S}$. Hence $\tau^{-1}\left(X_{i_{0}}\right) \in \mathcal{S}$, which contradicts the fact that \mathcal{S} is a postprojective slice, because $X_{i_{0}}, \tau^{-1}\left(X_{i_{0}}\right) \in \mathcal{S}$. Consequently, $\underline{f}=0$. Applying the AuslanderReiten formula $D \underline{\operatorname{Hom}}_{A}\left(\tau^{-1}\left(X_{\mathcal{S}}\right), X_{\mathcal{S}}\right)=\operatorname{Ext}_{A}^{1}\left(X_{\mathcal{S}}, X_{\mathcal{S}}\right)$ we see that $\operatorname{Ext}_{A}^{1}\left(X_{\mathcal{S}}, X_{\mathcal{S}}\right)=0$, so $X_{\mathcal{S}}$ is tilting.

The case $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ is dual; we omit the details.
Proof of Theorem 1. Let \mathcal{S} be a postprojective slice in \mathcal{C}. If it is contained in C_{sc} then $X_{\mathcal{S}}$ is tilting by Lemma 3.2.

Now suppose that a postprojective slice $\mathcal{S}=\left\{X_{i}\right\}_{i=1}^{t}$ in \mathcal{C} is such that $X_{\mathcal{S}}=\bigoplus_{i=1}^{t} X_{i}$ is tilting. Suppose to the contrary that \mathcal{S} is not contained in C_{sc}. Let $X_{1} \cong X\left(w_{1}\right) \cong \tau^{-c}\left(P_{z-1}\right)$ and $X_{t} \cong X\left(w_{t}\right) \cong \tau^{-e}\left(P_{(a-1)^{\prime}}\right)$. Then Lemma 2.5 shows that $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{t}\right)\right)>p$ or $r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{t}\right)\right)>s$.

Consider the case $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{t}\right)\right)>p$. Take the minimal $i_{0} \in\{1, \ldots, t\}$ such that $l_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{i_{0}}\right)\right)=p+1$. If $c>1$ then Proposition 2.8 yields an $f: \tau^{-1}\left(X\left(w_{i_{0}}\right)\right) \rightarrow X\left(w_{1}\right)$ with $\underline{f} \neq 0$. Thus $\operatorname{Ext}_{A}^{1}\left(X_{\mathcal{S}}, X_{\mathcal{S}}\right) \neq 0$ by the Auslander-Reiten formula, which contradicts the assumption that $X_{\mathcal{S}}$ is tilting. Hence $c=0$. Then applying again Lemma 2.5 we find that $r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{t}\right)\right)>s$. Take the maximal $j_{0} \in\{1, \ldots, t\}$ such that $r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right)\right.$, $\left.X\left(w_{t}\right)\right)=s+1$. If $e>0$ Proposition 2.8 yields an $f: \tau^{-1}\left(X\left(w_{j_{0}}\right)\right) \rightarrow X\left(w_{t}\right)$ with $\underline{f} \neq 0$, so again $\operatorname{Ext}_{A}^{1}\left(X_{\mathcal{S}}, X_{\mathcal{S}}\right) \neq 0$, a contradiction. Hence $e=0$. Consequently, $P_{z-1}, P_{(a-1)^{\prime}} \in \mathcal{S}$. Thus it is clear that $\mathcal{S} \subset C_{\mathrm{sc}}$ as desired.

In the case $r_{\mathcal{S}}\left(X\left(w_{1}\right), X\left(w_{t}\right)\right)>s$ we proceed symmetrically.
We omit the details of the case when \mathcal{S} is a preinjective slice in \mathcal{C}.
Lemma 3.3. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A} that is not generalized standard. Then, for an indecomposable projective (resp., injective) A-module $X(w)$:
(1) $l_{\mathcal{S}_{0}}\left(P_{z}, X(w)\right)=d\left(\right.$ resp., $r_{\mathcal{S}_{0}}\left(E_{z}, X(w)\right)=d$, where d is the minimal nonnegative integer such that $w_{L^{d}}\left(\right.$ resp., $\left.w_{R^{-d}}\right)$ is of the form $w_{L^{d}}=$ $\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} w^{\prime}\left(\right.$ resp., $\left.w_{R^{-d}}=w^{\prime} \alpha_{1,1}^{\prime \prime} \alpha_{1, z+1}^{-1} \ldots \alpha_{1, p_{1}}^{-1}\right)$.
(2) $r_{\mathcal{S}_{0}}\left(X(w), P_{a^{\prime}}\right)=b\left(\right.$ resp., $\left.l_{\mathcal{S}_{0}}\left(X(w), E_{a^{\prime}}\right)=b\right)$, where b is the minimal nonnegative integer such that $w_{R^{b}}$ (resp., $w_{L^{-b}}$) is of the form $w_{R^{b}}=w^{\prime} \alpha_{n, 1}^{\prime \prime-1} \alpha_{1, a+1}^{\prime} \ldots \alpha_{1, s_{1}}^{\prime}\left(\right.$ resp., $\left.w_{L^{-b}}=\alpha_{1, s_{1}}^{\prime} \ldots, \alpha_{1, a+1}^{\prime} \alpha_{n, 1}^{\prime \prime-1} w^{\prime}\right)$.
Proof. Consider the case of $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \boldsymbol{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} the starting component in Γ_{A}. It is clear that $l_{\mathcal{S}_{0}}\left(P_{z}, P\right)$ is defined if $P \in\left\{P_{z}, P_{j^{\prime \prime}}, P_{i^{\prime}}\right\}$ for all possible j and i. Now we proceed inductively on $d=l_{\mathcal{S}_{0}}\left(P_{z}, X(w)\right)$. If
$d=0$ then $X(w) \cong P_{z}$ and 0 is the minimal nonnegative integer d such that $w_{L^{d}}=\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} \ldots \alpha_{1, x_{2}-x_{1}}^{\prime \prime}$.

Assume that (1) holds for all indecomposable projective A-modules P with $l_{\mathcal{S}_{0}}\left(P_{z}, P\right) \leq d_{0}$. Suppose that $X(w)$ is an indecomposable projective A-module such that $l_{\mathcal{S}_{0}}\left(P_{z}, X(w)\right)=d_{0}+1$. Then consider $X\left(w_{L}\right)$. By the Skowroński-Waschbüsch algorithm, $w_{L}=\beta_{1}^{-1} \ldots \beta_{c}^{-1} \alpha w$, where $\beta_{c} \ldots \beta_{1}$ is a maximal nonzero path or is trivial, and α is an arrow. But $X(w)$ is projective, hence either $w=\delta_{b} \ldots \delta_{1}, w=\gamma_{1}^{-1} \ldots \gamma_{e}^{-1}$ or $w=\gamma_{1}^{-1} \ldots \gamma_{e}^{-1} \delta_{b} \ldots \delta_{1}$ for some integers b, e. If $w=\delta_{b} \ldots \delta_{1}$ then $X\left(w_{L}\right)$ is projective with $l_{\mathcal{S}_{0}}\left(P_{z}, X\left(w_{L}\right)\right)=d_{0}$. Then by the inductive assumption and the SkowronskiWaschbüsch algorithm, $w_{L^{d_{0}+1}}=\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} w^{\prime}$ and $d_{0}+1$ is minimal with this property.

If $w=\gamma_{1}^{-1} \ldots \gamma_{e}^{-1}$ then the indecomposable A-module $X\left(\beta_{1}^{-1} \ldots \beta_{c}^{-1} \alpha\right)$ is projective and $l_{\mathcal{S}_{0}}\left(P_{z}, X\left(\beta_{1}^{-1} \ldots \beta_{c}^{-1} \alpha\right)\right)=d_{0}$, so by the inductive assumption $\left(\beta_{1}^{-1} \ldots \beta_{c}^{-1} \alpha\right)_{L^{d_{0}}}=\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} w^{\prime}$. Thus $\left(w_{L}\right)_{L^{d_{0}}}=w_{L^{d_{0}+1}}=$ $\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} w^{\prime} \gamma_{1}^{-1} \ldots \gamma_{e}^{-1}$ and $d_{0}+1$ is minimal with this property.

If $w=\gamma_{1}^{-1} \ldots \gamma_{e}^{-1} \delta_{b} \ldots \delta_{1}$ then again $X\left(\beta_{1}^{-1} \ldots \beta_{c}^{-1} \alpha\right)$ is projective and we get (1) just as for $w=\gamma_{1}^{-1} \ldots \gamma_{e}^{-1}$.

Similarly one proves (2). If $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ then we use dual arguments.
LEMMA 3.4. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A} that is not generalized standard. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a postprojective (resp., preinjective) slice in \mathcal{C}, contained in $C_{\text {sc }}$ (resp., $C_{\text {ec }}$). Then:
(1) $P_{z-1}, P_{(a-1)^{\prime}} \in \mathcal{S}$ (resp., $\left.E_{z-1}, E_{(a-1)^{\prime}} \in \mathcal{S}\right)$.
(2) If $l_{\mathcal{S}}\left(P_{z-1}, X\left(w_{i_{0}}\right)\right)=p\left(\right.$ resp., $r_{\mathcal{S}}\left(E_{z-1}, X\left(w_{i_{0}}\right)\right)=p$) then

$$
w_{i_{0}}=\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} w^{\prime}\left(\text { resp., } w_{i_{0}}=w^{\prime} \alpha_{1,1}^{\prime \prime} \alpha_{1, z+1}^{-1} \ldots \alpha_{1, p_{1}}^{-1}\right)
$$

(3) If $r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), P_{(a-1)^{\prime}}\right)=s$ (resp., $\left.l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), E_{(a-1)^{\prime}}\right)=s\right)$ then

$$
w_{j_{0}}=w^{\prime \prime} \alpha_{n, 1}^{\prime \prime-1} \alpha_{1, a+1}^{\prime} \ldots \alpha_{1, s_{1}}^{\prime}\left(\text { resp., } w_{j_{0}}=\alpha_{1, s_{1}}^{\prime} \ldots \alpha_{1, a+1}^{\prime} \alpha_{n, 1}^{\prime \prime} w^{\prime \prime}\right)
$$

Proof. Consider the case of $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} the starting component in Γ_{A}. Let $\mathcal{S} \subset C_{\mathrm{sc}}$ be a slice. Then by the definition of a postprojective starting cone, $P_{z-1}, P_{(a-1)^{\prime}} \in \mathcal{S}$ and (1) holds.

To prove (2) consider an indecomposable projective A-module P and an integer $d \geq 0$ such that $X\left(w_{i_{0}}\right) \cong \tau^{-d}(P)$. Then Lemmas 2.3 and 2.5 show that $l_{\mathcal{S}}\left(P_{z-1}, X\left(w_{i_{0}}\right)\right)$ is independent of the choice of the slice \mathcal{S}.

If $l_{\mathcal{S}}\left(P_{z-1}, X\left(w_{i_{0}}\right)\right)=p$ then we deduce from Lemmas 2.3 and 2.5 that $l_{\mathcal{S}_{0}}\left(P_{z}, P\right)=d$ and $X\left(w_{i_{0}}\right) \cong \tau^{-d}(P)$. Hence, Lemma 3.3(1) and the Sko-wroński-Waschbüsch algorithm imply that $w_{i_{0}}=w_{L^{d} R^{d}}$ for some w such that $P \cong X(w)$ and the required shape of $w_{i_{0}}$ is clear.

Similar arguments prove (3). For $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ and \mathcal{C} the ending component in $\Gamma_{A}, \mathcal{S} \subset C_{\text {ec }}$, we proceed dually.

Lemma 3.5. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}\left(\right.$ resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A} that is not generalized standard. If X, Y are inner modules in $C_{\mathrm{sc}}\left(\right.$ resp., $\left.C_{\mathrm{ec}}\right)$ then any nonzero homomorphism $f: X \rightarrow Y$ is a linear combination of paths in C_{sc} (resp., C_{ec}) from X to Y.

Proof. Suppose that $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{,}, l_{2}\right)}^{(1)}$ and \mathcal{C} is the starting component in Γ_{A}. Consider two indecomposable inner A-modules X, Y in $C_{\text {sc }}$. We use induction on $n=\operatorname{dim}_{K}(Y)$. If $n=1$ then Y is a simple A-module that is inner in C_{sc}. Thus Y is simple projective and the assertion is obvious.

Assume that it holds for all inner A-modules X, Y in $C_{\text {sc }}$ such that $\operatorname{dim}_{K}(Y) \leq n_{0}$.

Suppose that X, Y are inner A-modules in $C_{\text {sc }}$ such that $\operatorname{dim}_{K}(Y)=$ $n_{0}+1$. Observe that Y cannot be simple. Thus we have to consider two cases. In the first case, there is only one indecomposable inner A-module Z in $C_{\text {sc }}$ such that we have an arrow $Z \rightarrow Y$ in \mathcal{C}. The Skowroński-Waschbüsch algorithm then yields an irreducible homomorphism $h: Z \rightarrow Y$ that is a monomorphism. Hence $\operatorname{dim}_{K}(Z)<\operatorname{dim}_{K}(Y)$ and every homomorphism $f: X \rightarrow Z$ is a linear combination of paths in C_{sc} from X to Z by the inductive assumption. Every homomorphism $g: X \rightarrow Y$ is then clearly of the form $g=h g_{1}$ and the assertion is obvious.

In the second case, there are exactly two indecomposable inner A-modules Z_{1}, Z_{2} in $C_{\text {sc }}$ such that we have irreducible homomorphisms $h_{1}: Z_{1} \rightarrow Y$, $h_{2}: Z_{2} \rightarrow Y$. Then the argument is similar.

If $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ then we argue dually.
We shall say a homomorphism $f: X \rightarrow Y$ between indecomposable A-modules X, Y is combinatorial provided it is either an isomorphism or a linear combination of finite compositions of finitely many irreducible homomorphisms. Then the above lemma says that any homomorphism between inner modules of C_{sc} or C_{ec} is combinatorial.

Let X_{1}, \ldots, X_{n} be indecomposable A-modules. We shall denote by $\operatorname{End}_{A}^{\text {comb }}\left(\bigoplus_{i=1}^{n} X_{i}\right)$ the subalgebra of $\operatorname{End}_{A}\left(\bigoplus_{i=1}^{n} X_{i}\right)$ consisting of all homomorphisms $\left(f_{l j}\right): \bigoplus_{i=1}^{n} X_{i} \rightarrow \bigoplus_{i=1}^{n} X_{i}$ such that $f_{l j}: X_{l} \rightarrow X_{j}$ is combinatorial for all $1 \leq l, j \leq n$.

Proposition 3.6. Let $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ (resp., $\left.A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}\right)$ and \mathcal{C} be the starting (resp., ending) component in Γ_{A}, that is not generalized standard. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a postprojective (resp., preinjective) slice in \mathcal{C}, contained in C_{sc} (resp., C_{ec}), and set $X_{\mathcal{S}}=\bigoplus_{i=1}^{t} X\left(w_{i}\right)$. Then:
(1) There are homomorphisms $0 \neq f_{1}: X\left(w_{i_{0}}\right) \rightarrow P_{z-1}, 0 \neq f_{2}$: $X\left(w_{j_{0}}\right) \rightarrow P_{(a-1)^{\prime}}$ (resp., $0 \neq f_{1}: E_{z-1} \rightarrow X\left(w_{i_{0}}\right), 0 \neq f_{2}:$ $\left.E_{(a-1)^{\prime}} \rightarrow X\left(w_{j_{0}}\right)\right)$ such that:
(1a) f_{1}, f_{2} are not combinatorial,
(1b) $l_{\mathcal{S}}\left(P_{z-1}, X\left(w_{i_{0}}\right)\right)=p\left(\right.$ resp., $\left.r_{\mathcal{S}}\left(E_{z-1}, X\left(w_{i_{0}}\right)\right)=p\right)$ and i_{0} is maximal with this property,
(1c) $r_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), P_{(a-1)^{\prime}}\right)=s\left(\right.$ resp., $\left.l_{\mathcal{S}}\left(X\left(w_{j_{0}}\right), E_{(a-1)^{\prime}}\right)=s\right)$ and j_{0} is minimal with this property,
(1d) if $0 \neq f: X\left(w_{i_{1}}\right) \rightarrow X\left(w_{j_{1}}\right)$ is not combinatorial then f factorizes through either f_{1} or f_{2}.
(2) $\operatorname{End}_{A}^{\text {comb }}\left(X_{\mathcal{S}}\right)$ is a hereditary algebra of type \mathbb{A}_{t}.

Proof. Consider the case of $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ and \mathcal{C} the starting component of Γ_{A}. Let $\mathcal{S} \subset C_{\mathrm{sc}}$ be a slice. Then $P_{z-1}, P_{(a-1)^{\prime}} \in \mathcal{S}$ by Lemma 3.4. From Lemma 3.4 we know that if $l_{\mathcal{S}}\left(P_{z-1}, X\left(w_{i_{0}}\right)\right)=p$ then $w_{i_{0}}=$ $\alpha_{1, p_{1}}^{-1} \ldots \alpha_{1, z+1}^{-1} \alpha_{1,1}^{\prime \prime} w^{\prime}$. Thus there is a nonzero homomorphism $f_{1}: X\left(w_{i_{0}}\right) \rightarrow$ P_{z-1} whose image is $X\left(u^{-1}\right)$; choose one with i_{0} maximal. Then it is obvious that any other homomorphism $g: X\left(w_{i_{1}}\right) \rightarrow P_{z-1}$ factorizes through f_{1}. Furthermore, f_{1} is clearly not combinatorial. Similarly there is a nonzero homomorphism $f_{2}: X\left(w_{j_{0}}\right) \rightarrow P_{(a-1)^{\prime}}$ whose image is $X(v)$; choose one with j_{0} minimal. Then again any other homomorphism $h: X\left(w_{i_{2}}\right) \rightarrow P_{(a-1)^{\prime}}$ factorizes through f_{2}, and f_{2} is not combinatorial.

Now consider $0 \neq f: X\left(w_{i_{1}}\right) \rightarrow X\left(w_{j_{1}}\right)$ that is not combinatorial. Then by Lemma 3.5 at least one of $X\left(w_{i_{1}}\right), X\left(w_{j_{1}}\right)$ is not inner. If $X\left(w_{i_{1}}\right)$ is not inner then neither is $X\left(w_{j_{1}}\right)$ by the shape of \mathcal{C}. Since we have a nonzero homomorphism $f: X\left(w_{i_{1}}\right) \rightarrow X\left(w_{j_{1}}\right)$ and both $X\left(w_{i_{1}}\right), X\left(w_{j_{1}}\right) \in C_{\mathrm{sc}}$, we have a chain of irreducible monomorphisms $X\left(w_{i_{1}}\right) \xrightarrow{g_{1}} X\left(w_{i_{2}}\right) \xrightarrow{g_{2}} \cdots \rightarrow X\left(w_{i_{d}}\right) \xrightarrow{g_{d}}$ $X\left(w_{j_{1}}\right)$ by the Skowroński-Waschbüsch algorithm and the definition of C_{sc}. Furthermore, $f=k \cdot g_{d} \ldots g_{2} g_{1}$ for some $k \in K^{*}$, which contradicts the fact that f is not combinatorial. Therefore $X\left(w_{i_{1}}\right)$ is inner and $X\left(w_{j_{1}}\right)$ is not. Hence there is a combinatorial homomorphism $g_{1}: P_{z-1} \rightarrow X\left(w_{j_{1}}\right)$ or g_{2} : $P_{(a-1)^{\prime}} \rightarrow X\left(w_{j_{1}}\right)$ such that any homomorphism from an inner module factorizes through g_{1} or g_{2}. Thus f factorizes through either f_{1} or f_{2} as desired.

To prove (2) we observe that the irreducible homomorphisms between $X\left(w_{i}\right), X\left(w_{j}\right)$ and identical isomorphisms form a basis of $\operatorname{End}_{A}^{\text {comb }}\left(X_{\mathcal{S}}\right)$. Thus it is clear from the properties of a slice contained in C_{sc} that the algebra in question is hereditary of type \mathbb{A}_{t}.

For $A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(2)}$ we proceed dually.
Let B be a hereditary algebra of type \mathbb{A}_{m}. For positive integers c, b with $c+b<m$ we shall construct a new algebra $B(c, b)$ under some additional
assumptions on B. Suppose that the Gabriel quiver Q_{B} of B is of the form $1-\cdots-m$ and let c, b be positive integers such that $c+b<m$ and there exists the maximal vertex i_{c} with $r\left(1, i_{c}\right)=c$ and there exists the minimal vertex j_{b} with $l\left(j_{b}, m\right)=b$. Here $r\left(1, i_{c}\right)$ is the number of right arrows in the subquiver $1-\cdots-i_{c}$ of Q_{B}, and $l\left(j_{b}, m\right)$ the number of left arrows in the subquiver $j_{b}-\cdots-m$ of Q_{B}. Then we consider a new quiver $Q_{B(c, b)}$ obtained from Q_{B} by adjoining two arrows $1 \xrightarrow{\gamma} i_{c}, j_{b} \stackrel{\delta}{\leftarrow} m$. By the maximality of i_{c} there is an arrow $i_{c} \xrightarrow{\alpha}\left(i_{c}+1\right)$ or $i_{c}=m$. By the minimality of j_{b} there is an arrow $\left(j_{b}-1\right) \stackrel{\beta}{\leftarrow} j_{b}$ or $j_{b}=1$. Consider the two-sided ideal $I_{B(c, b)}$ in $K Q_{B(c, b)}$ generated by the paths $\gamma \alpha$ if $i_{c} \neq m$ and $\delta \beta$ if $j_{b} \neq 1$ and $\gamma \delta$ if $i_{c}=m$ and $\delta \gamma$ if $j_{b}=1$. Then we call the algebra $B(c, b)=K Q_{B(c, b)} / I_{B(c, b)}$ an (m, c, b)-algebra. One can also consider the dual construction that leads to an $(m, c, b)^{\mathrm{op}^{\mathrm{p}}}$-algebra.

Proof of Theorem 2. Let A be a minimal 2-fundamental algebra and let \mathcal{C} be the starting component in Γ_{A} that is not generalized standard. By Lemma $1.1(1), A \cong A_{\left(\underline{p}, l_{1}, \underline{x}, \underline{s}, l_{2}\right)}^{(1)}$ for some $\underline{p}, \underline{x}, \underline{s}, l_{1}, l_{2}$. Let $\mathcal{S}=\left\{X\left(w_{i}\right)\right\}_{i=1}^{t}$ be a postprojective slice in \mathcal{C}, contained in C_{sc}. By Proposition 3.6(2), $\operatorname{End}_{A}^{\text {comb }}\left(X_{\mathcal{S}}\right)$ is hereditary of type \mathbb{A}_{t}. Moreover, Proposition 3.6(1) shows that End $A_{A}\left(X_{\mathcal{S}}\right)^{\mathrm{op}}$ is obtained from $\operatorname{End}_{A}^{\mathrm{comb}}\left(X_{\mathcal{S}}\right)^{\mathrm{op}}$ by the above construction for $c=p$ and $b=s$. Therefore $\operatorname{End}_{A}\left(X_{\mathcal{S}}\right)^{\mathrm{op}}$ is a (t, p, s)-algebra.

If A is a minimal 2-fundamental algebra and \mathcal{C} is the ending component in Γ_{A} that is not generalized standard, then we proceed dually to conclude that $\operatorname{End}_{A}\left(X_{\mathcal{S}}\right)^{\mathrm{op}}$ is a $(t, p, s)^{\mathrm{op}}$-algebra.

REFERENCES

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[2] M. Auslander and I. Reiten, Representation theory of artin algebras IV, Comm. Algebra 5 (1977), 443-518.
[3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
[4] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179.
[5] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
[6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1-71.
[7] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
[8] Z. Pogorzały and M. Sufranek, Starting and ending components of the AuslanderReiten quivers of a class of special biserial algebras, Colloq. Math. 99 (2004), 111144.
[9] Z. Pogorzały and K. Szmyt, Slice modules over minimal 2-fundamental algebras, Central Eur. J. Math. 5 (2007), 164-180.
[10] D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Vol. 2, Tubes and Concealed Algebras of Euclidean type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, Cambridge, 2007.
[11] -, 一, Elements of the Representation Theory of Associative Algebras, Vol. 3, Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, Cambridge, 2007.
[12] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543.
[13] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
[14] B. Wald and J. Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), 480-500.

Faculty of Mathematics and
Computer Science
Nicholaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: zypo@mat.uni.torun.pl

Institute of Mathematics
Kazimierz Wielki University in Bydgoszcz Chodkiewicza 30
85-064 Bydgoszcz, Poland E-mail: karolinaszmyt@wp.pl

Received 29 May 2007;
revised 14 February 2008

[^0]: 2000 Mathematics Subject Classification: 16G20, 16G70.
 Key words and phrases: minimal 2-fundamental algebra, Auslander-Reiten quiver, slice module, tilting module.

 The second named author acknowledges the support of Bydgoszcz University Grant BW 501/3/07.

