REFLEXIVE SUBSPACES OF SOME ORLICZ SPACES

BY

EMMANUELLE LAVERGNE (Lens)

Abstract. We show that when the conjugate of an Orlicz function ϕ satisfies the growth condition Δ^0, then the reflexive subspaces of L^ϕ are closed in the L^1-norm. For that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that weakly compact subsets of such L^ϕ have equi-absolutely continuous norm.

Introduction. Bretagnolle and Dacunha-Castelle showed in [3] that an Orlicz space L^ϕ embeds into L^1 (meaning that there exists an isomorphism of this space onto a subspace of L^1) if and only if ϕ is 2-concave (recall that a function f is r-concave if $f(x^{1/r})$ is concave). If ϕ is an Orlicz function whose conjugate ϕ^* satisfies the condition Δ^0 (see below for the definition), then ϕ is equivalent, for every $r > 1$, to an r-concave Orlicz function (Proposition 4) and hence L^ϕ embeds into L^1. In this paper, we show that for such Orlicz functions ϕ, the reflexive subspaces of L^ϕ are actually closed in the L^1-norm (and so the L^ϕ-topology is the same as the L^1-topology). In order to prove this, we shall use a result of J. Alexopoulos (Theorem 1), saying that, when $\phi^* \in \Delta^0$, the weakly compact subsets of L^ϕ have equi- absolutely continuous norm, and we shall begin by giving a new proof of this result, using a recent characterization, due to P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza (see [6, Theorem 4]), of the weakly compact operators defined on a subspace of the Morse–Transue space M^ψ, when $\psi \in \Delta^0$.

1. Notation. We shall consider Orlicz spaces defined on a probability space (Ω, \mathbb{P}) (see [7], [13]). By an Orlicz function, we shall understand a non-decreasing convex function $\phi : [0, +\infty] \to [0, +\infty]$ such that $\phi(0) = 0$ and $\phi(\infty) = \infty$. To avoid pathologies, we shall assume that ϕ has the following additional properties: ϕ is continuous at 0, strictly convex, and moreover,

$$\lim_{x \to +\infty} \frac{\phi(x)}{x} = +\infty.$$

This is essentially to exclude the case of $\phi(x) = ax$, and so of L^1.

2000 Mathematics Subject Classification: 46E30, 46B20.

Key words and phrases: Orlicz spaces, reflexive subspaces, equi-absolutely continuous norm.

[333] © Instytut Matematyczny PAN, 2008
Let ϕ be an Orlicz function. If ϕ' is the left derivative of ϕ, then, for every $x > 0$,

$$
\phi(x) = \int_0^x \phi'(t) \, dt.
$$

The Orlicz space $L^\phi(\Omega)$ is the space of all equivalence classes of measurable functions $f : \Omega \to \mathbb{C}$ for which there is a constant $C > 0$ such that

$$
\int_\Omega \phi\left(\frac{|f(t)|}{C} \right) \, d\mathbb{P}(t) < +\infty.
$$

Then for all $f \in L^\phi(\Omega)$, we define the Luxemburg norm of f as the infimum of all possible constants C such that the above integral is ≤ 1. With this norm, $L^\phi(\Omega)$ is a Banach space.

The Morse–Transue space $M^\phi(\Omega)$ is the subspace of $L^\phi(\Omega)$ generated by $L^\infty(\Omega)$, or equivalently, the subspace of all functions f for which the above integral is finite for all $C > 0$.

To every Orlicz function ϕ is associated the conjugate Orlicz function ϕ^* defined by

$$
\phi^* : [0, +\infty) \to [0, +\infty), \quad x \mapsto \sup\{xy - \phi(y) ; y \geq 0\}.
$$

(Observe that $\phi^*(x) < \infty$ since $\phi(x)/x$ tends to ∞.)

The function ϕ^* is itself strictly convex. It should also be noticed that for all Orlicz functions ϕ, we have

$$(\phi^*)^* = \phi.$$

Moreover, if ϕ_1 and ϕ_2 are two Orlicz functions such that $\phi_1(x) \leq \phi_2(x)$ whenever $x \geq x_0$, then there exists y_0 such that $\phi_2^*(y) \leq \phi_1^*(y)$ for all $y \geq y_0$.

We shall also use some growth conditions for Orlicz functions. We shall say that ϕ satisfies the Δ_2 condition (and write $\phi \in \Delta_2$) if there exists a constant $K > 1$ such that for all x large enough,

$$
\phi(2x) \leq K \phi(x).
$$

We shall say (see [6] and [7]) that ψ satisfies the Δ^0 condition (and write $\psi \in \Delta^0$) if there exists a constant $\beta > 1$ such that

$$
\lim_{x \to +\infty} \frac{\psi(\beta x)}{\psi(x)} = +\infty.
$$

It should be noticed that if ϕ is an Orlicz function such that $\psi = \phi^* \in \Delta^0$, then $\phi \in \Delta_2$. Indeed, $\phi \in \Delta_2$ if and only if there exists $\beta > 1$ such that for all x large enough (see [13, II.2.3]),

$$
\frac{\psi(\beta x)}{\psi(x)} \geq 2\beta.
$$
Let \(\phi \) be an Orlicz function and let \(\psi \) be its complementary Orlicz function. We shall assume that \(\phi \in \Delta_2 \). Then, isomorphically,
\[
L^\phi = (M^\psi)^*, \quad L^\psi = (L^\phi)^*,
\]
and so
\[
(M^\psi)^{**} = L^\psi.
\]
Moreover, \(M^\psi = L^\psi \) if and only if \(\psi \in \Delta_2 \).

2. Equi-absolutely continuous norms of relatively weakly compact subsets of an Orlicz space. We first recall that if \(\phi \) is an Orlicz function, then we say that \(K \subseteq L^\phi \) has equi-absolutely continuous norm if for all \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that
\[
P(E) < \delta \Rightarrow \sup\{\|\chi_E f\|_{L^\phi}; f \in K\} < \varepsilon.
\]
Every such \(K \) is relatively weakly compact, and, under the assumption \(\phi^* \in \Delta^0 \), J. Alexopoulos ([2]) proved the converse:

Theorem 1. Let \(\phi \) be an Orlicz function such that \(\psi = \phi^* \in \Delta^0 \). Then every relatively weakly compact subset of \(L^\phi \) has equi-absolutely continuous norm.

We are going to give a new proof of this result, using a criterion of weak compactness proved by P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza (see [6, Theorem 4]).

Theorem 2. Let \(\psi \) be an Orlicz function such that \(\psi \in \Delta^0 \), \(X \) be a subspace of \(M^\psi \), and \(Y \) be a Banach space. Then for every bounded linear operator \(T: X \to Y \), \(T \) is weakly compact if and only if for some (and then all) \(p \in [1, +\infty[\),
\[
\forall \varepsilon > 0, \exists C_\varepsilon > 0, \forall f \in X, \quad \|T(f)\| \leq C_\varepsilon \|f\|_{\psi} + \varepsilon \|f\|_p.
\]

Proof of Theorem 1. We first prove that if \(X \) is a reflexive subspace of \(L^\phi \), then the closed unit ball \(B_X \) of \(X \) has equi-absolutely continuous norm. \(B_X \) is also weakly compact, because \(X \) is reflexive. Moreover, as \(L^\phi = (M^\psi)^* \), \(B_X \) is weak* compact, and so \(X \) is weak* closed in \(L^\phi \) (by Banach–Dieudonné’s theorem). So there exists \(Z \subseteq M^\psi \) such that \(X = Z^\perp \). Then \(X \) is isometrically isomorphic to \((M^\psi/Z)^*\). Let us denote by
\[
\Pi : M^\psi \to M^\psi/Z
\]
the canonical projection. As \((M^\psi/Z)^*\) is isometrically isomorphic to \(X \), \(M^\psi/Z \) is reflexive, and so \(\Pi \) is weakly compact. We can now use Theorem 2.
Let \(\alpha > 0 \), \(g \in B_X \) and \(A \) be a measurable subset of \(\Omega \). We have
\[
\|g\chi_A\|_\phi \leq 2 \sup \{ |\langle g\chi_A, f \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \}
= 2 \sup \{ |\langle g, f\chi_A \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \}
= 2 \sup \{ |\langle g, \Pi(f\chi_A) \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \}
\leq 2 \|g\|_\phi \sup \{ \|\Pi(f\chi_A)\|; f \in M^\psi, \|f\|_\psi \leq 1 \}
\leq 2 \sup \{ C_\alpha \|f\chi_A\|_1 + \alpha \|f\chi_A\|_\psi; f \in M^\psi, \|f\|_\psi \leq 1 \}.
\]
Using Hölder’s inequality for Orlicz spaces, we get
\[
\|f\chi_A\|_1 = \int_{\Omega} |f|\chi_A \ d\mathbb{P} \leq \|f\|_\psi \|\chi_A\|_\phi \leq \|\chi_A\|_\phi.
\]
On the other hand, for every positive constant \(C \),
\[
\int_{\Omega} \phi \left(\frac{\chi_A}{C} \right) \ d\mathbb{P} = \int_{A} \phi \left(\frac{1}{C} \right) \ d\mathbb{P} = m(A) \phi \left(\frac{1}{C} \right),
\]
and so
\[
\|\chi_A\|_\phi = \frac{1}{\phi^{-1}(1/m(A))}.
\]
We also have
\[
\|f\chi_A\|_\psi \leq \|f\|_\psi \leq 1.
\]
Let \(\varepsilon > 0 \). Let us choose \(\alpha \) such that \(4\alpha < \varepsilon \), and \(\delta > 0 \) such that
\[
m(A) < \delta \Rightarrow \frac{1}{\phi^{-1}(1/m(A))} \leq \frac{\alpha}{C_\alpha}.
\]
Thus we get
\[
\|g\chi_A\|_\phi \leq 4\alpha < \varepsilon
\]
whenever \(m(A) < \delta \); so \(B_X \) has equi-absolutely continuous norm. \(\blacksquare \)

We now assume that \(K \) is a relatively weakly compact subset of \(L^\phi \). We use the following theorem (see [4, Theorem 11.17]):

Theorem 3 (Davis, Figiel, Johnson, Pełczyński). Let \(K \) be a weakly compact subset of a Banach space \(X \). Then there exist a reflexive space \(Y \) and a bounded linear one-to-one operator \(U \) from \(Y \) into \(X \) such that \(K \subseteq U(B_Y) \).

Let \(\alpha > 0 \), \(g \in B_X \) and \(A \) be a measurable subset of \(\Omega \). By the theorem above, there exists \(h \in B_Y \) such that \(g = U(h) \). Denote by \(U^*: L^\psi \rightarrow Y^* \) the dual operator, and \(T \) its restriction to \(M^\psi \). As \(Y^* \) is reflexive, we can
use Theorem 2 to obtain
\[\|g\chi_A\|_\phi \leq 2 \sup \{ |\langle g\chi_A, f \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \} \]
\[= 2 \sup \{ |\langle g, f\chi_A \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \} \]
\[= 2 \sup \{ |\langle U(h), f\chi_A \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \} \]
\[= 2 \sup \{ |\langle h, U^*(f\chi_A) \rangle|; f \in M^\psi, \|f\|_\psi \leq 1 \} \]
\[\leq 2 \sup \{ \|T(f\chi_A)\|; f \in M^\psi, \|f\|_\psi \leq 1 \} \]
\[\leq 2 \sup \{ C_\alpha \|f\chi_A\|_1 + \alpha \|f\chi_A\|_\psi; f \in M^\psi, \|f\|_\psi \leq 1 \} \]
\[\leq 4\alpha \]
as above.

3. Reflexive subspaces of L^ϕ when $\phi^* \in \Delta^0$. We begin by the following consequence of the embedding theorem of Bretagnolle and Dacunha-Castelle quoted in the introduction.

Proposition 4. Let ϕ be an Orlicz function $\phi^* \in \Delta^0$. Then L^ϕ embeds into L^1.

Proof. Let us observe that condition Δ^0 for $\psi = \phi^*$ implies that the lower Matuszewska–Orlicz index at infinity of ψ is $\alpha^\infty_\psi = +\infty$ (see [11]). In fact, if $\beta > 1$ and $x_0 > 1$ are such that
\[\psi(\beta x) \geq C\psi(x) \quad \text{for every } x \geq x_0, \]
we can deduce that setting $q = \ln(C)/\ln(\beta)$ we have
\[\psi(tx) \geq C^{-1}\beta^q \psi(x) \quad \text{for every } x \geq x_0 \text{ and } t \geq 1, \]
and consequently $\alpha^\infty_\psi \geq q$. Since C is arbitrary, $\alpha^\infty_\psi = +\infty$.

By the duality of Matuszewska–Orlicz indices, the upper Matuszewska–Orlicz index of ϕ is $\beta^\infty_\phi = 1$. As a consequence, ϕ is equivalent to an r-concave Orlicz function, for every $r > 1$. But a result of Bretagnolle and Dacunha-Castelle tells us that any 2-concave Orlicz function space is isomorphic to a subspace of L^1.

Our main result is:

Theorem 5. Let ϕ be an Orlicz function with $\phi^* \in \Delta^0$. Then the reflexive subspaces of L^ϕ are closed in the L^1-norm. In particular, the L^1- and L^ϕ-norms are equivalent on reflexive subspaces of L^ϕ.

Together with Rosenthal’s theorem (see [14, p. 268] or [8, p. 446]) this yields

Corollary 6. Let ϕ be an Orlicz function such that $\phi^* \in \Delta^0$ and let X be a reflexive subspace of L^ϕ. Then there exist some $p > 1$ and a probability
density $u > 0$ such that the map

$$j : X \to j(X) \subseteq L^p(u, \mathbb{P}), \quad f \mapsto f/u,$$

is an isomorphism.

Proof of Theorem 5. First notice that $L^\phi(\Omega, \mathbb{P}) \subseteq L^1(\Omega, \mathbb{P})$. Indeed, ϕ is convex and ϕ' is non-decreasing, so

$$\phi(x) = \int_0^x \phi'(t) \, dt \geq \int_1^x \phi'(t) \, dt \geq (x - 1)\phi'(1) \geq x\phi'(1).$$

Hence for every constant $C > 0$ and all $f \in L^\phi(\Omega, \mathbb{P})$, we have

$$\phi\left(\frac{|f(x)|}{C}\right) \geq \frac{\phi'(1)}{C} |f(x)| > 0,$$

and so

$$\int_\Omega \phi\left(\frac{|f|}{C}\right) \, d\mathbb{P} \geq \frac{\phi'(1)}{C} \|f\|_{L^1}.$$

Choosing $C = \|f\|_\phi$, we get

$$\|f\|_{L^\phi} \geq \phi'(1)\|f\|_{L^1}.$$

In particular, convergence in L^ϕ-norm implies convergence in L^1-norm.

Let now X be a reflexive subspace of $L^\phi(\Omega)$ and $(f_n)_{n \in \mathbb{N}}$ be a sequence in X which converges in measure to a function f. We are going to prove that $(f_n)_{n \in \mathbb{N}}$ converges to f for the Luxemburg norm of $L^\phi(\Omega)$. The unit closed ball B_X of X is weakly compact because X is reflexive. Hence B_X has an equi-absolutely continuous norm: for every $\varepsilon > 0$, there is some $\delta > 0$ such that

$$\mathbb{P}(A) \leq \delta \Rightarrow \|g\chi_A\|_\phi \leq \varepsilon, \forall g \in B_X.$$

By homogeneity,

$$\mathbb{P}(A) \leq \delta \Rightarrow \|g\chi_A\|_\phi \leq \varepsilon\|g\|_\phi, \forall g \in X.$$

Fix $\varepsilon > 0$ and let $\delta > 0$ be associated to ε as above. Since $(f_n)_{n \in \mathbb{N}}$ converges to f in measure, there is an $n_0 \geq 0$ such that $\mathbb{P}(|f_n - f| \geq \varepsilon) \leq \delta$ for every $n \geq n_0$. Then for $n \geq n_0$,

$$\|f_n - f\|_\phi \leq \|(f_n - f)\chi_{\{|f_n - f| \geq \varepsilon\}}\|_\phi + \|(f_n - f)\chi_{\{|f_n - f| \leq \varepsilon\}}\|_\phi$$

$$\leq \varepsilon\|f_n - f\|_\phi + \varepsilon/\phi^{-1}(1).$$

Indeed, if $g_n = (f_n - f)\chi_{\{|f_n - f| \leq \varepsilon\}}$, then for every $C > 0$,

$$\int_\Omega \phi(|g_n|/C) \, d\mathbb{P} \leq \phi(\varepsilon/C),$$

$$\mathbb{P}(A) \leq \delta \Rightarrow \|g\chi_A\|_\phi \leq \varepsilon, \forall g \in B_X.$$
and so if $C \geq \varepsilon/\phi^{-1}(1)$, then
\[\int \Omega \phi(|g_n|/C) d\mathbb{P} \leq 1, \]
and hence $\|g_n\|_\phi \leq \varepsilon/\phi^{-1}(1)$.

For $0 < \varepsilon < 1$, we have obtained, for $n \geq n_0$,
\[\|f_n - f\|_\phi \leq \frac{1}{\phi^{-1}(1)} \frac{\varepsilon}{1 - \varepsilon}. \]
So
\[\lim_{n \to +\infty} \|f_n - f\|_\phi = 0. \]

Hence, on X, the convergences in L^ϕ-norm, in L^1-norm and in measure are equivalent. ■

Remark. Without the additional assumption on the Orlicz function ϕ, Proposition 3 is no longer true, and $\phi \in \Delta_2$ does not suffice; indeed, one has the following example.

Example. There exists an Orlicz function ϕ such that $L^\phi(0, 1)$ is reflexive (so $\phi \in \Delta_2$ and $\psi = \phi^* \in \Delta_2$), but not isomorphic to any subspace of any L^p space, $1 \leq p < \infty$.

This space was constructed by F. Hernández and V. Peirats in [5]. It is based on the construction by J. Lindenstrauss and L. Tzafriri ([9, Theorem 3]) of a reflexive Orlicz sequence space which contains no complemented subspace isomorphic to any ℓ_p, $1 \leq p \leq \infty$ ([10, Theorem 3]). More precisely, for every $2 \leq \alpha \leq \beta < +\infty$, they constructed an Orlicz function on $[0, 1]$ such that ℓ_ϕ contains a subspace isomorphic to ℓ_q for any q such that $\alpha \leq q \leq \beta$ ([11, Theorem 1], or [12, Theorem 4.a.9]), but no complemented subspace isomorphic to any ℓ_p. It is proved in [5] that the minimal (see [9, Definition 2]) Orlicz function ϕ constructed by Lindenstrauss and Tzafriri on $[0, 1]$ has an extension ϕ to a minimal Orlicz function defined on $[0, +\infty]$, and that the Orlicz function space $L^\phi(0, 1)$ contains a (complemented) subspace isomorphic to ℓ_ϕ, but no complemented subspace isomorphic to ℓ_p for $p \neq 2$.

This Orlicz space $L^\phi(0, 1)$ is reflexive (because $1 < \alpha_\phi = \alpha$ and $\beta_\phi = \beta < +\infty$; see [5]) and cannot be isomorphic to a subspace of any L^p space. Indeed, if $\beta > \alpha$, then ℓ_ϕ, and hence $L^\phi(0, 1)$, contains a subspace isomorphic to ℓ_q for any $q \in [\alpha, \beta]$, and in particular with $q > 2$; hence $L^\phi(0, 1)$ cannot be isomorphic to a subspace of L^p for $1 \leq p \leq 2$, since these latter spaces have cotype 2, whereas the cotype of L^p is p. On the other hand, $L^\phi(0, 1)$ cannot be isomorphic to a subspace of any L^p space for $p > 2$ since, by the Kadec–Pełczyński theorem (see [1, Theorem 6.4.8]), every non-Hilbertian reflexive subspace (which is the case of $L^\phi(0, 1)$) of such an L^p space must
contain a complemented subspace isomorphic to ℓ_p, and $L_\phi(0, 1)$ contains no such subspace.

Acknowledgements. I thank my advisor D. Li for his advice about this work.

REFERENCES

Laboratoire de Mathématiques Lens (LML)
Équipe d’Accueil EA 2462
Fédération CNRS Nord-Pas-de-Calais FR 2956
Faculté des Sciences Jean Perrin
Université d’Artois
rue Jean Souvraz S.P. 18
62307 Lens Cedex, France
E-mail: lavergne@euler.univ-artois.fr

Received 21 August 2007; revised 6 March 2008