COLLOQUIUM MATHEMATICUM

THE NATURAL OPERATORS LIFTING 1-FORMS TO SOME VECTOR BUNDLE FUNCTORS

BY
J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract

Let $F: \mathcal{M} f \rightarrow \mathcal{V B}$ be a vector bundle functor. First we classify all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ transforming vector fields to functions on the dual bundle functor $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$. Next, we study the natural operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ lifting 1-forms to $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$. As an application we classify the natural operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ for some well known vector bundle functors F.

0. Introduction. In [1], the authors studied the problem of how a 1-form ω on an n-manifold M can naturally induce a 1-form $B(\omega)$ on the cotangent bundle $(T M)^{*}$. This problem is concerned with natural operators $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(T_{\mid \mathcal{M} f_{n}}\right)^{*}$ in the sense of Koláŕ, Michor and Slovák [4], where $\mathcal{M} f_{n}$ is the category of n-dimensional manifolds and embeddings. The classification result of [1] says that every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(T_{\mid \mathcal{M} f_{n}}\right)^{*}$ is of the form $B(\omega)=a \omega^{V}+b \lambda$ for some $a, b \in \mathbb{R}$, where ω^{V} is the vertical lifting of ω to $(T M)^{*}$ and λ is the canonical Liouville 1-form on $(T M)$.

In this paper we study a similar general problem with T replaced by an arbitrary vector bundle functor $F: \mathcal{M} f \rightarrow \mathcal{V B}$ from the category $\mathcal{M} f$ of all manifolds and maps into the category $\mathcal{V B}$ of vector bundles and vector bundle maps. First we classify all natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ transforming vector fields to functions on the dual bundle functor $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$. Next we prove that every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ transforming a 1-form ω on an n-manifold M into a 1-form $B(\omega)$ on $(F M)^{*}$ is of the form $B(\omega)=a \omega^{V}+\lambda$ for some uniquely determined canonical map $a:(F M)^{*} \rightarrow \mathbb{R}$ and some canonical 1-form λ on $(F M)^{*}$. As an application we describe all natural operators $T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ for some well known vector bundle functors F. For $F=\left(J^{r} T^{*}\right)^{*}$ we recover the results of [5].

Natural operators lifting functions, vector fields and 1-forms to some natural bundles were used practically in all papers in which the problem of

[^0]prolongation of geometric structures was studied, e.g. [12]. That is why such natural operators have been classified; see [1], [3]-[11], etc.

From now on the usual coordinates on \mathbb{R}^{n} will be denoted by x^{1}, \ldots, x^{n}.
All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞}. Maps between manifolds are assumed to be smooth.

1. Natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$. Let $F: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ be a vector bundle functor. We have the following example of natural operators $T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$.

Example 1. Let $v \in F_{0} \mathbb{R}$. Consider a vector field X on an n-manifold M. We define $A^{v}(X):(F M)^{*} \rightarrow \mathbb{R}$ by $A^{v}(X)_{\eta}=\left\langle\eta, F\left(\Phi_{x}^{X}\right)(v)\right\rangle, \eta \in\left(F_{x} M\right)^{*}$, $x \in M$, where $\Phi_{x}^{X}:(\varepsilon, \varepsilon) \rightarrow M, \Phi_{x}^{X}(t)=\operatorname{Exp}(t X)_{x}, t \in(-\varepsilon, \varepsilon), \varepsilon>0$. The correspondence $A^{v}: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is a natural operator.

Proposition 1. Let v_{1}, \ldots, v_{L} be a basis of the vector space $F_{0} \mathbb{R}$. Every natural operator $A: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is of the form

$$
A=H\left(A^{v_{1}}, \ldots, A^{v_{L}}\right)
$$

for a unique smooth map $H \in \mathcal{C}^{\infty}\left(\mathbb{R}^{L}\right)$.
Proof. Let $v_{1}^{*}, \ldots, v_{L}^{*} \in\left(F_{0} \mathbb{R}\right)^{*}$ be the dual basis. Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the projection onto the first factor.

For A as above we define $H: \mathbb{R}^{L} \rightarrow \mathbb{R}$ by

$$
H\left(t_{1}, \ldots, t_{L}\right)=A\left(\partial / \partial x^{1}\right)_{\left(F_{0} q\right)^{*}\left(\sum_{s=1}^{L} t_{s} v_{s}^{*}\right)}
$$

We prove that $A=H\left(A^{v_{1}}, \ldots, A^{v_{L}}\right)$. Since any non-vanishing vector field X is locally $\partial / \partial x^{1}$ in some local coordinates on M, it is sufficient to show that

$$
A\left(\partial / \partial x^{1}\right)_{\eta}=H\left(A^{v_{1}}\left(\partial / \partial x^{1}\right)_{\eta}, \ldots, A^{v_{L}}\left(\partial / \partial x^{1}\right)_{\eta}\right) \quad \text { for any } \eta \in\left(F_{0} \mathbb{R}^{n}\right)^{*}
$$

Using the invariance of A and $A^{v_{s}}$ with respect to $\left(x^{1},(1 / t) x^{2}, \ldots,(1 / t) x^{n}\right)$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $t \neq 0$ and next letting $t \rightarrow 0$, we can assume that $\eta=$ $\left(F_{0} q\right)^{*}\left(\sum_{s=1}^{L} t_{s} v_{s}^{*}\right)$. Now, it remains to observe that $A^{v_{s}}\left(\partial / \partial x^{1}\right)_{\eta}=t_{s}$ for $s=1, \ldots, L$.

The uniqueness of H is clear as $\left(A^{v_{s}}\left(\partial / \partial x^{1}\right)\right)_{s=1}^{L}$ is a surjection onto \mathbb{R}^{L}.

By [2], we can choose a basis $v_{1}, \ldots, v_{L} \in F_{0} \mathbb{R}$ such that v_{s} is homogeneous of weight $n_{s} \in \mathbb{N} \cup\{0\}$, i.e. $F\left(\tau \operatorname{id}_{\mathbb{R}}\right)\left(v_{s}\right)=\tau^{n_{s}} v_{s}$ for any $\tau \in \mathbb{R}$.
$(*)$ By a permutation we can assume that $v_{1}, \ldots, v_{k_{1}}$ are of weight 0 , $v_{k_{1}+1}, \ldots, v_{k_{2}}$ are of weight 1 , etc.

Then $A^{v_{1}}(X), \ldots, A^{v_{k_{1}}}(X)$ do not depend on X, i.e. $A^{v_{1}}, \ldots, A^{v_{k_{1}}}$ are natural functions on $(F M)^{*}$. Moreover $A^{v_{k_{1}+1}}(X), \ldots, A^{v_{k_{2}}}(X)$ depend linearly on X, i.e. $A^{v_{k_{1}+1}}, \ldots, A^{v_{k_{2}}}$ are linear operators.

Corollary 1. Every natural function G on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is of the form

$$
G=K\left(A^{v_{1}}, \ldots, A^{v_{k_{1}}}\right)
$$

for a unique $K \in \mathcal{C}^{\infty}\left(\mathbb{R}^{k_{1}}\right)$. If F has the point property, i.e. $F \mathrm{pt}=\mathrm{pt}$, then $G=$ const.

Corollary 2. Every natural linear operator $A: T_{\mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is of the form

$$
A=\sum_{s=k_{1}+1}^{k_{2}} K_{s}\left(A^{v_{1}}, \ldots, A^{v_{k_{1}}}\right) A^{v_{s}}
$$

for some unique $K_{s} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{k_{1}}\right)$.
Proof. The corollaries are consequences of Proposition 1 and the homogeneous function theorem [4].
2. A decomposition proposition. Let F and v_{1}, \ldots, v_{L} be as in Section 1 with the assumption ($*$).

Example 2. If $\omega: T M \rightarrow \mathbb{R}$ is a 1 -form on an n-manifold M, we have its vertical lifting $B^{V}(\omega)=\omega \circ T \pi: T(F M)^{*} \rightarrow \mathbb{R}$ to $(F M)^{*}$, where π : $(F M)^{*} \rightarrow M$ is the bundle projection. The correspondence $B^{V}: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is a natural operator.

Proposition 2 (Decomposition Proposition). Consider a natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$. Then there exists a unique natural function a on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ such that

$$
B=a B^{V}+\lambda
$$

for some canonical 1-form λ on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$.
Lemma 1. (a) We have $(B(\omega)-B(0)) \mid\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}=0$ for any $\omega \in$ $\Omega^{1}\left(\mathbb{R}^{n}\right)$, where $\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}$ is the fiber over $0 \in \mathbb{R}^{n}$ of the vertical subbundle in $T\left(F \mathbb{R}^{n}\right)^{*}$.
(b) If F has the point property then $B(\omega) \mid\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}=0$ for any $\omega \in$ $\Omega^{1}\left(\mathbb{R}^{n}\right)$.

Proof. (a) There is a basis in $\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0} \cong\left(F_{0} \mathbb{R}^{n}\right)^{*} \times\left(F_{0} \mathbb{R}^{n}\right)^{*}$ of homogeneous elements with weight from $\{0,-1,-2, \ldots$,$\} with respect to the$ action of \mathbb{R}_{+}on $\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0} \cong\left(F_{0} \mathbb{R}^{n}\right)^{*} \times\left(F_{0} \mathbb{R}^{n}\right)^{*}$ by lifting homotheties (see [2]). We use the invariance of $(B(\omega)-B(0)) \mid\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}$ with respect to the homotheties $(1 / t) \operatorname{id}_{\mathbb{R}^{n}}$ for $t \neq 0$ and apply the homogeneous function theorem. We find that $(B(\omega)-B(0)) \mid\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}$ is independent of ω. This ends the proof of (a).
(b) We observe that if F has the point property then $\left(F_{0} \mathbb{R}^{n}\right)^{*}$ has no non-zero homogeneous elements of weight 0 . Next, we use the invariance of
the restriction $B(\omega) \mid\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}$ with respect to the homotheties $(1 / t) \mathrm{id}_{\mathbb{R}^{n}}$ for $t \neq 0$ and let $t \rightarrow 0$.

Proof of Proposition 2. Replacing B by $B-B(0)$ we can assume that $B(0)=0$ and $B(\omega) \mid\left(V\left(F \mathbb{R}^{n}\right)^{*}\right)_{0}=0$ for any $\omega \in \Omega^{1}\left(\mathbb{R}^{n}\right)$. Then B is uniquely determined by the values $\left\langle B(\omega)_{\eta}, F^{*}\left(\partial / \partial x^{1}\right)_{\eta}\right\rangle$ for any $\omega=\sum \omega_{i} d x^{i}$ $\in \Omega^{1}\left(\mathbb{R}^{n}\right)$ and $\eta \in\left(F_{0} \mathbb{R}^{n}\right)^{*}$, where $F^{*}\left(\partial / \partial x^{1}\right)$ is the complete lifting (flow prolongation) of $\partial / \partial x^{1}$ to $\left(F \mathbb{R}^{n}\right)^{*}$.

Using the invariance of B with respect to the homotheties $(1 / t) \mathrm{id}_{\mathbb{R}^{n}}$ for $t \neq 0$ we get the homogeneity condition

$$
t\left\langle B(\omega)_{\eta}, F^{*}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}\right\rangle=\left\langle B\left(\left(t \operatorname{id}_{\mathbb{R}^{n}}\right)^{*} \omega\right)_{F\left(\frac{1}{t} \operatorname{id}_{\mathbb{R}^{n}}\right)^{*}(\eta)}, F^{*}\left(\frac{\partial}{\partial x^{1}}\right)_{F\left(\frac{1}{t} \mathrm{id}_{\mathbb{R}^{n}}\right)^{*}(\eta)}\right\rangle
$$

Then by the non-linear Peetre theorem [4], the homogeneous function theorem and $B(0)=0$ we deduce that $\left\langle B(\omega)_{\eta}, F^{*}\left(\partial / \partial x^{1}\right)_{\eta}\right\rangle$ is a linear combination of $\omega_{1}(0), \ldots, \omega_{n}(0)$ with coefficients being smooth maps in the homogeneous coordinates of η of weight 0 .

Then using the invariance of B with respect to $\left(x^{1},(1 / t) x^{2}, \ldots,(1 / t) x^{n}\right)$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $t \neq 0$ and letting $t \rightarrow 0$ we end the proof.

3. On canonical 1-forms on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$

Proposition 3. Every canonical 1-form λ on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ induces a linear natural operator $A^{(\lambda)}: T_{\mid \mathcal{M} f_{n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ such that $A^{(\lambda)}(X)_{\eta}=$ $\left\langle\lambda_{\eta}, F^{*}(X)_{\eta}\right\rangle, \eta \in(F M)^{*}, X \in \mathcal{X}(M)$, where $F^{*}(X)$ is the complete lifting (flow operator) of X to $(F M)^{*}$. If F has the point property, then the correspondence $\lambda \mapsto A^{(\lambda)}$ is a linear injection.

Proof. The injectivity is a consequence of Lemma 1(b).

4. A corollary

Corollary 3. Assume that F has the point property and there are no non-zero elements in $F_{0} \mathbb{R}$ of weight 1. (For example, let $F=F_{1} \otimes F_{2}$: $\mathcal{M} f \rightarrow \mathcal{V B}$ be a tensor product of two vector bundle functors $F_{1}, F_{2}: \mathcal{M} f \rightarrow$ $\mathcal{V B}$ with the point property.) Then every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is a constant multiple of the vertical lifting.

Proof. Since there are no non-zero elements in $F_{0} \mathbb{R}$ of weight 1, we see that every canonical 1-form on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ is zero because of Corollary 2 and Proposition 3. Then Proposition 2 together with Corollary 1 ends the proof.

5. Applications

5.1. The bundle functor $T_{k}^{r *}$ of (k, r)-covelocities. Let $T_{k}^{(r)}: \mathcal{M} f \rightarrow \mathcal{V B}$ be the bundle functor sending every manifold M to a vector bundle $T_{k}^{(r)} M$ $=\left(J^{r}\left(M, \mathbb{R}^{k}\right)_{0}\right)^{*}$ over M, and every map $f: M \rightarrow N$ to a vector bundle $\operatorname{map} T_{k}^{(r)} f: T_{k}^{(r)} M \rightarrow T_{k}^{(r)} N$ covering f such that $\left\langle T_{k}^{(r)} f(\eta), j_{f(x)}^{r} \gamma\right\rangle=$ $\left\langle\eta, j_{x}^{r}(\gamma \circ f)\right\rangle$ for $\eta \in\left(T_{k}^{(r)} M\right)_{x}, j_{f(x)}^{r} \gamma \in J_{f(x)}^{r}\left(N, \mathbb{R}^{k}\right)_{0}, x \in M, \gamma=$ $\left(\gamma^{1}, \ldots, \gamma^{k}\right): N \rightarrow \mathbb{R}^{k}, \gamma(f(x))=0$. Then $T_{k}^{r *}=\left(T_{k}^{(r)} \mid \mathcal{M} f_{n}\right)^{*}: \mathcal{M} f_{n} \rightarrow \mathcal{V B}$ is the well known vector bundle functor of (k, r)-covelocities.

We have k canonical 1-forms $\lambda_{1}^{r}, \ldots, \lambda_{k}^{r}$ on $T_{k}^{r *} M$ such that

$$
\left\langle\lambda_{j}^{r}, v\right\rangle=\left\langle d_{x} \gamma^{j}, T \pi(v)\right\rangle
$$

for $v \in T_{w} T_{k}^{r *} M, w=j_{x}^{r} \gamma, x \in M, \gamma=\left(\gamma^{1}, \ldots, \gamma^{k}\right): M \rightarrow \mathbb{R}^{k}, \gamma(x)=0$, $j=1, \ldots, k$, where $\pi: T_{k}^{r *} M \rightarrow M$ is the bundle projection.

Corollary 4. Every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} T_{k}^{r *}$ is a linear combination of the vertical lifting B^{V} and $\lambda_{1}^{r}, \ldots, \lambda_{k}^{r}$ with real coefficients.

Proof. The vector bundle functor $T_{k}^{(r)}$ has the point property and the subspace of elements in $\left(T_{k}^{(r)} \mathbb{R}\right)_{0}$ of weight 1 is k-dimensional. Then by Proposition 3 together with Corollaries 1 and 2, the space of canonical forms on $T_{k}^{r *}$ is at most k-dimensional. Now, Proposition 2 ends the proof.

In the special case $k=1, T_{1}^{r *}=T^{r *}$ is the r-cotangent bundle functor. So, we have the following result.

Corollary 5. Every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*} T^{r *}$ is a linear combination of the vertical lifting B^{V} and the canonical r-cotangent bundle 1 -form λ^{r} with real coefficients.

In the case $r=1, T^{1 *} \cong T^{*}$ is the cotangent bundle and we recover the result mentioned in the introduction.
5.2. The kernel of the jet projection $\pi_{1}^{r}: T^{r *} \rightarrow T^{1 *}$. Let $\bar{T}^{(r)}: \mathcal{M} f \rightarrow$ $\mathcal{V B}$ be the bundle functor sending every manifold M to the factor vector bundle $\bar{T}^{(r)} M=T^{(r)} M / T M$ over M, and every map $f: M \rightarrow N$ to the factor vector bundle map $\bar{T}^{(r)} f: \bar{T}^{(r)} M \rightarrow \bar{T}^{(r)} N$ covering f. Then $\left(\bar{T}_{\mid \mathcal{M} f_{n}}^{(r)}\right)^{*}$ can be identified with the kernel ker π_{1}^{r} of the jet projection $\pi_{1}^{r}: T^{r *} \rightarrow T^{1 *}$.

Corollary 6. Every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(\operatorname{ker} \pi_{1}^{r}\right)$ is a constant multiple of the vertical lifting.

Proof. In $\bar{T}_{0}^{(r)} \mathbb{R}$ there are no non-zero elements of weight 1.
5.3. The r-jet prolongation $J^{r} T^{*}$ of T^{*}. Let $\left(J^{r} T^{*}\right)^{*}: \mathcal{M} f \rightarrow \mathcal{V B}$ be the bundle functor sending every manifold M to the vector bundle $\left(J^{r} T^{*} M\right)^{*}$
over M, and every map $f: M \rightarrow N$ to the vector bundle map $\left(J^{r} T^{*}\right)^{*} f$: $\left(J^{r} T^{*} M\right)^{*} \rightarrow\left(J^{r} T^{*} N\right)^{*}$ covering f such that $\left\langle\left(J^{r} T^{*}\right)^{*} f(\eta), j_{f(x)}^{r} \omega\right\rangle=$ $\left\langle\eta, j_{x}^{r}\left(f^{*} \omega\right)\right\rangle$ for $\eta \in\left(J^{r} T^{*} M\right)_{x}^{*}, j_{f(x)}^{r} \omega \in J_{f(x)}^{r} T^{*} N, x \in M, \omega \in \Omega^{1}(N)$.

We have a canonical 1-form θ^{r} on $J^{r} T^{*} M$ such that

$$
\left\langle\theta^{r}, v\right\rangle=\left\langle\omega_{x}, T \pi(v)\right\rangle
$$

for $v \in T_{w}\left(J^{r} T^{*} M\right), w=j_{x}^{r} \omega, x \in M, \omega \in \Omega^{1}(M)$, where $\pi: J^{r} T^{*} M \rightarrow M$ is the bundle projection.

Corollary 7 ([5]). Every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(J^{r} T^{*}\right)$ is a linear combination of the vertical lifting B^{V} and θ^{r} with real coefficients.

Proof. The vector bundle functor $\left(J^{r} T^{*}\right)^{*}: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ has the point property and the subspace of elements in $\left(J^{r} T^{*} \mathbb{R}\right)_{0}^{*}$ of weight 1 is 1 -dimensional.

In the case $r=0, J^{0} T^{*}=T^{*}$ and we again recover the result mentioned in the introduction.
5.4. The r-jet prolongation $J^{r}\left(\otimes^{p} T^{*}\right)$ of the tensor power $\otimes^{p} T^{*}$. Let $\left(J^{r}\left(\otimes^{p} T^{*}\right)\right)^{*}: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ be the bundle functor sending every manifold M to the vector bundle $\left(J^{r}\left(\otimes^{p} T^{*} M\right)\right)^{*}$ over M, and every map $f: M \rightarrow N$ to the vector bundle map $\left(J^{r}\left(\otimes^{p} T^{*}\right)\right)^{*} f:\left(J^{r}\left(\otimes^{p} T^{*} M\right)\right)^{*} \rightarrow\left(J^{r}\left(\otimes^{p} T^{*} N\right)\right)^{*}$ covering f such that $\left\langle\left(J^{r}\left(\otimes^{p} T^{*}\right)\right)^{*} f(\eta), j_{f(x)}^{r} \tau\right\rangle=\left\langle\eta, j_{x}^{r}\left(f^{*} \tau\right)\right\rangle$ for $x \in M$, $\tau \in \mathcal{T}^{(0, p)}(N), \eta \in\left(J^{r}\left(\otimes^{p} T^{*} M\right)\right)_{x}^{*}, j_{f(x)}^{r} \tau \in J_{f(x)}^{r}\left(\otimes^{p} T^{*} N\right)$.

Corollary 8 ([5]). For $p \geq 2$ every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(J^{r}\left(\otimes^{p} T^{*}\right)\right)$ is a constant multiple of the vertical lifting.

Proof. The vector bundle functor $\left(J^{r}\left(\otimes^{p} T^{*}\right)\right)^{*}$ has the point property and the subspace of elements from $\left(J^{r}\left(\otimes^{p} T^{*} \mathbb{R}\right)\right)_{0}^{*}$ of weight 1 is 0 -dimensional.

Similarly, replacing the tensor power \otimes^{p} by the symmetric tensor power \odot^{p} or by the skew-symmetric tensor power Λ^{p} we have

Corollary 9 ([5]). For $p \geq 2$ every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(J^{r}\left(\odot^{p} T^{*}\right)\right)$ is a constant multiple of the vertical lifting.

Corollary 10 ([5]). For $p \geq 2$ every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow$ $T^{*}\left(J^{r}\left(\Lambda^{p} T^{*}\right)\right)$ is a constant multiple of the vertical lifting.
5.5. The tensor pover $\otimes^{r} T^{*}$. From Corollary 3 we obtain immediately

Corollary 11. For $r \geq 2$ every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(\otimes^{r} T^{*}\right)$ is a constant multiple of the vertical lifting.

Quite similarly we have

Corollary 12. For $r \geq 2$ every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(\Lambda^{r} T^{*}\right)$ is a constant multiple of the vertical lifting.

Corollary 13. For $r \geq 2$ every natural operator $B: T_{\mid \mathcal{M} f_{n}}^{*} \rightsquigarrow T^{*}\left(\odot^{r} T^{*}\right)$ is a constant multiple of the vertical lifting.

Remark. It is clear that the presented list of applications of Propositions 1, 2 and 3 is not complete. Other applications are left to the reader.

REFERENCES

[1] M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk Univ., Brno, 1996, 141-150.
[2] D. B. A. Epstein, Natural vector bundles, in: Category Theory, Homology Theory and Their Applications III, Lecture Notes in Math. 99, Springer, 1969, 171-195.
[3] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983).
[4] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
[5] J. Kurek and W. M. Mikulski, The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, in: Proc. Conf. on Diff. Geom. and Appl. (Opava, 2001), Math. Publ. Silesian Univ. at Opava, to appear.
[6] W. M. Mikulski, Natural transformations transforming functions and vector fields to functions on some natural bundles, Math. Bohemica 117 (1992), 217-223.
[7] -, The natural operators lifting 1 -forms on manifolds to the bundles of A-velocities, Monatsh. Math. 119 (1995), 63-77.
[8] —, The natural operators lifting 1-forms to r-jet prolongation of the tangent bundle, Geom. Dedicata 68 (1997), 1-20.
[9] -, Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (1995), 97-111.
[10] -, Liftings of 1-forms to the bundle of affinors, Ann. Univ. Mariae Curie-Skłodowska 55 (2001), 109-113.
[11] -, Liftings of 1-forms to $\left(J^{r} T^{*}\right)^{*}$, Colloq. Math. 91 (2002), 69-77.
[12] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.

Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: kurek@golem.umcs.lublin.pl

Institute of Mathematics
Jagiellonian University Reymonta 4 50-039 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: bundle functor, natural operator.

