VOL. 93

2002

NO. 2

THE NATURAL OPERATORS LIFTING 1-FORMS TO SOME VECTOR BUNDLE FUNCTORS

BҮ

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. Let $F : \mathcal{M}f \to \mathcal{VB}$ be a vector bundle functor. First we classify all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$ transforming vector fields to functions on the dual bundle functor $(F_{|\mathcal{M}f_n})^*$. Next, we study the natural operators $T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$ lifting 1-forms to $(F_{|\mathcal{M}f_n})^*$. As an application we classify the natural operators $T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$ $T^*(F_{|\mathcal{M}f_n})^*$ for some well known vector bundle functors F.

0. Introduction. In [1], the authors studied the problem of how a 1-form ω on an *n*-manifold M can naturally induce a 1-form $B(\omega)$ on the cotangent bundle $(TM)^*$. This problem is concerned with natural operators $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(T_{|\mathcal{M}f_n})^*$ in the sense of Kolář, Michor and Slovák [4], where $\mathcal{M}f_n$ is the category of *n*-dimensional manifolds and embeddings. The classification result of [1] says that every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(T_{|\mathcal{M}f_n})^*$ is of the form $B(\omega) = a\omega^V + b\lambda$ for some $a, b \in \mathbb{R}$, where ω^V is the vertical lifting of ω to $(TM)^*$ and λ is the canonical Liouville 1-form on $(TM)^*$.

In this paper we study a similar general problem with T replaced by an arbitrary vector bundle functor $F: \mathcal{M}f \to \mathcal{VB}$ from the category $\mathcal{M}f$ of all manifolds and maps into the category \mathcal{VB} of vector bundles and vector bundle maps. First we classify all natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$ transforming vector fields to functions on the dual bundle functor $(F_{|\mathcal{M}f_n})^*$. Next we prove that every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$ transforming a 1-form ω on an *n*-manifold M into a 1-form $B(\omega)$ on $(FM)^*$ is of the form $B(\omega) = a\omega^V + \lambda$ for some uniquely determined canonical map $a: (FM)^* \to \mathbb{R}$ and some canonical 1-form λ on $(FM)^*$. As an application we describe all natural operators $T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$ for some well known vector bundle functors F. For $F = (J^T T^*)^*$ we recover the results of [5].

Natural operators lifting functions, vector fields and 1-forms to some natural bundles were used practically in all papers in which the problem of

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: bundle functor, natural operator.

prolongation of geometric structures was studied, e.g. [12]. That is why such natural operators have been classified; see [1], [3]–[11], etc.

From now on the usual coordinates on \mathbb{R}^n will be denoted by x^1, \ldots, x^n .

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞} . Maps between manifolds are assumed to be smooth.

1. Natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$. Let $F : \mathcal{M}f \to \mathcal{VB}$ be a vector bundle functor. We have the following example of natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$.

EXAMPLE 1. Let $v \in F_0 \mathbb{R}$. Consider a vector field X on an *n*-manifold M. We define $A^v(X) : (FM)^* \to \mathbb{R}$ by $A^v(X)_\eta = \langle \eta, F(\Phi_x^X)(v) \rangle, \eta \in (F_x M)^*, x \in M$, where $\Phi_x^X : (\varepsilon, \varepsilon) \to M, \Phi_x^X(t) = \operatorname{Exp}(tX)_x, t \in (-\varepsilon, \varepsilon), \varepsilon > 0$. The correspondence $A^v : T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$ is a natural operator.

PROPOSITION 1. Let v_1, \ldots, v_L be a basis of the vector space $F_0\mathbb{R}$. Every natural operator $A: T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$ is of the form

$$A = H(A^{v_1}, \dots, A^{v_L})$$

for a unique smooth map $H \in \mathcal{C}^{\infty}(\mathbb{R}^L)$.

Proof. Let $v_1^*, \ldots, v_L^* \in (F_0\mathbb{R})^*$ be the dual basis. Let $q : \mathbb{R}^n \to \mathbb{R}$ be the projection onto the first factor.

For A as above we define $H : \mathbb{R}^L \to \mathbb{R}$ by

$$H(t_1,\ldots,t_L) = A(\partial/\partial x^1)_{(F_0q)^*(\sum_{s=1}^L t_s v_s^*)}.$$

We prove that $A = H(A^{v_1}, \ldots, A^{v_L})$. Since any non-vanishing vector field X is locally $\partial/\partial x^1$ in some local coordinates on M, it is sufficient to show that

$$A(\partial/\partial x^1)_{\eta} = H(A^{v_1}(\partial/\partial x^1)_{\eta}, \dots, A^{v_L}(\partial/\partial x^1)_{\eta}) \quad \text{for any } \eta \in (F_0 \mathbb{R}^n)^*.$$

Using the invariance of A and A^{v_s} with respect to $(x^1, (1/t)x^2, \ldots, (1/t)x^n)$: $\mathbb{R}^n \to \mathbb{R}^n$ for $t \neq 0$ and next letting $t \to 0$, we can assume that $\eta = (F_0q)^*(\sum_{s=1}^L t_s v_s^*)$. Now, it remains to observe that $A^{v_s}(\partial/\partial x^1)_{\eta} = t_s$ for $s = 1, \ldots, L$.

The uniqueness of H is clear as $(A^{v_s}(\partial/\partial x^1))_{s=1}^L$ is a surjection onto \mathbb{R}^L .

By [2], we can choose a basis $v_1, \ldots, v_L \in F_0\mathbb{R}$ such that v_s is homogeneous of weight $n_s \in \mathbb{N} \cup \{0\}$, i.e. $F(\tau \operatorname{id}_{\mathbb{R}})(v_s) = \tau^{n_s} v_s$ for any $\tau \in \mathbb{R}$.

(*) By a permutation we can assume that v_1, \ldots, v_{k_1} are of weight 0, $v_{k_1+1}, \ldots, v_{k_2}$ are of weight 1, etc.

Then $A^{v_1}(X), \ldots, A^{v_{k_1}}(X)$ do not depend on X, i.e. $A^{v_1}, \ldots, A^{v_{k_1}}$ are natural functions on $(FM)^*$. Moreover $A^{v_{k_1+1}}(X), \ldots, A^{v_{k_2}}(X)$ depend linearly on X, i.e. $A^{v_{k_1+1}}, \ldots, A^{v_{k_2}}$ are linear operators.

COROLLARY 1. Every natural function G on $(F_{|\mathcal{M}f_n})^*$ is of the form $G = K(A^{v_1}, \dots, A^{v_{k_1}})$

for a unique $K \in \mathcal{C}^{\infty}(\mathbb{R}^{k_1})$. If F has the point property, i.e. F pt = pt, then G = const.

COROLLARY 2. Every natural linear operator $A: T_{\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$ is of the form

$$A = \sum_{s=k_1+1}^{k_2} K_s(A^{v_1}, \dots, A^{v_{k_1}}) A^{v_s}$$

for some unique $K_s \in \mathcal{C}^{\infty}(\mathbb{R}^{k_1})$.

Proof. The corollaries are consequences of Proposition 1 and the homogeneous function theorem [4]. \blacksquare

2. A decomposition proposition. Let F and v_1, \ldots, v_L be as in Section 1 with the assumption (*).

EXAMPLE 2. If $\omega : TM \to \mathbb{R}$ is a 1-form on an *n*-manifold M, we have its vertical lifting $B^V(\omega) = \omega \circ T\pi : T(FM)^* \to \mathbb{R}$ to $(FM)^*$, where $\pi : (FM)^* \to M$ is the bundle projection. The correspondence $B^V : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$ is a natural operator.

PROPOSITION 2 (Decomposition Proposition). Consider a natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$. Then there exists a unique natural function a on $(F_{|\mathcal{M}f_n})^*$ such that

$$B = aB^V + \lambda$$

for some canonical 1-form λ on $(F_{|\mathcal{M}f_n})^*$.

LEMMA 1. (a) We have $(B(\omega) - B(0))|(V(F\mathbb{R}^n)^*)_0 = 0$ for any $\omega \in \Omega^1(\mathbb{R}^n)$, where $(V(F\mathbb{R}^n)^*)_0$ is the fiber over $0 \in \mathbb{R}^n$ of the vertical subbundle in $T(F\mathbb{R}^n)^*$.

(b) If F has the point property then $B(\omega)|(V(F\mathbb{R}^n)^*)_0 = 0$ for any $\omega \in \Omega^1(\mathbb{R}^n)$.

Proof. (a) There is a basis in $(V(F\mathbb{R}^n)^*)_0 \cong (F_0\mathbb{R}^n)^* \times (F_0\mathbb{R}^n)^*$ of homogeneous elements with weight from $\{0, -1, -2, \ldots, \}$ with respect to the action of \mathbb{R}_+ on $(V(F\mathbb{R}^n)^*)_0 \cong (F_0\mathbb{R}^n)^* \times (F_0\mathbb{R}^n)^*$ by lifting homotheties (see [2]). We use the invariance of $(B(\omega) - B(0))|(V(F\mathbb{R}^n)^*)_0$ with respect to the homotheties $(1/t) \operatorname{id}_{\mathbb{R}^n}$ for $t \neq 0$ and apply the homogeneous function theorem. We find that $(B(\omega) - B(0))|(V(F\mathbb{R}^n)^*)_0$ is independent of ω . This ends the proof of (a).

(b) We observe that if F has the point property then $(F_0\mathbb{R}^n)^*$ has no non-zero homogeneous elements of weight 0. Next, we use the invariance of

the restriction $B(\omega)|(V(F\mathbb{R}^n)^*)_0$ with respect to the homotheties $(1/t) \operatorname{id}_{\mathbb{R}^n}$ for $t \neq 0$ and let $t \to 0$.

Proof of Proposition 2. Replacing B by B - B(0) we can assume that B(0) = 0 and $B(\omega)|(V(F\mathbb{R}^n)^*)_0 = 0$ for any $\omega \in \Omega^1(\mathbb{R}^n)$. Then B is uniquely determined by the values $\langle B(\omega)_{\eta}, F^*(\partial/\partial x^1)_{\eta} \rangle$ for any $\omega = \sum \omega_i dx^i \in \Omega^1(\mathbb{R}^n)$ and $\eta \in (F_0\mathbb{R}^n)^*$, where $F^*(\partial/\partial x^1)$ is the complete lifting (flow prolongation) of $\partial/\partial x^1$ to $(F\mathbb{R}^n)^*$.

Using the invariance of B with respect to the homotheties $(1/t) \operatorname{id}_{\mathbb{R}^n}$ for $t \neq 0$ we get the homogeneity condition

$$t \left\langle B(\omega)_{\eta}, F^*\left(\frac{\partial}{\partial x^1}\right)_{\eta} \right\rangle = \left\langle B((t \operatorname{id}_{\mathbb{R}^n})^* \omega)_{F(\frac{1}{t} \operatorname{id}_{\mathbb{R}^n})^*(\eta)}, F^*\left(\frac{\partial}{\partial x^1}\right)_{F(\frac{1}{t} \operatorname{id}_{\mathbb{R}^n})^*(\eta)} \right\rangle.$$

Then by the non-linear Peetre theorem [4], the homogeneous function theorem and B(0) = 0 we deduce that $\langle B(\omega)_{\eta}, F^*(\partial/\partial x^1)_{\eta} \rangle$ is a linear combination of $\omega_1(0), \ldots, \omega_n(0)$ with coefficients being smooth maps in the homogeneous coordinates of η of weight 0.

Then using the invariance of B with respect to $(x^1, (1/t)x^2, \ldots, (1/t)x^n)$: $\mathbb{R}^n \to \mathbb{R}^n$ for $t \neq 0$ and letting $t \to 0$ we end the proof.

3. On canonical 1-forms on $(F_{|\mathcal{M}f_n})^*$

PROPOSITION 3. Every canonical 1-form λ on $(F_{|\mathcal{M}f_n})^*$ induces a linear natural operator $A^{(\lambda)}: T_{|\mathcal{M}f_n} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_n})^*$ such that $A^{(\lambda)}(X)_{\eta} = \langle \lambda_{\eta}, F^*(X)_{\eta} \rangle, \eta \in (FM)^*, X \in \mathcal{X}(M)$, where $F^*(X)$ is the complete lifting (flow operator) of X to $(FM)^*$. If F has the point property, then the correspondence $\lambda \mapsto A^{(\lambda)}$ is a linear injection.

Proof. The injectivity is a consequence of Lemma 1(b). \blacksquare

4. A corollary

COROLLARY 3. Assume that F has the point property and there are no non-zero elements in $F_0\mathbb{R}$ of weight 1. (For example, let $F = F_1 \otimes F_2$: $\mathcal{M}f \to \mathcal{VB}$ be a tensor product of two vector bundle functors $F_1, F_2 : \mathcal{M}f \to \mathcal{VB}$ with the point property.) Then every natural operator $B : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(F_{|\mathcal{M}f_n})^*$ is a constant multiple of the vertical lifting.

Proof. Since there are no non-zero elements in $F_0\mathbb{R}$ of weight 1, we see that every canonical 1-form on $(F_{|\mathcal{M}f_n})^*$ is zero because of Corollary 2 and Proposition 3. Then Proposition 2 together with Corollary 1 ends the proof.

5. Applications

5.1. The bundle functor T_k^{r*} of (k, r)-covelocities. Let $T_k^{(r)} : \mathcal{M}f \to \mathcal{VB}$ be the bundle functor sending every manifold M to a vector bundle $T_k^{(r)}M = (J^r(M, \mathbb{R}^k)_0)^*$ over M, and every map $f : M \to N$ to a vector bundle map $T_k^{(r)}f : T_k^{(r)}M \to T_k^{(r)}N$ covering f such that $\langle T_k^{(r)}f(\eta), j_{f(x)}^r\gamma \rangle = \langle \eta, j_x^r(\gamma \circ f) \rangle$ for $\eta \in (T_k^{(r)}M)_x, j_{f(x)}^r\gamma \in J_{f(x)}^r(N, \mathbb{R}^k)_0, x \in M, \gamma = (\gamma^1, \ldots, \gamma^k) : N \to \mathbb{R}^k, \gamma(f(x)) = 0$. Then $T_k^{r*} = (T_k^{(r)}|_{\mathcal{M}f_n})^* : \mathcal{M}f_n \to \mathcal{VB}$ is the well known vector bundle functor of (k, r)-covelocities.

We have k canonical 1-forms $\lambda_1^r, \ldots, \lambda_k^r$ on $T_k^{r*}M$ such that

$$\langle \lambda_j^r, v \rangle = \langle d_x \gamma^j, T\pi(v) \rangle$$

for $v \in T_w T_k^{r*} M$, $w = j_x^r \gamma$, $x \in M$, $\gamma = (\gamma^1, \dots, \gamma^k) : M \to \mathbb{R}^k$, $\gamma(x) = 0$, $j = 1, \dots, k$, where $\pi : T_k^{r*} M \to M$ is the bundle projection.

COROLLARY 4. Every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}_k$ is a linear combination of the vertical lifting B^V and $\lambda_1^r, \ldots, \lambda_k^r$ with real coefficients.

Proof. The vector bundle functor $T_k^{(r)}$ has the point property and the subspace of elements in $(T_k^{(r)}\mathbb{R})_0$ of weight 1 is k-dimensional. Then by Proposition 3 together with Corollaries 1 and 2, the space of canonical forms on T_k^{r*} is at most k-dimensional. Now, Proposition 2 ends the proof.

In the special case k = 1, $T_1^{r*} = T^{r*}$ is the *r*-cotangent bundle functor. So, we have the following result.

COROLLARY 5. Every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*T^{r*}$ is a linear combination of the vertical lifting B^V and the canonical r-cotangent bundle 1-form λ^r with real coefficients.

In the case $r = 1, T^{1*} \cong T^*$ is the cotangent bundle and we recover the result mentioned in the introduction.

5.2. The kernel of the jet projection $\pi_1^r: T^{r*} \to T^{1*}$. Let $\overline{T}^{(r)}: \mathcal{M}f \to \mathcal{VB}$ be the bundle functor sending every manifold M to the factor vector bundle $\overline{T}^{(r)}M = T^{(r)}M/TM$ over M, and every map $f: M \to N$ to the factor vector bundle map $\overline{T}^{(r)}f: \overline{T}^{(r)}M \to \overline{T}^{(r)}N$ covering f. Then $(\overline{T}_{|\mathcal{M}f_n}^{(r)})^*$ can be identified with the kernel ker π_1^r of the jet projection $\pi_1^r: T^{r*} \to T^{1*}$.

COROLLARY 6. Every natural operator $B : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(\ker \pi_1^r)$ is a constant multiple of the vertical lifting.

Proof. In $\overline{T}_0^{(r)}\mathbb{R}$ there are no non-zero elements of weight 1.

5.3. The r-jet prolongation J^rT^* of T^* . Let $(J^rT^*)^* : \mathcal{M}f \to \mathcal{VB}$ be the bundle functor sending every manifold M to the vector bundle $(J^rT^*M)^*$

over M, and every map $f: M \to N$ to the vector bundle map $(J^rT^*)^*f:$ $(J^rT^*M)^* \to (J^rT^*N)^*$ covering f such that $\langle (J^rT^*)^*f(\eta), j_{f(x)}^r\omega\rangle = \langle \eta, j_x^r(f^*\omega)\rangle$ for $\eta \in (J^rT^*M)_x^*, j_{f(x)}^r\omega \in J_{f(x)}^rT^*N, x \in M, \omega \in \Omega^1(N).$

We have a canonical 1-form θ^r on $J^r T^* M$ such that

 $\langle \theta^r, v \rangle = \langle \omega_x, T\pi(v) \rangle$

for $v \in T_w(J^rT^*M)$, $w = j_x^r \omega$, $x \in M$, $\omega \in \Omega^1(M)$, where $\pi : J^rT^*M \to M$ is the bundle projection.

COROLLARY 7 ([5]). Every natural operator $B : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^rT^*)$ is a linear combination of the vertical lifting B^V and θ^r with real coefficients.

Proof. The vector bundle functor $(J^rT^*)^* : \mathcal{M}f \to \mathcal{VB}$ has the point property and the subspace of elements in $(J^rT^*\mathbb{R})^*_0$ of weight 1 is 1-dimensional.

In the case $r = 0, J^0 T^* = T^*$ and we again recover the result mentioned in the introduction.

5.4. The r-jet prolongation $J^r(\otimes^p T^*)$ of the tensor power $\otimes^p T^*$. Let $(J^r(\otimes^p T^*))^* : \mathcal{M}f \to \mathcal{VB}$ be the bundle functor sending every manifold M to the vector bundle $(J^r(\otimes^p T^*M))^*$ over M, and every map $f : M \to N$ to the vector bundle map $(J^r(\otimes^p T^*))^*f : (J^r(\otimes^p T^*M))^* \to (J^r(\otimes^p T^*N))^*$ covering f such that $\langle (J^r(\otimes^p T^*))^*f(\eta), j^r_{f(x)}\tau \rangle = \langle \eta, j^r_x(f^*\tau) \rangle$ for $x \in M$, $\tau \in \mathcal{T}^{(0,p)}(N), \eta \in (J^r(\otimes^p T^*M))_x, j^r_{f(x)}\tau \in J^r_{f(x)}(\otimes^p T^*N).$

COROLLARY 8 ([5]). For $p \geq 2$ every natural operator $B : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^r(\otimes^p T^*))$ is a constant multiple of the vertical lifting.

Proof. The vector bundle functor $(J^r(\otimes^p T^*))^*$ has the point property and the subspace of elements from $(J^r(\otimes^p T^*\mathbb{R}))^*_0$ of weight 1 is 0-dimensional.

Similarly, replacing the tensor power \otimes^p by the symmetric tensor power \odot^p or by the skew-symmetric tensor power Λ^p we have

COROLLARY 9 ([5]). For $p \geq 2$ every natural operator $B : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^r(\odot^p T^*))$ is a constant multiple of the vertical lifting.

COROLLARY 10 ([5]). For $p \geq 2$ every natural operator $B : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(J^r(\Lambda^p T^*))$ is a constant multiple of the vertical lifting.

5.5. The tensor pover $\otimes^r T^*$. From Corollary 3 we obtain immediately

COROLLARY 11. For $r \geq 2$ every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(\otimes^r T^*)$ is a constant multiple of the vertical lifting.

Quite similarly we have

COROLLARY 12. For $r \geq 2$ every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(\Lambda^r T^*)$ is a constant multiple of the vertical lifting.

COROLLARY 13. For $r \geq 2$ every natural operator $B: T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(\odot^r T^*)$ is a constant multiple of the vertical lifting.

REMARK. It is clear that the presented list of applications of Propositions 1, 2 and 3 is not complete. Other applications are left to the reader.

REFERENCES

- M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk Univ., Brno, 1996, 141–150.
- [2] D. B. A. Epstein, *Natural vector bundles*, in: Category Theory, Homology Theory and Their Applications III, Lecture Notes in Math. 99, Springer, 1969, 171–195.
- [3] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983).
- I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [5] J. Kurek and W. M. Mikulski, The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, in: Proc. Conf. on Diff. Geom. and Appl. (Opava, 2001), Math. Publ. Silesian Univ. at Opava, to appear.
- [6] W. M. Mikulski, Natural transformations transforming functions and vector fields to functions on some natural bundles, Math. Bohemica 117 (1992), 217–223.
- [7] —, The natural operators lifting 1-forms on manifolds to the bundles of A-velocities, Monatsh. Math. 119 (1995), 63–77.
- [8] —, The natural operators lifting 1-forms to r-jet prolongation of the tangent bundle, Geom. Dedicata 68 (1997), 1–20.
- [9] —, Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (1995), 97–111.
- [10] —, Liftings of 1-forms to the bundle of affinors, Ann. Univ. Mariae Curie-Skłodowska 55 (2001), 109–113.
- [11] —, Liftings of 1-forms to $(J^{r}T^{*})^{*}$, Colloq. Math. 91 (2002), 69–77.
- [12] K. Yano and S. Ishihara, *Tangent and Cotangent Bundles*, Dekker, New York, 1973.

Institute of Mathematics	Institute of Mathematics
Maria Curie-Skłodowska University	Jagiellonian University
Pl. Marii Curie-Skłodowskiej 1	Reymonta 4
20-031 Lublin, Poland	50-039 Kraków, Poland
E-mail: kurek@golem.umcs.lublin.pl	E-mail: mikulski@im.uj.edu.pl

Received 25 October 2001; revised 11 February 2002 (4124)