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MINIMAL NON-INVERTIBLE TRANSFORMATIONS OF
SOLENOIDS
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DARIUSZ TYWONIUK (Wroc law)

Abstract. We construct a continuous non-invertible minimal transformation of an
arbitrary solenoid. Since solenoids, as all other compact monothetic groups, also admit
minimal homeomorphisms, our result allows one to classify solenoids among continua
admitting both invertible and non-invertible continuous minimal maps.

1. Introduction. We consider discrete dynamical systems (X, f), where
X is a compact metric space and f : X → X is a continuous map. A dy-
namical system is minimal if X has no non-empty proper closed f -invariant
subsets (M ⊂ X is f -invariant if f(M) ⊂M ; see e.g. [2]).

There is an interesting classification of compact metric spaces with re-
spect to the existence of minimal homeomorphisms and non-invertible maps.
Let us say that a space X is of type (ξ1, ξ2), where ξ1, ξ2 ∈ {0, 1}, accord-
ing to the following rule: if there exists a minimal homeomorphism on X,
then we set ξ1 = 1, otherwise we set ξ1 = 0; and if there exists a minimal
non-invertible continuous map on X, then we set ξ2 = 1, otherwise we set
ξ2 = 0.

There are well known easy examples of all four types of spaces. Moreover,
all four types have representatives among connected spaces (continua). The
unit interval [0, 1] has the fixed point property, so it admits neither mini-
mal homeomorphisms, nor minimal non-invertible maps (type (0, 0)). The
2-torus T admits both invertible and non-invertible minimal maps (type
(1, 1); see [11]). The pinched 2-torus (the 2-torus with two points identified)
admits non-invertible minimal maps, while it has the fixed point property
for homeomorphisms, so it does not admit minimal homeomorphisms (type
(0, 1); see [3]). The simple closed curve S1 (i.e., the circle) admits minimal
homeomorphisms but it does not admit minimal non-invertible maps (type
(1, 0); see [1]).
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There is no other known infinite continuum of type (1, 0) and it is a
long standing open problem whether S1 is indeed the unique continuum of
this type. In search for other such continua it is natural to examine spaces
as similar to the circle as possible. Let us mention that in [3] the authors
conjecture that the pseudo-circle is of this type. It is known that there
exists a minimal homeomorphism of the pseudo-circle (see [10]), but the
existence of a non-invertible minimal map on this space is undecided. More
information about this problem can be found in [3] and [11].

In this paper we focus on solenoids. Every solenoid, like the circle, has the
structure of a compact monothetic group, hence it admits a minimal hom-
eomorphism (rotation by a topological generator). Moreover, each solenoid
is connected, which makes it even more similar to the circle. The same two
properties (being a compact connected monothetic group) also hold for mul-
tidimensional tori, but solenoids and the circle are the only one-dimensional
connected compact monothetic groups. Solenoids can be obtained from the
circle via inverse limit procedures, a property they share with the pseudo-
circle. All these facts make solenoids natural candidates to be tested for
their type, and, to our knowledge, they have not yet been examined in this
respect.

We will prove the following

Theorem 1.1. Every solenoid admits a minimal non-invertible contin-
uous map.

That is, all solenoids are of type (1, 1). This result does not solve the
general problem whether there exists a continuum of type (1, 0) different
from a simple closed curve. But at least we decide how to classify solenoids,
so we solve the restricted problem for monothetic groups of topological di-
mension one, and we eliminate a natural class of candidate spaces to behave
(with respect to the existence of minimal maps) like the circle.

2. Construction. A solenoid (here denoted by Σ) was orginally defined
as a continuum homeomorphic to the inverse limit lim←−(S1, fn), where fn :
S1 → S1 is a transformation of the form zqn and qn is a sequence of natural
numbers greater than 1 (see [12], [6] for more information on solenoids).
As we will not use this definition, we refrain from providing the details of
inverse limit constructions. Instead we will use a different characterization
of solenoids relying on odometers (see [5] for more information on odome-
ters). Odometers are characterized as infinite compact monothetic zero-
dimensional groups. Since every odometer is homeomorphic to the Cantor
set, we will denote odometers by C. By fixing a topological generator c0 and
defining h : C→ C by h(c) = c⊕c0 (where ⊕ denotes addition in the odome-
ter) we obtain a minimal equicontinuous dynamical system (C, h). The hom-
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eomorphism h has the following properties: there exists a strictly increasing
sequence (pk)k≥0 such that p0 = 1 and pk | pk+1, and a decreasing sequence
of closed-and-open sets Vk containing 0 such that {Vk, h(Vk), . . . , hpk−1(Vk)}
is a partition of C (V0 = C). In fact, any subsequence of (pk) starting with
p0 (and the corresponding subsequence of sets Vk) has the same properties.
The simplest dyadic odometer is shown in Figure 1.

Fig. 1. The action on the dyadic odometer (first and second approximation)

It is known (see [7]) that every solenoid is homeomorphic to a quotient
space of the product [0, 1] × C of the interval with the Cantor set, with
respect to the relation identifying the points (1, c) and (0, h(c)), where h is
as described above.

In this representation, we can equip the solenoid with the structure of
an Abelian topological group, as follows:

(t, c) + (s, c′) =

{
(t+ s, c⊕ c′) if t+ s < 1,

(t+ s− 1, h(c⊕ c′)) if t+ s ≥ 1.

Clearly, (0, 0) is the neutral element of Σ.

Being compact, metric, connected and Abelian, every solenoid Σ is nec-
essarily a monothetic group (see [9]). It is not hard to see that any ele-
ment of the form (b, 0) with b irrational is a topological generator (i.e.,
{n · (b, 0) : n ∈ N} is dense in Σ). Translation by any topological genera-
tor (in particular by (b, 0)) is minimal (see e.g. [4]). From now on, we fix a
solenoid Σ and an irrational number b ∈ (1/5, 1/4), and we denote by α the
translation by (b, 0). Clearly, α preserves arc lengths (in either representa-
tion of the solenoid).

Given a point p in a continuum X, the composant of X at p is the set

κ(p) = {q ∈ X : there exists a proper subcontinuum A of X

such that p, q ∈ A}.
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Solenoids are indecomposable continua (i.e., cannot be represented as a
union of two proper subcontinua) and indecomposable continua have con-
tinuum many pairwise disjoint composants (see [12]).

We will construct a non-invertible, minimal map Ψ of the solenoid. We
are going to define Ψ as a limit of homeomorphisms Ψk : Σ → Σ with Ψk =
α ◦β1 ◦ · · · ◦βk, where βi : Σ → Σ will be referred to as the ith perturbation.

Before we start the construction we define two auxiliary families of func-
tions on the interval [0, 1]. For k ∈ {1, 2, . . .} let Fk be the function defined
by the following formula (see Figure 2):

Fk(x) =


x

k + 1
, x ∈

[
0,

k + 1

2k + 1

]
,

2x− 1, x ∈
(
k + 1

2k + 1
, 1

]
.

For k ∈ {2, 3, . . .} let us denote by fk the function such that Fk−1◦fk−1 = Fk

(see Figure 3). It is not hard to calculate that

fk−1(x) =



k

k + 1
x, x ∈

[
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k + 1

2k + 1

]
,

2kx− k, x ∈
(
k + 1

2k + 1
,

k

2k − 1

]
,

x, x ∈
(

k

2k − 1
, 1

]
.

Fig. 2. Graph of the function Fk

Since b < 1 and we have α((0, 0)) = (b, 0), it is obvious that α((0, 0)) ∈
[0, 1] × {0}. In that case α preserves the composant of (0, 0) and thus it
preserves all composants.
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Fig. 3. Graph of the function fk−1

Let Uk = [0, b)× Vk. Let us observe that for each k there exists a num-
ber mk such that the images of Uk under the first mk iterates of α, i.e.,
Uk, α(Uk), . . . , αmk−1(Uk), are pairwise disjoint, and together with αmk(Uk)
they cover Σ (in fact, m0 = 4, 4pk ≤ mk < 5pk, see Figures 4 and 5).

Fig. 4. The first m1+1 (counting from 0 to m1) iterates of U1 under the transformation Ψ0.
The picture shows the case with p1 = 2, and m1 = 8. Note that the eighth image of Uk

completes the cover of Σ (and is not disjoint from Uk). The 1-fender is covered by the last
five of the nine images.
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The sets [0, 1]×h−1(Vk) will be called the k-fenders. Note that they form
a decreasing sequence of sets.

Let Ψ0 = α and set N0 = 0.
We turn to the construction of the first map Ψ1. We define a selfhomeo-

morphism γ1 of U1 by the formula

γ1(x, y) = (F̂1(x), y),

where F̂1 : [0, b] → [0, b] is rescaled F1. Next, we let β1 = γ1 on U1, and on
Ψ0(U1) we define

β1 = αγ−11 α−1.

On the rest of the space we let β1 be the identity.
Since the set V1 is closed and open, and the function F̂1 matches the

identity at 0 and b, the perturbation β1 is easily seen to be continuous. Now
we set

Ψ1 = Ψ0 ◦ β1.
Note that for any point p ∈ U1, Ψ

2
1 (p) = α2(p). It is crucial that the action

of Ψ1 is topologically conjugate to that of α. Indeed, the reader will easily
verify that Ψ1 = φ−11 ◦α ◦φ1, where φ1 equals the identity except on Ψ1(U1)
where it matches β1.

Note that the perturbation β1 is the identity on the 1-fender. This is
where the future “inverse modifications” will take place.

Assume that for some k ≥ 1 we have 4pk ≥ mk−1 + Nk−1 + 4 (this was
satisfied for k = 1, because p1 ≥ 2, m0 = 4 and N0 = 0), and that we
have defined the map Ψk as the composition Ψk = α ◦ β1 ◦ · · · ◦ βk which
is topologically conjugate to α via a map φk which is the identity on Uk.
Further, we assume that the perturbation βk differs from the identity only

on Uk and on the set Ψ
mk−1−3
k−1 (Uk) (this was also satisfied for k = 1 because

m0 = 4 and the modifications affected U1 and Ψ1
0 (U1)), and that for any

p ∈ Uk, Ψ
mk−1−2
k (p) = αmk−1−2(p) (which also holds for k = 1).

At this point we note some properties implied by the inductive assump-

tions. The perturbation introduced in Ψ
mk−1−3
k−1 (Uk) “reverses” the pertur-

bation made in Uk, so that the orbit under Ψk of any given point p ∈ U1

returns to its original orbit under α. Now we look at the orbit of p through
the iterates numbered mk−1 − 2, . . . ,mk. The orbit visits (many times) the
set U1, where it is subject to a perturbation (depending on how “deep”
inside U1 it falls, i.e., to which set Uj (1 ≤ j ≤ k)), but then it always vis-

its the set Ψ
mj−1−3
j−1 (Uj), where this perturbation is “undone”. Eventually,

before reaching (for the first time) the k-fender, the orbit returns to its orig-
inal bed of the orbit of α. Within the k-fender the orbit under Ψk matches
that under α. This implies, among other things, that the k-fender is covered
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by the “last five” of the observed images Ψmk−4
k (Uk), . . . , Ψmk

k (Uk) (because
they coincide with αmk−4(Uk), . . . , αmk(Uk)).

On the other hand, any future perturbations affect only (subsets of) Uk

and the k-fender. Thus, the set (which we will call the k-buffer)

Ψ
mk−1−2
k (Uk) ∪ · · · ∪ Ψmk−5

k (Uk)

is not affected by any perturbation in the future, which means that on
this set we have Ψl = Ψk−1 for all l ≥ k. Note that, since mk ≥ 4pk ≥
mk−1 +Nk−1 + 4, there are at least Nk−1 + 2 items in the union defining the
k-buffer. All these objects (the sets Uk, the k-fender, the k-buffer, the places
affected by the perturbations, etc.) are shown for k = 1 and 2 in Figures 4
and 5.

Fig. 5. The first m2 images of U2 under the transformation Ψ1. (In this picture p2 = 4
and m2 = 17. Also, we have ignored the perturbation β1 which slightly shifts some of the
vertical division lines.) The perturbation β2 affects U2 and Ψ5

1 (U2). The 2-buffer consists of
Ψ6
1 (U2), . . . , Ψ12

1 (U2), while Ψ13
1 (U2), . . . , Ψ17

1 (U2) cover the 2-fender. We have also marked
the set Ψ14

2 (U3) where the perturbation β3 will take place (to show that this set falls
within the 2-fender).

We are in a position to construct Ψk+1. We cover the space by finitely
many open 1/k-balls. By minimality of Ψk, there exists a number Nk such
that every orbit under Ψk visits every selected ball before Nk iterates.
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By passing to a subsequence of (pk) we can assume that 4pk+1 ≥ mk +
Nk + 4. Since Ψk is conjugate to α via a map φk which is the identity on Uk

(and hence also on Uk+1), the iterates Ψn
k (Uk+1) for 0 ≤ n ≤ mk+1 − 1 are

pairwise disjoint, and together with Ψ
mk+1

k (Uk+1) they cover Σ.

We define a selfhomeomorphism γk+1 of Uk+1 by the formula

γk+1(x, y) = (f̂k(x), y),

where f̂k : [0, b] → [0, b] is rescaled fk. Next, we let βk+1 = γk+1 on
Uk+1. Note that Ψmk−3

k (Uk+1) ⊂ Ψmk−3
k (Uk) is contained in the k-fender.

On Ψmk−3
k (Uk+1), we define

βk+1 = αmk−3γ−1k+1α
−mk+3,

and we let βk+1 be the identity on the remainder of the space.

At this point we set

Ψk+1 = Ψk ◦ βk+1 = α ◦ β1 ◦ β2 ◦ · · · ◦ βk+1.

The verification of the condition that Ψmk−2
k+1 (p) = αmk−1−2(p) for any

p ∈ Uk+1 is straightforward, by multiple substitution.

It is fairly easy to check that Ψk+1 is topologically conjugate to Ψk
(and hence to α), where the conjugating map φk+1 is the identity on Uk+1

(φk+1 differs from the identity only on Ψn
k (Uk+1) with n = 1, . . . ,mk−3; we

skip the details).

3. Properties of the limit transformation Ψ

Lemma 3.1. The transformations Ψk converge uniformly.

Proof. It suffices to show that the sequence Ψk is Cauchy in the supre-
mum metric for continuous maps. For given two natural numbers k and l
note that the transformations Ψk and Ψk+l differ on the disjoint sets Uk+1

and Ψmk−3
k (Uk+1), . . . , Ψ

mk+l−1−3
k (Uk+l).

On Uk+1, Ψk is the composition of α with F̂k, while Ψk+1 is piecewise
the composition of α with F̂k+j for j = 1, . . . , l. Since F̂k converges uni-
formly, it is obvious that, on this set, Ψk is uniformly close to Ψk+l for large
k (we also use the fact that α is uniformly continuous). On each of the sets

Ψ
mk+j−1

k (Uk+j) (j = 1, . . . , l) the map Ψk is just α while Ψk+l equals the com-

position of α with f̂−1k+j . Since the functions f̂−1k+j converge uniformly to the

identity map, the uniform Cauchy condition follows on these sets as well.

We denote by Ψ the resulting limit transformation, Ψ = limk→∞ Ψk. Let
us observe that Ψ is not invertible since for any point x ∈ [0, b/2] we have
limk→∞ F̂k(x) = 0, hence Ψ((x, 0)) = α((0, 0)) = (b, 0).
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It remains to show that the transformation Ψ is minimal. Before we
proceed to the next theorem we recall one fact concerning the composants
of solenoids. Given two points p and q belonging to the same composant,
the ray starting at p and containing q is by definition the union of all arcs
containing q and having an endpoint at p. Every composant of a solenoid is
the union of two rays starting at the same point; moreover, every ray is a
dense subset of the solenoid (see [8]).

Theorem 3.2. The transformation Ψ is minimal.

Proof. Using the same arguments as in Lemma 3.1 it is not hard to show
that d(α(p), Ψk(p)) < b/2 for any p ∈ Σ and k (where d is the distance on Σ
measured along the composant). Every orbit under α “walks forward” along
a ray with steps of length b, hence every orbit under Ψk “walks forward”
along a ray with steps of length strictly between b/2 and 3b/2, while every
orbit under Ψ has steps between b/2 and 3b/2 (inclusive). The intersection

of the set Dk = Ψ
mk−1−2
k (Uk) ∪ Ψmk−1−1

k (Uk) ∪ Ψmk−1

k (Uk) with any ray is
an arc bounded by some point p and Ψ3

k (p), hence has length strictly larger
than 3b/2. This implies that every orbit under Ψ must visit the set Dk.

Note that the k-buffer consists of Dk together with at least Nk−1 further
images (under the iterates of Ψk) of Uk, and that on the k-buffer we have
Ψk = Ψ . This implies that every orbit under Ψ visits the k-buffer at least
Nk consecutive times, during which it visits every ball in the selected cover
by 1/k-balls. This ends the proof of minimality.

Questions:

• It seems that the simplified construction with only the perturbations
defined on Uk (without inverses and fenders) also leads to a minimal
limit transformation. Is it indeed so?

We repeat the main long standing open question:

• Is it true that the simple closed curve is the only infinite continuum
of type (1, 0) (i.e., such that it admits a minimal homeomorphism but
does not admit non-invertible minimal maps)?

One can ask more specific versions of the above question:

• If we drop connectedness, then the only known infinite compact metric
spaces of type (1, 0) are disjoint unions of finitely many circles. Every
such space can be equipped with the structure of a compact monothetic
group (the circle times a finite cyclic group). Is it true that among
infinite compact monothetic groups these are the only ones of type
(1, 0)? (We have just eliminated solenoids.)
• Is it true that the pseudo-circle admits non-invertible minimal maps?

(See [12] for general information concerning the pseudo-circle.)
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