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THE NATURAL OPERATORS LIFTING 1-FORMS
TO SOME VECTOR BUNDLE FUNCTORS

BY

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. Let F :Mf → VB be a vector bundle functor. First we classify all natural
operators T|Mfn  T

(0,0)(F|Mfn)
∗ transforming vector fields to functions on the dual

bundle functor (F|Mfn )
∗. Next, we study the natural operators T ∗|Mfn  T

∗(F|Mfn)
∗

lifting 1-forms to (F|Mfn )
∗. As an application we classify the natural operators T ∗|Mfn  

T ∗(F|Mfn)
∗ for some well known vector bundle functors F .

0. Introduction. In [1], the authors studied the problem of how a
1-form ω on an n-manifold M can naturally induce a 1-form B(ω) on the
cotangent bundle (TM)∗. This problem is concerned with natural opera-
tors B : T ∗|Mfn T

∗(T|Mfn)
∗ in the sense of Kolář, Michor and Slovák [4],

where Mfn is the category of n-dimensional manifolds and embeddings.
The classification result of [1] says that every natural operator B : T ∗|Mfn  

T ∗(T|Mfn)
∗ is of the form B(ω) = aωV + bλ for some a, b ∈ R, where ωV is

the vertical lifting of ω to (TM)∗ and λ is the canonical Liouville 1-form on
(TM)∗.

In this paper we study a similar general problem with T replaced by an
arbitrary vector bundle functor F : Mf → VB from the category Mf of
all manifolds and maps into the category VB of vector bundles and vector
bundle maps. First we classify all natural operators T|Mfn  T

(0,0)(F|Mfn)
∗

transforming vector fields to functions on the dual bundle functor (F|Mfn)
∗.

Next we prove that every natural operator B : T ∗|Mfn  T
∗(F|Mfn)

∗ trans-

forming a 1-form ω on an n-manifold M into a 1-form B(ω) on (FM)∗ is
of the form B(ω) = aωV + λ for some uniquely determined canonical map
a : (FM)∗ → R and some canonical 1-form λ on (FM)∗. As an application
we describe all natural operators T ∗|Mfn  T

∗(F|Mfn)
∗ for some well known

vector bundle functors F . For F = (JrT ∗)∗ we recover the results of [5].
Natural operators lifting functions, vector fields and 1-forms to some

natural bundles were used practically in all papers in which the problem of
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prolongation of geometric structures was studied, e.g. [12]. That is why such
natural operators have been classified; see [1], [3]–[11], etc.
From now on the usual coordinates on R

n will be denoted by x1, . . . , xn.
All manifolds are assumed to be finite-dimensional and smooth, i.e. of

class C∞. Maps between manifolds are assumed to be smooth.

1. Natural operators T|Mfn  T
(0,0)(F|Mfn)

∗. Let F :Mf → VB be
a vector bundle functor. We have the following example of natural operators
T|Mfn  T

(0,0)(F|Mfn)
∗.

Example 1. Let v ∈F0R. Consider a vector fieldX on an n-manifoldM .
We define Av(X) : (FM)∗ → R by Av(X)η = 〈η, F (Φ

X
x )(v)〉, η ∈ (FxM)

∗,
x ∈M , where ΦXx : (ε, ε)→ M , Φ

X
x (t) = Exp(tX)x, t ∈ (−ε, ε), ε > 0. The

correspondence Av : T|Mfn  T
(0,0)(F|Mfn)

∗ is a natural operator.

Proposition 1. Let v1, . . . , vL be a basis of the vector space F0R. Every
natural operator A : T|Mfn  T

(0,0)(F|Mfn)
∗ is of the form

A = H(Av1 , . . . , AvL)

for a unique smooth map H ∈ C∞(RL).

Proof. Let v∗1 , . . . , v
∗
L ∈ (F0R)

∗ be the dual basis. Let q : Rn → R be the
projection onto the first factor.
For A as above we define H : RL → R by

H(t1, . . . , tL) = A(∂/∂x
1)(F0q)∗(

∑

L

s=1
tsv∗s )
.

We prove that A = H(Av1 , . . . , AvL). Since any non-vanishing vector field
X is locally ∂/∂x1 in some local coordinates on M , it is sufficient to show
that

A(∂/∂x1)η = H(A
v1(∂/∂x1)η, . . . , A

vL(∂/∂x1)η) for any η ∈ (F0R
n)∗.

Using the invariance of A and Avs with respect to (x1, (1/t)x2, . . . , (1/t)xn) :
R
n → R

n for t 6= 0 and next letting t → 0, we can assume that η =
(F0q)

∗(
∑L
s=1 tsv

∗
s ). Now, it remains to observe that A

vs(∂/∂x1)η = ts for
s = 1, . . . , L.
The uniqueness of H is clear as (Avs(∂/∂x1))Ls=1 is a surjection onto

R
L.

By [2], we can choose a basis v1, . . . , vL ∈ F0R such that vs is homoge-
neous of weight ns ∈ N ∪ {0}, i.e. F (τ idR)(vs) = τ

nsvs for any τ ∈ R.

(∗) By a permutation we can assume that v1, . . . , vk1 are of weight 0,
vk1+1, . . . , vk2 are of weight 1, etc.

Then Av1(X), . . . , Avk1 (X) do not depend on X, i.e. Av1 , . . . , Avk1 are
natural functions on (FM)∗. Moreover Avk1+1(X), . . . , Avk2 (X) depend lin-
early on X, i.e. Avk1+1 , . . . , Avk2 are linear operators.
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Corollary 1. Every natural function G on (F|Mfn)
∗ is of the form

G = K(Av1 , . . . , Avk1 )

for a unique K ∈ C∞(Rk1). If F has the point property , i.e. F pt = pt, then
G = const.

Corollary 2. Every natural linear operator A : TMfn T
(0,0)(F|Mfn)

∗

is of the form

A =

k2
∑

s=k1+1

Ks(A
v1 , . . . , Avk1 )Avs

for some unique Ks ∈ C
∞(Rk1).

Proof. The corollaries are consequences of Proposition 1 and the homo-
geneous function theorem [4].

2. A decomposition proposition. Let F and v1, . . . , vL be as in Sec-
tion 1 with the assumption (∗).

Example 2. If ω : TM → R is a 1-form on an n-manifold M , we have
its vertical lifting BV (ω) = ω ◦ Tπ : T (FM)∗ → R to (FM)∗, where π :
(FM)∗ → M is the bundle projection. The correspondence BV : T ∗|Mfn  

T ∗(F|Mfn)
∗ is a natural operator.

Proposition 2 (Decomposition Proposition). Consider a natural oper-
ator B : T ∗|Mfn  T

∗(F|Mfn)
∗. Then there exists a unique natural function

a on (F|Mfn)
∗ such that

B = aBV + λ

for some canonical 1-form λ on (F|Mfn)
∗.

Lemma 1. (a) We have (B(ω) − B(0))|(V (FR
n)∗)0 = 0 for any ω ∈

Ω1(Rn), where (V (FR
n)∗)0 is the fiber over 0 ∈ R

n of the vertical subbundle

in T (FR
n)∗.

(b) If F has the point property then B(ω)|(V (FR
n)∗)0 = 0 for any ω ∈

Ω1(Rn).

Proof. (a) There is a basis in (V (FR
n)∗)0 ∼= (F0R

n)∗ × (F0R
n)∗ of ho-

mogeneous elements with weight from {0,−1,−2, . . . , } with respect to the
action of R+ on (V (FR

n)∗)0 ∼= (F0R
n)∗ × (F0R

n)∗ by lifting homotheties
(see [2]). We use the invariance of (B(ω)− B(0))|(V (FR

n)∗)0 with respect
to the homotheties (1/t) idRn for t 6= 0 and apply the homogeneous function
theorem. We find that (B(ω)−B(0))|(V (FR

n)∗)0 is independent of ω. This
ends the proof of (a).
(b) We observe that if F has the point property then (F0R

n)∗ has no
non-zero homogeneous elements of weight 0. Next, we use the invariance of
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the restriction B(ω)|(V (FR
n)∗)0 with respect to the homotheties (1/t) idRn

for t 6= 0 and let t→ 0.

Proof of Proposition 2. Replacing B by B − B(0) we can assume that
B(0) = 0 and B(ω)|(V (FR

n)∗)0 = 0 for any ω ∈ Ω
1(Rn). Then B is

uniquely determined by the values 〈B(ω)η, F
∗(∂/∂x1)η〉 for any ω=

∑

ωidx
i

∈ Ω1(Rn) and η ∈ (F0R
n)∗, where F ∗(∂/∂x1) is the complete lifting (flow

prolongation) of ∂/∂x1 to (FR
n)∗.

Using the invariance of B with respect to the homotheties (1/t) idRn for
t 6= 0 we get the homogeneity condition

t

〈

B(ω)η, F
∗

(

∂

∂x1

)

η

〉

=

〈

B((t idRn)
∗ω)F ( 1

t
idRn )∗(η)

, F ∗
(

∂

∂x1

)

F ( 1
t
idRn )∗(η)

〉

.

Then by the non-linear Peetre theorem [4], the homogeneous function theo-
rem and B(0) = 0 we deduce that 〈B(ω)η, F

∗(∂/∂x1)η〉 is a linear combina-
tion of ω1(0), . . . , ωn(0) with coefficients being smooth maps in the homo-
geneous coordinates of η of weight 0.

Then using the invariance ofB with respect to (x1, (1/t)x2, . . . , (1/t)xn) :
R
n → R

n for t 6= 0 and letting t→ 0 we end the proof.

3. On canonical 1-forms on (F|Mfn)
∗

Proposition 3. Every canonical 1-form λ on (F|Mfn)
∗ induces a lin-

ear natural operator A(λ) : T|Mfn  T
(0,0)(F|Mfn)

∗ such that A(λ)(X)η =
〈λη, F

∗(X)η〉, η ∈ (FM)
∗, X ∈ X (M), where F ∗(X) is the complete lift-

ing (flow operator) of X to (FM)∗. If F has the point property , then the
correspondence λ 7→ A(λ) is a linear injection.

Proof. The injectivity is a consequence of Lemma 1(b).

4. A corollary

Corollary 3. Assume that F has the point property and there are no
non-zero elements in F0R of weight 1. (For example, let F = F1 ⊗ F2 :
Mf → VB be a tensor product of two vector bundle functors F1, F2 :Mf →
VB with the point property.) Then every natural operator B : T ∗|Mfn  

T ∗(F|Mfn)
∗ is a constant multiple of the vertical lifting.

Proof. Since there are no non-zero elements in F0R of weight 1, we see
that every canonical 1-form on (F|Mfn)

∗ is zero because of Corollary 2
and Proposition 3. Then Proposition 2 together with Corollary 1 ends the
proof.
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5. Applications

5.1. The bundle functor T r∗k of (k, r)-covelocities. Let T
(r)
k :Mf → VB

be the bundle functor sending every manifold M to a vector bundle T
(r)
k M

= (Jr(M,Rk)0)
∗ over M , and every map f : M → N to a vector bundle

map T
(r)
k f : T

(r)
k M → T

(r)
k N covering f such that 〈T

(r)
k f(η), j

r
f(x)γ〉 =

〈η, jrx(γ ◦ f)〉 for η ∈ (T
(r)
k M)x, j

r
f(x)γ ∈ J

r
f(x)(N,R

k)0, x ∈ M , γ =

(γ1, . . . , γk) : N → R
k, γ(f(x)) = 0. Then T r∗k = (T

(r)
k |Mfn)

∗ :Mfn → VB
is the well known vector bundle functor of (k, r)-covelocities.
We have k canonical 1-forms λr1, . . . , λ

r
k on T

r∗
k M such that

〈λrj , v〉 = 〈dxγ
j , Tπ(v)〉

for v ∈ TwT
r∗
k M , w = j

r
xγ, x ∈ M , γ = (γ

1, . . . , γk) : M → R
k, γ(x) = 0,

j = 1, . . . , k, where π : T r∗k M →M is the bundle projection.

Corollary 4. Every natural operator B : T ∗|Mfn  T
∗T r∗k is a linear

combination of the vertical lifting BV and λr1, . . . , λ
r
k with real coefficients.

Proof. The vector bundle functor T
(r)
k has the point property and the

subspace of elements in (T
(r)
k R)0 of weight 1 is k-dimensional. Then by

Proposition 3 together with Corollaries 1 and 2, the space of canonical forms
on T r∗k is at most k-dimensional. Now, Proposition 2 ends the proof.

In the special case k = 1, T r∗1 = T
r∗ is the r-cotangent bundle functor.

So, we have the following result.

Corollary 5. Every natural operator B : T ∗|Mfn  T
∗T r∗ is a linear

combination of the vertical lifting BV and the canonical r-cotangent bundle
1-form λr with real coefficients.

In the case r = 1, T 1∗ ∼= T ∗ is the cotangent bundle and we recover the
result mentioned in the introduction.

5.2. The kernel of the jet projection πr1 : T
r∗ → T 1∗. Let T (r) :Mf →

VB be the bundle functor sending every manifold M to the factor vector
bundle T (r)M = T (r)M/TM overM , and every map f :M → N to the fac-

tor vector bundle map T (r)f : T (r)M → T (r)N covering f . Then (T
(r)
|Mfn
)∗

can be identified with the kernel kerπr1 of the jet projection π
r
1 : T

r∗ → T 1∗.

Corollary 6. Every natural operator B : T ∗|Mfn  T
∗(kerπr1) is a

constant multiple of the vertical lifting.

Proof. In T
(r)
0 R there are no non-zero elements of weight 1.

5.3. The r-jet prolongation JrT ∗ of T ∗. Let (JrT ∗)∗ :Mf → VB be the
bundle functor sending every manifold M to the vector bundle (JrT ∗M)∗
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over M , and every map f : M → N to the vector bundle map (JrT ∗)∗f :
(JrT ∗M)∗ → (JrT ∗N)∗ covering f such that 〈(JrT ∗)∗f(η), jr

f(x)ω〉 =

〈η, jrx(f
∗ω)〉 for η ∈ (JrT ∗M)∗x, j

r
f(x)ω ∈ J

r
f(x)T

∗N , x ∈M , ω ∈ Ω1(N).

We have a canonical 1-form θr on JrT ∗M such that

〈θr, v〉 = 〈ωx, Tπ(v)〉

for v ∈ Tw(J
rT ∗M), w = jrxω, x ∈M , ω ∈ Ω

1(M), where π : JrT ∗M →M
is the bundle projection.

Corollary 7 ([5]). Every natural operator B : T ∗|Mfn  T
∗(JrT ∗) is

a linear combination of the vertical lifting BV and θr with real coefficients.

Proof. The vector bundle functor (JrT ∗)∗ : Mf → VB has the point
property and the subspace of elements in (JrT ∗R)∗0 of weight 1 is 1-dimen-
sional.

In the case r = 0, J0T ∗ = T ∗ and we again recover the result mentioned
in the introduction.

5.4. The r-jet prolongation Jr(⊗pT ∗) of the tensor power ⊗pT ∗. Let
(Jr(⊗pT ∗))∗ :Mf → VB be the bundle functor sending every manifold M
to the vector bundle (Jr(⊗pT ∗M))∗ over M , and every map f : M → N
to the vector bundle map (Jr(⊗pT ∗))∗f : (Jr(⊗pT ∗M))∗ → (Jr(⊗pT ∗N))∗

covering f such that 〈(Jr(⊗pT ∗))∗f(η), jr
f(x)τ〉 = 〈η, j

r
x(f
∗τ)〉 for x ∈ M ,

τ ∈ T (0,p)(N), η ∈ (Jr(⊗pT ∗M))∗x, j
r
f(x)τ ∈ J

r
f(x)(⊗

pT ∗N).

Corollary 8 ([5]). For p ≥ 2 every natural operator B : T ∗|Mfn  

T ∗(Jr(⊗pT ∗)) is a constant multiple of the vertical lifting.

Proof. The vector bundle functor (Jr(⊗pT ∗))∗ has the point property
and the subspace of elements from (Jr(⊗pT ∗R))∗0 of weight 1 is 0-dimen-
sional.

Similarly, replacing the tensor power ⊗p by the symmetric tensor power
⊙p or by the skew-symmetric tensor power Λp we have

Corollary 9 ([5]). For p ≥ 2 every natural operator B : T ∗|Mfn  

T ∗(Jr(⊙pT ∗)) is a constant multiple of the vertical lifting.

Corollary 10 ([5]). For p ≥ 2 every natural operator B : T ∗|Mfn  

T ∗(Jr(ΛpT ∗)) is a constant multiple of the vertical lifting.

5.5. The tensor pover ⊗rT ∗. From Corollary 3 we obtain immediately

Corollary 11. For r≥ 2 every natural operator B : T ∗|Mfn T
∗(⊗rT ∗)

is a constant multiple of the vertical lifting.

Quite similarly we have
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Corollary 12. For r≥ 2 every natural operator B : T ∗|Mfn T
∗(ΛrT ∗)

is a constant multiple of the vertical lifting.

Corollary 13. For r≥ 2 every natural operator B :T ∗|Mfn T
∗(⊙rT ∗)

is a constant multiple of the vertical lifting.

Remark. It is clear that the presented list of applications of Proposi-
tions 1, 2 and 3 is not complete. Other applications are left to the reader.
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