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WEAK COMPACTNESS AND ORLICZ SPACESBYPASCAL LEFÈVRE (Lens), DANIEL LI (Lens),HERVÉ QUEFFÉLEC (Lille) and LUIS RODRÍGUEZ-PIAZZA (Sevilla)Abstra
t. We give new proofs that some Bana
h spa
es have Peª
zy«ski's prop-erty (V ).1. Introdu
tion. Re
all that a Bana
h spa
e X is said to have Peª
zy«-ski's property (V ) if one has a good weak-
ompa
tness 
riterion in the dualspa
e X∗ of X, namely: every subset A of X∗ is relatively weakly 
ompa
twhenever it has the following property (easily seen to be ne
essary):
lim

n→∞
sup
x∗∈A

|x∗(xn)| = 0for every weakly un
onditionally Cau
hy sequen
e (xn)n in X (i.e. su
h that∑
n≥1 |x∗(xn)| < ∞ for any x∗ ∈ X∗). Equivalently, X has Peª
zy«ski'sproperty (V ) if and only if for every Bana
h spa
e Z and every non-weakly
ompa
t operator T : X → Z, there exists a subspa
e X0, isomorphi
 to c0,su
h that T is an isomorphism between X0 and T (X0). Besides the re�exivespa
es (and in parti
ular the Lp spa
es for 1 < p < ∞), the spa
es C(S) of
ontinuous fun
tions on 
ompa
t spa
es S have property (V ); in parti
ular

L∞ has (V ). Another general 
lass of Bana
h spa
es having property (V )is that of Bana
h spa
es whi
h are M -ideals in their bidual, i.e. those forwhi
h the 
anoni
al de
omposition of their third dual is an ℓ1 de
omposi-tion:
X∗∗∗ = X∗ ⊕1 X⊥(see [8, 9℄). Note that every subspa
e of a Bana
h spa
e M -ideal of itsbidual is itself an M -ideal of its bidual; hen
e every su
h subspa
e hasproperty (V ).On the 
ontrary, a non-re�exive Bana
h spa
e that does not 
ontain

c0 
annot have property (V ). In parti
ular, L1 does not have this prop-erty. Thus, the Lp spa
es have (V ) for 1 < p ≤ ∞, whereas L1 does not.2000 Mathemati
s Subje
t Classi�
ation: Primary 46B20; Se
ondary 46E30.Key words and phrases: M -ideal, Morse�Transue spa
e, Orli
z spa
e, Peª
zy«ski'sproperty (V ). [23℄ 
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For the Orli
z spa
es, whi
h are, in a natural sense, intermediate between
L1 and L∞, D. Leung [12℄ proved that, when the dual spa
e is weakly se-quentially 
omplete, not only does the Orli
z spa
e have property (V ), butit a
tually has the lo
al property (V ), i.e. all its ultrapowers have prop-erty (V ).D. Leung's proof uses non-trivial properties of Bana
h latti
es. In thispaper, we shall give an elementary proof of the (weaker) result that theOrli
z spa
e LΨ has property (V ) when the 
omplementary fun
tion of Ψsati�es the ∆2 
ondition.A
knowledgements. This work was done during the stay of the fourth-named author in Lens, in May�June 2005, as Professeur invité of the Uni-versité d'Artois.We are grateful to the referee for having simpli�ed the proof of Theo-rem 2, making it shorter and mu
h more elegant and 
on
eptual, by givingus the statement and proof of Proposition 5.

2. The Morse�Transue spa
e. In this paper, we shall 
onsider Orli
zspa
es de�ned on a probability spa
e (Ω, P), whi
h we shall assume to benon-purely atomi
.By an Orli
z fun
tion, we shall mean a non-de
reasing 
onvex fun
tion
Ψ : [0,∞] → [0,∞] su
h that Ψ(0) = 0 and Ψ(∞) = ∞. To avoid pathologies,we shall assume that we work with an Orli
z fun
tion Ψ having the followingadditional properties: Ψ is 
ontinuous at 0, stri
tly 
onvex (hen
e stri
tlyin
reasing), and su
h that

Ψ(x)/x −→
x→∞

∞.This is essentially to ex
lude the 
ase of Ψ(x) = ax. The Orli
z spa
e LΨ (Ω)is the spa
e of all (equivalen
e 
lasses of) measurable fun
tions f : Ω → Cfor whi
h there is a 
onstant C > 0 su
h that\
Ω

Ψ(|f(t)|/C) dP(t) < ∞,

and then ‖f‖Ψ (the Luxemburg norm) is the in�mum of all possible 
onstants
C su
h that this integral is ≤ 1.To every Orli
z fun
tion is asso
iated the 
omplementary Orli
z fun
tion
Φ = Ψ∗ : [0,∞] → [0,∞] de�ned by

Φ(x) = sup
y≥0

(xy − Ψ(y)).The extra assumptions on Ψ ensure that Φ is itself stri
tly 
onvex.
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Throughout this paper, we shall assume that the 
omplementary Orli
zfun
tion satis�es the ∆2 
ondition (Φ ∈ ∆2), i.e., for some 
onstant K > 0and some x0 > 0 we have
Φ(2x) ≤ K Φ(x), ∀x ≥ x0.This is usually expressed by saying that Ψ satis�es the∇2 
ondition (Ψ ∈∇2).This is equivalent to the fa
t that for some β > 1 and x0 > 0, one has

Ψ(x) ≤ Ψ(βx)/(2β) for x ≥ x0, and that implies that Ψ(x)/x → ∞ as
x → ∞. In parti
ular, this ex
ludes the 
ase LΨ = L1.When Φ satis�es the ∆2 
ondition, LΨ is the dual spa
e of LΦ.We shall denote by MΨ the 
losure of L∞ in LΨ . Equivalently (see[15, p. 75℄), MΨ is the spa
e of (
lasses of) fun
tions su
h that\

Ω

Ψ(|f(t)|/C) dP(t) < ∞, ∀C > 0.

This spa
e is the Morse�Transue spa
e asso
iated to Ψ , and (MΨ )∗ = LΦ,isometri
ally if LΦ is provided with the Orli
z norm, and isomorphi
ally ifit is equipped with the Luxemburg norm (see [15, Chapter IV, Theorem 1.7,p. 110℄).We have MΨ = LΨ if and only if Ψ satis�es the ∆2 
ondition, and LΨis re�exive if and only if both Ψ and Φ satisfy the ∆2 
ondition. When the
omplementary fun
tion Φ = Ψ∗ satis�es it (but Ψ does not, to ex
lude there�exive 
ase), we have (see [15, Chapter IV, Proposition 2.8, p. 122, andTheorem 2.11, p. 123℄)(∗) (LΨ )∗ = (MΨ )∗ ⊕1 (MΨ )⊥,or, equivalently, (LΨ )∗ = LΦ ⊕1 (MΨ )⊥, isometri
ally, with the Orli
z normon LΦ.For more information about Orli
z fun
tions and Orli
z spa
es, we referto [15℄ or [11℄.It follows from (∗) that MΨ is an M -ideal in its bidual. Hen
e MΨ andall its subspa
es have Peª
zy«ski's property (V ) ([8, 9℄; see also [10, Chap-ter III, Theorem 3.4℄, and the end of this paper). This result was shownby D. Werner ([19℄; see also [10, Chapter III, Example 1.4(d), p. 105℄), indi�erent way, using the ball interse
tion property (in these referen
es, it isassumed moreover that Ψ does not satisfy the ∆2 
ondition, but if it does,the spa
e LΨ is re�exive, and so the result is obvious).The proof given in [8, 9℄ of the fa
t that Bana
h spa
es whi
h are M -idealsin their bidual have property (V ) uses lo
al re�exivity and the notion ofpseudo-ball . Below we give a slightly di�erent proof, whi
h does not use thisnotion, and seems more transparent. Note, however, that a stronger property,
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namely Peª
zy«ski's property (u), has sin
e been shown to be satis�ed bythe spa
es that are M -ideals in their bidual (see [7℄ and, in a more generalsetting, [6℄; that also follows from [17℄).Theorem 1 (Godefroy�Saab, [8, 9℄). Every Bana
h spa
e whi
h is an
M -ideal in its bidual has property (V ).Proof. Assume that X∗∗∗ = X∗ ⊕1 X⊥ and let T : X → Y be a non-weakly 
ompa
t map. By Gantma
her's theorem, T ∗∗ : X∗∗ → Y ∗∗ is notweakly 
ompa
t either. This means that T (4)(X(4)) 6⊆ Y ∗∗. Sin
e X(4) =
X∗∗⊕ (X∗)⊥ (
anoni
al de
omposition of the third dual of X∗), there existssome u ∈ (X∗)⊥ with ‖u‖ = 1 su
h that T (4)(u) 6= 0. Now the M -idealproperty of X gives X(4) = (X∗)⊥ ⊕∞ X⊥⊥. It follows that

‖x + au‖ = max{‖x‖, |a|}, ∀x ∈ X, ∀a ∈ C.By lo
al re�exivity, we 
an 
onstru
t a sequen
e (xn)n≥1 in X equivalentto the 
anoni
al basis of c0 and su
h that ‖Txn‖ ≥ δ > 0 for every n ≥ 1.For that, let 0 < δ < ‖T (4)u‖, εn > 0 be su
h that (1 − εn)‖T (4)u‖ > δand ∏
n≥1(1 + εn) ≤ 2, ∏

n≥1(1 − εn) ≥ 1/2.Assume that x1, . . . , xn have been 
onstru
ted in su
h a way that
‖Txk‖ > δ and

n∏

k=1

(1 − εk) max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖

≤
n∏

k=1

(1 + εk) max{|a1|, . . . , |an|}for any s
alars a1, . . . , an.Let Vn be the linear subspa
e of X(4) generated by {u, x1, . . . , xn}. ByBellenot's version of the prin
iple of lo
al re�exivity ([1, Corollary 7℄), thereexists an operator An : Vn → X su
h that ‖An‖, ‖A−1
n ‖ ≤ 1 + εn+1, An isthe identity on the linear span of {x1, . . . , xn} and

| ‖T (4)u‖ − ‖TAnu‖ | ≤ εn+1‖T (4)u‖.If xn+1 = Anu, it is now 
lear that
n+1∏

k=1

(1 − εk) max{|a1|, . . . , |an+1|} ≤ ‖a1x1 + · · · + an+1xn+1‖

≤
n+1∏

k=1

(1 + εk) max{|a1|, . . . , |an+1|}for any s
alars a1, . . . , an+1 and ‖Txn+1‖ > δ. Hen
e
1

2
max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖ ≤ 2max{|a1|, . . . , |an|}for any s
alars a1, . . . , an. Sin
e ‖Txn‖ > δ, this ends the proof.
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3. Peª
zy«ski's property (V ) for LΨ . As we said, the following resultis a parti
ular 
ase of that of D. Leung ([12℄), but we shall give an elementaryproof.Theorem 2 ([12℄). Suppose that the 
onjugate fun
tion Φ of Ψ satis�esthe ∆2 
ondition. Then the spa
e LΨ has Peª
zy«ski's property (V ).As is well-known (and easy to prove), every dual spa
e with Peª
zy«ski'sproperty (V ) is a Grothendie
k spa
e: every weak-star 
onvergent sequen
ein its dual is weakly 
onvergent. Hen
e, we have:Corollary 3. Suppose that the 
onjugate fun
tion Φ of Ψ satis�es the
∆2 
ondition. Then the spa
e LΨ is a Grothendie
k spa
e.Proof of Theorem 2. We may assume that LΨ is a real Bana
h spa
e.The proof 
omes dire
tly from the following two results, sin
e E = MΨis a Bana
h latti
e having property (V ) and LΨ = (MΨ )∗∗.Lemma 4. Suppose that the Orli
z fun
tion Ψ does not satisfy the ∆2
ondition. Then for every sequen
e (gn)n in the unit ball of LΨ , there exista sequen
e (fn)n in MΨ and a positive fun
tion g ∈ LΨ su
h that
|gn − fn| ≤ g.Proposition 5. Let E be a Bana
h latti
e that has property (V ). Sup-pose that for every sequen
e (x∗∗

n )n in BE∗∗ , there are a sequen
e (xn)n in
E and a positive x∗∗ ∈ E∗∗ su
h that |x∗∗

n − xn| ≤ x∗∗. Then E∗∗ has prop-erty (V ).Proof of Lemma 4. Sin
e, by dominated 
onvergen
e,
lim
t→∞

\
Ω

Ψ(|gn| 1{|gn|>t}) dP = 0,we 
an 
hoose, for every n ≥ 1, a positive number tn so large that\
Ω

Ψ(|gn| 1{|gn|>tn}) dP ≤ 1

2n
,

and
∞∑

n=1

P(|gn| > tn) < ∞.This last 
ondition implies, by Borel�Cantelli's lemma, that, almost surely,
|gn| ≤ tn for n large enough. Equivalently, by setting

g̃n = gn 1{|gn|>tn},we have, almost surely, g̃n = 0 for n large enough. It follows that almost
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surely supn |g̃n| is attained. Set now

An = {ω ∈ Ω ; |g̃1(ω)|, . . . , |g̃n−1(ω)| < |g̃n(ω)| and
|g̃k(ω)| ≤ |g̃n(ω)|, ∀k ≥ n}(ω ∈ An if and only if n is the �rst time for whi
h supk |g̃k(ω)| is attained).The sets An are disjoint and

sup
n≥1

|g̃n| =

∞∑

n=1

|g̃n|1An
.Hen
e, if we set

g = sup
n≥1

|g̃n|,we have g ∈ LΨ , sin
e, by the disjointness of the An's,\
Ω

Ψ(g) dP =

∞∑

n=1

\
An

Ψ(|g̃n|) dP ≤
∞∑

n=1

\
Ω

Ψ(|g̃n|) dP ≤
∞∑

n=1

1

2n
= 1.

That proves the lemma, by taking fn = gn − g̃n, whi
h is in L∞ ⊆ MΨ .Proof of Proposition 5. Suppose that T : E∗∗ → Y is not weakly 
om-pa
t. Then there exists a sequen
e (x∗∗
n )n in BE∗∗ su
h that (Tx∗∗

n )n is notrelatively weakly 
ompa
t. Choose (xn)n and x∗∗ as in the statement of theproposition, and set y∗∗n = x∗∗
n − xn for all n. Then either:(a) (Txn)n is not weakly 
ompa
t, or(b) (Ty∗∗n )n is not weakly 
ompa
t.If (a) holds, T|E : E → Y is not weakly 
ompa
t; hen
e T|E �xes a 
opyof c0.If (b) holds, let I be the 
losed latti
e ideal generated by x∗∗ in E∗∗,normed so that [−x∗∗, x∗∗] is the unit ball, and let i : I → E∗∗ be the in
lusionmap. Sin
e (y∗∗n )n lies in [−x∗∗, x∗∗], T ◦ i is not weakly 
ompa
t. But I is alatti
e isomorphi
 to a C(K) spa
e, and hen
e has property (V ). Thus T ◦ i�xes a 
opy of c0. So T �xes a 
opy of c0.

Remark. We 
annot expe
t that, for tn large enough, the fun
tions g̃n
ould have a small norm. For example, let G be a standard Gaussian randomvariable N (0, 1). For Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have, for every t > 0,\
Ω

Ψ2(|G|1{|G|>t}/ε) dP =
1√
2π

\
|x|>t

(ex2/ε2 − 1)e−x2/2 dx = ∞

for every ε <
√

2; that means that ‖G1{|G|>t}‖Ψ2
≥

√
2 for every t > 0 (re
allthat ‖G‖Ψ2

=
√

8/3; see [13, p. 31℄).
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4. Con
luding remarks and questions1. The full result of D. Leung that LΨ has the lo
al property (V ), i.e. ev-ery ultrapower of LΨ has property (V ) (see [3℄), 
annot be obtained straight-forwardly from our proof. Indeed, sin
e LΨ = (MΨ )∗∗ is 1-
omplemented inevery ultrapower of MΨ , it would su�
e to prove that every su
h ultrapowerhas property (V ); but if [(MΨ )U ]∗ 
ontains (LΦ)U as a w∗-dense subspa
e,it is bigger. The ultraprower (LΦ)U is not exa
tly known in general. In theparti
ular 
ase of Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have ([4, Propositions 4.1and 4.2℄):
(LΦ2)U ∼= LΦ2(PU) ⊕ L1(µU).However, sin
e (LΨ )∗ = (LΦ)∗∗ ∼= LΦ ⊕1 L1(µ), all the odd duals of LΨ
an be written

(LΨ )(2n+1) ∼= (LΨ )∗ ⊕1 L1(µn).Hen
e all the even duals of LΨ have property (V ).2. We 
an de�ne the Hardy�Orli
z spa
e HΨ in a natural way: it is thesubspa
e of LΨ 
onsisting of the fun
tions on the unit 
ir
le T = ∂D whi
hhave an analyti
 extension to D; equivalently, it is the subspa
e of LΨ whosenegative Fourier 
oe�
ients vanish. In [2℄, J. Bourgain proved that H∞ hasproperty (V ). Does HΨ have property (V )?Note that the answer 
annot follow trivially from our Theorem 2 sin
e
HΨ is 
omplemented in LΨ if and only if LΨ is re�exive: indeed, the Rieszproje
tion from LΨ onto HΨ is bounded if and only if LΨ is re�exive ([18℄;see [16, Chapter VI, Theorem 2.8, p. 196℄), and we have:Proposition 6. Assume that Ψ ∈ ∇2. Then the Hardy�Orli
z spa
e HΨis 
omplemented in LΨ if and only if the Riesz proje
tion is bounded on LΨ .Hen
e HΨ is 
omplemented in LΨ if and only if LΨ is re�exive.Proof. Only the ne
essity needs a proof. Assume that there is a boundedproje
tion P from LΨ onto HΨ . For all f ∈ MΨ and g ∈ LΦ, the translations
t 7→ ft and t 7→ gt are 
ontinuous. Hen
e we 
an de�ne P̃ by setting

〈P̃ f, g〉 =
\
T

〈P (ft), gt〉 dt.One has ‖P̃ f‖Ψ ≤ ‖P‖ ‖f‖Ψ , so that P̃ is bounded from MΨ into LΨ . Onthe other hand, it is immediate that for every trigonometri
 polynomial fand en(x) = einx,
P̃ (f) =

∑

n∈Z

f̂(n)P̂ (en)(n)en.Sin
e P is a proje
tion, we have P (en) = en for n ≥ 0; and sin
e P takes itsvalues in HΨ , we have P̂ (en)(k) = 0 for k < 0; in parti
ular, P̂ (en)(n) = 0for n < 0.
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Therefore we get

P̃ (f) =
∑

n≥0

f̂(n)en,

that is, P̃ is the restri
tion to MΨ of the Riesz proje
tion. Hen
e the Rieszproje
tion is bounded on MΨ . By taking its bi-adjoint, we see that it isbounded on LΨ .In Ryan's paper ([18℄), it is assumed that Ψ is an N -fun
tion, that is,
limx→0 Ψ(x)/x = 0. But we may modify Ψ on [0, 1] to get an N -fun
tion
Ψ1. Sin
e we work on a probability spa
e (Ω, P), the new spa
e LΨ1 is equal,as a ve
tor spa
e, to LΨ , but with an equivalent norm. Hen
e Ryan's resultremains true without this assumption.Note that, when the probability spa
e (Ω, P) is separable, sin
e we haveassumed that Ψ ∈ ∇2, the re�exivity of LΨ is equivalent to its separability(see [15, Chapter III, Theorem 5.1, pp. 87�88℄).3. Property (V ) allows us to say that LΨ looks like Lp, 1 < p ≤ ∞. Insome sense, it may be seen as being 
lose to L∞ when Ψ /∈ ∆2, sin
e it is notre�exive. However, from other points of view, it is 
loser to Lp with p < ∞;on the one hand, it is a bidual spa
e; on the other hand, one has:Proposition 7. If Ψ ∈ ∇2, then LΨ never has the Dunford�Pettis prop-erty.Proof. We are a
tually going to show that MΨ does not have the Dun-ford�Pettis property. That will prove the proposition, sin
e LΨ = (MΨ )∗∗.Sin
e Ψ ∈ ∇2, there are α > 1 and c > 0 su
h that Ψ(x) ≥ cxα. It followsthat LΨ ⊆ Lα and the natural inje
tion i : LΨ → Lα is bounded, and hen
eweakly 
ompa
t, sin
e Lα is re�exive.Take now an orthonormal sequen
e (rn)n≥1 in L2 with 
onstant modu-lus equal to 1 (for example, an independent sequen
e of random variablestaking the values ±1 ea
h with probability 1/2). One has TΩ rnf dP → 0 as
n → ∞ for every f ∈ L2. By density, this remains true for every f ∈ L1,and in parti
ular for every f ∈ LΦ, sin
e LΦ ⊆ L1. Therefore (rn)n≥1weakly 
onverges to 0 in MΨ . Sin
e ‖rn‖α = 1, (i(rn))n does not norm-
onverge to 0, and hen
e the weakly 
ompa
t map i : MΨ → Lα is not aDunford�Pettis operator. Therefore MΨ does not have the Dunford�Pettisproperty.A slightly di�erent way to prove this is to use the fa
t that for everyBana
h spa
e X whi
h has the Dunford�Pettis property and whi
h doesnot 
ontain ℓ1, its dual X∗ has the S
hur property ([5, 14℄; see also [13,Chapitre 7, Exer
i
e 7.2℄). But MΨ does not 
ontain ℓ1 (be
ause all its sub-spa
es have property (V ); or be
ause its dual LΦ is separable). Hen
e LΦ
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would have the S
hur property. The same argument as above shows that isnot the 
ase.4. We have required in this paper that the 
omplementary fun
tion
Φ satis�es the ∆2 
ondition. Hen
e, in some sense, the spa
e LΨ is farfrom L1. We may ask what happens when we are at the other end ofthe s
ale, namely when LΨ is 
lose to L1. But if Ψ satis�es the ∆2 
on-dition, then LΨ = (MΦ)∗ and MΦ, being an M -ideal in its bidual, hasproperty (V ), as said in the introdu
tion. It follows that LΨ is weaklysequentially 
omplete (and in fa
t has property (V ∗)), and if we assumethat Φ /∈ ∆2 (so that LΨ is not re�exive), then LΨ does not have prop-erty (V ).
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