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ON DERIVED EQUIVALENCE CLASSIFICATIONOF GENTLE TWO-CYCLE ALGEBRASBYGRZEGORZ BOBI�SKI and PIOTR MALICKI (Toru«)Abstrat. We lassify, up to derived (equivalently, tilting-otilting) equivalene, allnondegenerate gentle two-yle algebras. We also give a partial lassi�ation and formulatea onjeture in the degenerate ase.
Introdution and the main result. Throughout the paper, k denotesa �xed algebraially losed �eld. By an algebra we mean a �nite-dimensionalbasi onneted k-algebra and by a module a �nite-dimensional left module.By Z, N, and N+, we denote the sets of integers, nonnegative integers, andpositive integers, respetively. Finally, if i, j ∈ Z, then [i, j] = {l ∈ Z | i ≤

l ≤ j}.With an algebra Λ we may assoiate its bounded derived ategory Db(Λ)(in the sense of Verdier [29℄) of bounded omplexes of Λ-modules, whihhas the struture of a triangulated ategory (see [17℄). The bounded derivedategory is an important homologial invariant of the module ategory of analgebra and attrats a lot of interest (see for example [5, 8, 15, 16, 18, 22,24, 25℄). In partiular, the derived equivalene lasses of algebras have beeninvestigated (see for example [1, 9, 11, 14, 20℄), where two algebras are saidto be derived equivalent if their bounded derived ategories are equivalentas triangulated ategories.A handy way of proving derived equivalene between algebras Λ and Λ′is to onstrut a (o)tilting Λ-module T suh that Λ′ is (isomorphi to) theopposite of the endomorphism algebra of T . Here a Λ-module T is alled(o)tilting if pdΛ T ≤ 1 (idΛ T ≤ 1, respetively), Ext1Λ(T, T ) = 0, and Tis a diret sum of preisely rk K0(Λ) pairwise nonisomorphi indeompos-able Λ-modules, where K0(Λ) denotes the Grothendiek group of the ate-gory of Λ-modules. The transitive losure of the relation de�ned in this wayis alled tilting-otilting equivalene. For many lasses of algebras tilting-otilting equivalene and derived equivalene oinide.2000 Mathematis Subjet Classi�ation: 18E30, 16G20.Key words and phrases: derived ategory, gentle algebra, tilting-otilting equivalene.[33℄ © Instytut Matematyzny PAN, 2008
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Results of this type have been obtained for gentle algebras, introduedby Assem and Skowro«ski in [4℄ (see Setion 1 for a preise de�nition),whih form an important sublass of the lass of speial biserial algebrasin the sense of [27℄. We note that a representation-in�nite algebra admitsa simply onneted Galois overing all of whose �nite onvex subategoriesare representation-�nite if and only if it is a speial biserial algebra and itssimply onneted Galois overing is the repetitive ategory of the union of aountable hain of gentle tree algebras (see [23℄).The lass of algebras derived equivalent to a hereditary algebra of Dynkintype An for some n ∈ N+ oinides with the lass of algebras tilting-otiltingequivalent to a hereditary algebra of type An and onsists of the gentlealgebras whose Gabriel quivers have n verties and n − 1 arrows (see [2℄).Moreover, for a given n all suh algebras form one derived equivalene lass.Similarly, the lass of algebras derived equivalent to a hereditary algebraof Eulidean type Ãn for some n ∈ N+ oinides with the lass of algebrastilting-otilting equivalent to a hereditary algebra of type Ãn and onsists ofthe gentle algebras whose Gabriel quivers have n verties and n arrows andwhih satisfy the so-alled lok ondition on the unique yle. In this ase,there are exatly ⌊n/2⌋ derived (equivalently, tilting-otilting) equivalenelasses for a given n.The algebras with the same numbers of verties and arrows in the Gabrielquiver are alled one-yle algebras. The remaining gentle one-yle algebrasform the lass of derived disrete algebras whih are not derived (equiva-lently, tilting-otilting) equivalent to a hereditary algebra of Dynkin type(see [30℄). The derived equivalene lasses of these algebras were desribedin [10℄.The aim of this paper it to extend the above lassi�ation to the lassof gentle two-yle algebras, where we all an algebra a two-yle algebraif the number of arrows in the Gabriel quiver exeeds the number of ver-ties by one. An additional motivation for this researh is the proof byShröer and Zimmermann in [26℄ that the gentle algebras are losed un-der derived equivalenes. Moreover, for gentle algebras the numbers of ver-ties and arrows in the Gabriel quiver are derived invariants (see [7, Corol-lary 15℄). However, we obtain a full lassi�ation only for nondegenerategentle two-yle algebras, where we all a gentle two-yle algebra Λ nonde-generate if ∑

(n,m)∈N×N
φΛ(n, m) = 3. Here φΛ : N × N → N is the derivedinvariant introdued by Avella-Alaminos and Geiss in [7℄ (see Setion 3).For the remaining gentle two-yle algebras Λ, whih we all degenerate,we have ∑

(n,m)∈N×N
φΛ(n, m) = 1. Obviously, both these lasses of gen-tle two-yle algebras are losed under derived (hene also tilting-otilting)equivalenes.
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Before formulating the main results of the paper we de�ne the followingfamilies of algebras.
• Λ0(p, r) for p ∈ N+ and r ∈ [0, p − 1] is the algebra of the quiver
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• Λ1(p1, p2, p3, p4, r1) for p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1 − 1]suh that p2 + p3 ≥ 2 and p4 + r1 ≥ 1 is the algebra of the quiver
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• Λ2(p1, p2, p3, r1, r2) for p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1], and r2 ∈

[0, p2 − 1] suh that p3 + r1 + r2 ≥ 1 is the algebra of the quiver
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p2 − 1], and βp2
β1.The main results of the paper are the following.Theorem 1. If Λ is a nondegenerate gentle two-yle algebra, then Λis derived (equivalently , tilting-otilting) equivalent to one of the followingalgebras :
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• Λ1(p1, p2, p3, p4, r1) for some p1, p2 ∈ N+, p3, p4∈N, and r1 ∈ [0, p1−1]suh that p2 + p3 ≥ 2, p4 + r1 ≥ 1, and either p3 > p4, or p3 = p4 and

p2 > r1,
• Λ2(p1, p2, p3, r1, r2) for some p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1], and

r2 ∈ [0, p2−1] suh that p3 +r1 +r2 ≥ 1 and either p1 > p2, or p1 = p2and r1 ≥ r2.Moreover , di�erent algebras from the above list are not derived (equivalently ,tilting-otilting) equivalent.Theorem 2. If Λ is a degenerate gentle two-yle algebra, then Λ isderived (equivalently , tilting-otilting) equivalent to one of the following al-gebras :
• Λ0(p, r) for some p ∈ N+ and r ∈ [0, p − 1],
• Λ′

0(p, 0) for some p ∈ N+.Moreover, we have the following onjeture onerning the minimality ofthe list in the above theorem.Conjeture. Di�erent algebras from the list in Theorem 2 are not de-rived (equivalently , tilting-otilting) equivalent.Obviously, if p1, p2 ∈ N+, r1 ∈ [0, p1 − 1], r2 ∈ [0, p2 − 1], and p1 6= p2,then Λ0(p1, r1) and Λ0(p2, r2) (Λ′
0(p1, 0) and Λ′

0(p2, 0), respetively) are notderived equivalent. Similarly, if p1, p2 ∈ N+, r1 ∈ [0, p1 − 1], and p1 6= p2 +1,then Λ0(p1, r1) and Λ′
0(p2, 0) are not derived equivalent. Thus it is enough toprove that Λ0(p+1, 0), . . . , Λ0(p+1, p) and Λ′

0(p, 0) are pairwise not derivedequivalent for a �xed p ∈ N+. It follows easily by investigating the Eulerquadrati forms that Λ0(p+1, r1) and Λ(p+1, r2) (Λ′
0(p, 0) and Λ0(p+1, r2))are not derived equivalent if r1 6≡ r2 (mod 2) (r2 ≡ 0 (mod 2), respetively).The paper is organized as follows. In Setion 1 we �rst present baside�nitions, then desribe main tools used in order to redue an arbitrarygentle two-yle algebra to one of the algebras listed in Theorems 1 and 2:passing to the opposite algebra, (generalized) APR-(o)re�etions, and HW-(o)re�etions. Finally, we desribe an operation of shifting relations, whihis a basi appliation of the above operations, and investigate two partiularfamilies of gentle two-yle algebras. In Setion 2, the tehnial heart of thepaper, we prove, in a sequene of steps, that the lists of representatives ofthe tilting-otilting equivalene lasses of gentle two-yle algebras given inTheorems 1 and 2 are omplete, while in Setion 3 we show that di�erentalgebras from the list given in Theorem 1 are not derived equivalent. The lastproperty follows by alulating the derived invariant introdued by Avella-Alaminos and Geiss in [7℄.For basi bakground on representation theory of �nite-dimensional al-gebras we refer to [3℄.
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The authors gratefully aknowledge the support from the Polish Sienti�Grant KBN No. 1 P03A 018 27.1. Basi tools and auxiliary results. By a (�nite) quiver ∆ we meana �nite set ∆0 of verties together with a �nite set ∆1 of arrows and twomaps s = s∆, t = t∆ : ∆1 → ∆0 whih assign to an arrow α its startingand terminating vertex, respetively. We say that an arrow α is adjaent toa vertex x if either sα = x or tα = x. By a path of length n ∈ N+ we mean asequene σ = α1 · · ·αn of arrows suh that sαi = tαi+1 for all i ∈ [1, n − 1].In the above situation we denote sαn and tα1 by sσ and tσ, respetively.We also all α1 and αn the terminating and starting arrow of σ, respetively.Additionally, for eah x ∈ ∆0 we onsider the trivial path of length 0, alsodenoted by x, suh that sx = x = tx. The length of a path σ will be denotedby ℓ(σ). A path σ is alled maximal if there exists no arrow α suh thateither sα = tσ or tα = sσ. Similarly, we de�ne maximal paths starting (orterminating) at a given vertex. A onneted quiver is said to be a c-yle if
|∆1| = |∆0| + c − 1.With a quiver ∆ we assoiate its path algebra k∆, whih as a k-vetorspae has a basis formed by all paths in ∆ and whose multipliation isindued by omposition of paths. By a relation ̺ in ∆ we mean a linearombination of paths of length at least 2 with ommon starting and ter-minating verties. The ommon starting vertex is denoted by s̺ and theommon terminating vertex by t̺. A set R of relations is alled minimal if
̺ does not belong to the ideal 〈R \ {̺}〉 of k∆ generated by R \ {̺} forevery ̺ ∈ R. A pair (∆, R) onsisting of a quiver ∆ and a minimal set ofrelations R suh that there exists n ∈ N with σ ∈ 〈R〉 for eah path σ in
∆ of length at least n is alled a bound quiver. If (∆, R) is a bound quiver,then the algebra k∆/〈R〉 is alled the bound quiver algebra of (∆, R).Let (∆, R) be a bound quiver and assume that R onsists of paths. Apath σ in ∆ is said to be a path in (∆, R) if σ 6∈ 〈R〉 (in other words, none ofthe paths from R is a subpath of σ). A path σ in (∆, R) is said to be maximalif there is no α ∈ ∆1 suh that either sα = tσ and ασ 6∈ 〈R〉 or tα = sσand σα 6∈ 〈R〉. Again we de�ne maximal paths starting and terminating ata given vertex. If additionally R onsists of paths of length two, then we saythat α ∈ ∆1 is a free arrow provided there exists no β ∈ ∆1 suh that either
sβ = tα and βα ∈ R, or tβ = sα and αβ ∈ R.Following [4℄ we say that a onneted bound quiver (∆, R) is gentle ifthe following onditions are satis�ed:(1) for eah x ∈ ∆0 there are at most two arrows α suh that sα = x(tα = x),(2) R onsists of paths of length two,
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(3) for eah α ∈ ∆1 there is at most one arrow β suh that tβ = sα and

αβ 6∈ R (of sβ = tα and βα 6∈ R),(4) for eah α ∈ ∆1 there is at most one arrow β suh that tβ = sα and
αβ ∈ R (sβ = tα and βα ∈ R).An algebra whih is isomorphi to the bound quiver algebra of a gentle boundquiver is alled gentle.With an abelian ategory A we may assoiate its bounded derived ategory

Db(A) in the following way (see for example [29℄ for details). The objets of
Db(A) are the bounded omplexes of objets of A and the morphisms areobtained from the morphisms in the homotopy ategory by formally inversingthe quasi-isomorphisms (more preisely, by loalizing with respet to thequasi-isomorphisms), where by a quasi-isomorphism we mean a morphismof omplexes whih indues an isomorphism of homology groups. The derivedategory together with the shift funtor sending X to the shifted omplex
X[1], where X[1]n = Xn+1 and dn

X[1] = −dn+1
X[1] for n ∈ Z, is a triangulatedategory (see for example [17℄). We say that two abelian ategories A and Bare derived equivalent if there exists a triangle equivalene

Db(A) → Db(B).We say that two algebras Λ and Λ′ (bound quivers (∆, R) and (∆′, R′))are derived equivalent if their ategories of modules (representations, re-spetively) are derived equivalent. It follows from [26, Corollary 1.2℄ and [7,Corollary 15℄ that for c ∈ Z the gentle c-yle algebras (bound quivers) arelosed under derived equivalenes.Reall from [12, 19℄ that if Λ is an algebra, then a Λ-module T is alledtilting if pdΛ T ≤ 1, Ext1Λ(T, T ) = 0, and T is a diret sum of n pairwise noni-somorphi indeomposable modules, where n is the rank of the Grothendiekgroup of Λ. Dually, we de�ne the notion of a otilting module. Algebras Λ and
Λ′ are said to be tilting-otilting equivalent if there exists a sequene Λ = Λ0,
Λ1, . . . , Λn = Λ′ of algebras suh that for eah i ∈ [0, n − 1] there exists a(o)tilting Λi−1-module Ti−1 suh that Λi ≃ EndΛi−1

(Ti−1)
op. It was provedby Happel [16, Corollary 1.7℄ that if Λ and Λ′ are tilting-otilting equivalent,then they are derived equivalent.A vertex x in a quiver ∆ is alled a sink (soure) if there is no α ∈ ∆1with sα = x (tα = x, respetively). If x is a sink in a gentle bound quiver

(∆, R), then we de�ne a new gentle bound quiver (∆′, R′), alled the boundquiver obtained from (∆, R) by applying the APR-re�etion at x, in thefollowing way: ∆′
0 = ∆0, ∆′

1 = ∆1,
s∆′α =

{
x if t∆α = x,
s∆α otherwise,
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t∆′α =





s∆α if t∆α = x,
x if ∃β ∈ ∆1 : t∆β = x ∧ s∆β = t∆α ∧ βα ∈ R,
t∆α otherwise,and

R′ = {̺ ∈ R | t∆̺ 6= x} ∪ {αβ | t∆α = x

∧∃γ ∈ ∆1 : γ 6= α ∧ t∆γ = x ∧ s∆γ = t∆β ∧ γβ ∈ R}.It follows that the bound quiver algebra of (∆′, R′) is isomorphi to theopposite algebra of the endomorphism algebra of the APR-tilting module(see [6℄) at x de�ned as
⊕

a∈∆0

a 6=x

P (a) ⊕
( ⊕

α∈∆1
tα=x

P (sα)
)
/P (x)

(see [4, 2.1℄).We now present a generalization of the above onstrution due to Brennerand Butler (see [13, Chapter 2℄). Let x be a vertex in a gentle bound quiver
(∆, R) suh that there is no α ∈ ∆1 with sα = x = tα and for eah α ∈ ∆1with sα = x there exists βα ∈ ∆1 with tβα = x and αβα 6∈ R. We de�ne abound quiver (∆′, R′) in the following way: ∆′

0 = ∆0, ∆′
1 = ∆1,

s∆′α =





x if t∆α = x,
sβα if s∆α = x,
s∆α otherwise,

t∆′α =





s∆α if t∆α = x,
x if ∃β ∈ ∆1 : t∆β = x ∧ s∆β = t∆α ∧ βα ∈ R,
t∆α otherwise,and set

R′ = {αβ ∈ R | t∆α 6= x ∧ s∆α 6= x} ∪ {αβα | s∆α = x}

∪ {αβ | t∆α = x ∧ ∃γ ∈ ∆1 : γ 6= α ∧ t∆γ = x ∧ s∆γ = t∆β ∧ γβ ∈ R}.We will say that (∆′, R′) is obtained from (∆, R) by applying the generalizedAPR-re�etion at x. As in the previous situation, it follows easily that thebound quiver algebra of (∆′, R′) is the opposite algebra of the endomorphismalgebra of the tilting module de�ned in the same way as before. Obviouslyall APR-re�etions are generalized APR-re�etions.We also have a version of the above onstrution for a vertex x of agentle bound quiver (∆, R) suh that there exists α ∈ ∆1 with sα = x = tα.Observe that then α2 ∈ R. We additionally assume that there exists β0 ∈ ∆1with sβ0 6= x and tβ0 = x. We de�ne a bound quiver (∆′, R′) in the following
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way: ∆′

0 = ∆0, ∆′
1 = ∆1,

s∆′α =





x if t∆α = x,
s∆β0 if s∆α = x ∧ t∆α 6= x,
s∆α otherwise,

t∆′α =





s∆α if t∆α = x,
x if ∃β ∈ ∆1 : t∆β = x ∧ s∆β = t∆α ∧ βα ∈ R,
t∆α otherwise,and R′ = R. We will say again that (∆′, R′) is obtained from (∆, R) by ap-plying the generalized APR-re�etion at x. It follows that the bound quiveralgebra of (∆′, R′) is the opposite algebra of the endomorphism algebra ofthe tilting module

⊕

a∈∆0

a 6=x

P (a) ⊕ (P (y) ⊕ P (y))/P (x),

where y = sβ0 and P (x) is embedded in P (y)⊕P (y) in suh a way that thequotient module is indeomposable.Let again x be a sink in a gentle bound quiver (∆, R). We de�ne theHW-re�etion of (∆, R) at x as the bound quiver (∆′, R′) onstruted in thefollowing way. If ∆0 = {x} (equivalently, ∆1 = ∅), then (∆′, R′) = (∆, R),hene assume this is not the ase. Then we put ∆′
0 = ∆0 and ∆′

1 = ∆1. Foreah arrow α terminating at x let βα be the starting arrow of the maximalpath in (∆, R) terminating at x whose terminating arrow is α. We put
s∆′α =

{
x if t∆α = x,
s∆α otherwise, t∆′α =

{
s∆βα if t∆α = x,
t∆α otherwise.Finally, let

R′ = {̺ ∈ R | t∆̺ 6= x}

∪ {βα | t∆α = x ∧ s∆β = s∆βα ∧ β 6= βα ∧ t∆β 6= x}.It is known that the bound quiver algebra of (∆′, R′) is (isomorphi to)the algebra obtained from the bound quiver algebra of (∆, R) by the HW-re�etion at x (de�ned in [21℄), hene in partiular it is tilting-otiltingequivalent to (∆, R) (see [28℄). Dually, one de�nes the quiver obtained from
(∆, R) by applying the HW-ore�etion at a soure.Before we present basi appliations of the above transformations, wedesribe one more onstrution. Let Σ be a subquiver of a quiver ∆. Assumethat Σ′ is a quiver suh that Σ′

0 = Σ0 and Σ′
1 = Σ1 (but, usually, sΣ′ 6= sΣand tΣ′ 6= tΣ). We say that a quiver ∆′ is obtained from ∆ by replaing Σ
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by Σ′ if ∆′
0 = ∆0, ∆′

1 = ∆1, and
s∆′α =

{
s∆α if α ∈ ∆1 \ Σ1,
sΣ′α if α ∈ Σ1, t∆′α =

{
t∆α if α ∈ ∆1 \ Σ1,
tΣ′α if α ∈ Σ1,for α ∈ ∆1.We now desribe operations of shifting relations.Lemma 1.1. If

Σ = •
u

•
x

α1oo •
y

α2oo •
v

α3oois a subquiver of a gentle bound quiver (∆, R) suh that α1α2 ∈ R, α2α3 6∈ R,and there are no other arrows adjaent to y, then (∆, R) is tilting-otiltingequivalent to the bound quiver (∆′, R′), where R′ = (R \ {α1α2}) ∪ {α2α3}and ∆′ is obtained from ∆ by replaing Σ by the quiver
•
u

•
y

α1oo •
x

α2oo •
z

α3oo .Proof. Apply the generalized APR-ore�etion at y.We remark that it may happen that one of the following equalities holds:
u = y, x = v or u = v. Moreover, u = y if and only if x = v, and in this ase
α1 = α3. We all the above operation shifting the relation α1α2 to the right.Dually, one de�nes the operation of shifting relations to the left.We will need the following generalization of the above lemma.Lemma 1.2. If

Σ = •
u

•
x

α1oo •
yn

α2oo βn // •
yn−1

· · · // •
y1

β1 // •
y0

•
v

α3oo , n ∈ N+,is a subquiver of a gentle bound quiver (∆, R) suh that α1α2 ∈ R, β1, . . . , βnare free arrows , and there are no other arrows adjaent to x, y0, . . . , yn, then
(∆, R) is tilting-otilting equivalent to the bound quiver (∆′, R′), where R′ =
(R \ {α1α2}) ∪ {α2α3} and ∆′ is obtained from ∆ by replaing Σ by thequiver

•
u

•
y0

α1oo β1 // •
y1

· · · // •
yn−1

βn // •
yn

•
x

α2oo •
z

α3oo .Proof. We leave it to the reader to verify that the following sequene ofoperations leads from (∆, R) to (∆′, R′): �rst for eah i = n, . . . , 1 we applythe APR-ore�etions at yi, . . . , yn, x, and next we apply the generalizedAPR-ore�etions at y0, . . . , yn.We will also shift a group of relations in the following sense.Lemma 1.3. Let
Σ = •

y

β // •
x0

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnoo , n ≥ 2,
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be a subquiver of a gentle bound quiver (∆, R) suh that β is a free arrow ,
αiαi+1 ∈ R for all i ∈ [1, n − 1], and there are no other arrows adjaentto x0, . . . , xn−1. If there is no α ∈ ∆1 with tα = xn and αnα ∈ R, then
(∆, R) is tilting-otilting equivalent to the bound quiver (∆′, R′), where R′ =
(R \ {αn−1αn}) ∪ {βα1} and ∆′ is obtained from ∆ by replaing Σ by thequiver

•
y

•
x1

βoo •
x2

α1oo •
xn−1

· · ·oo •
x0

αn−1oo αn // •
xn

.Proof. We apply the APR-re�etion at x0, followed by the ompositionof the APR-re�etion at xi and the generalized APR-re�etion at x0 appliedfor i = 1, . . . , n − 1.Observe that in the above lemma we shift relations to the left. Dually wede�ne the operation of shifting a group of relations to the right.We now present a redution, resulting from the above lemmas, whih willappear a few times in our proofs. Let
Σ = •

x0

α1 •
x1

· · · •
xn−1

αn •
xn

, n ∈ N+,be a subquiver of a gentle bound quiver (∆, R) suh that there are no otherarrows adjaent to x1, . . . , xn−1 (it may happen that x0 = xn). We divide
Σ1 into two disjoint subsets Σ1,+ and Σ1,− in suh a way that, for eah
i ∈ [1, n − 1], αi and αi+1 belong to the same subset if and only if either
sαi = tαi+1 or tαi = sαi+1. We additionally assume that there exists ε ∈
{−, +} suh that αβ 6∈ R for all α, β ∈ Σ1,ε with sα = tβ. If x0 = tα1, thenby applying APR-re�etions and shifts of relations (we leave the details tothe reader), hene by passing to a tilting-otilting equivalent bound quiver,we may replae Σ by the quiver

•
x0

· · ·
α′

1oo •
α′

l1oo
α′′

l2 // · · ·
α′′

1 // • · · ·
α′′′

1oo •
xn

α′′′

l3oofor some l1, l2, l3 ∈ N with l1 + l2 + l3 = n. Moreover, we may additionallyassume that l3 = 0 if either xn = tαn or xn = sαn and there is no α ∈ ∆1with tα = xn and αnα ∈ R. Obviously, we have the dual statement if
x0 = sα1.The next observation is the following.Lemma 1.4. If p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1 − 1] are suh that
p2 +p3 ≥ 2 and p4 +r1 ≥ 1, then Λ1(p1, p2, p3, p4, r1) and Λ1(p1 +p2−r1−1,
r1 + 1, p4, p3, p2 − 1) are tilting-otilting equivalent.Proof. This follows immediately by shifting relations.In order to formulate the next lemma we introdue a new family of alge-bras. Namely, for p1, p2 ∈ N+, p3, p4 ∈ N, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1]
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suh that p3 + p4 + r1 + r2 ≥ 1, let Λ′
2(p1, p2, p3, p4, r1, r2) be the algebra ofthe quiver

•

...
��

•
β1

��~~
~~

~~
~

•

αp1

__@@@@@@@
· · ·

γ1oo •
γp3oo

δp4 // · · ·
δ1 // •

βp2 ��@
@@

@@
@@

•
α1

??~~~~~~~
•

...
OO

bound by αiαi+1 for i ∈ [p1−r1, p1−1], αp1
α1, βiβi+1 for i ∈ [p2−r2, p2−1],and βp2

β1.Lemma 1.5. If p1, p2, p3 ∈ N+, p4 ∈ N, r1 ∈ [0, p1−1], and r2 ∈ [0, p2−1],then Λ′
2(p1, p2, p3, p4, r1, r2) and Λ′

2(p1, p2, p3 − 1, p4 + 1, r1, r2) are tilting-otilting equivalent.Proof. Put ai = sδi, i ∈ [1, p4], and bi = sβi, i ∈ [1, p2]. We �rst ap-ply the APR-ore�etions at ap4
, . . . , a1, followed by the generalized APR-ore�etion at bp2

(we only apply the generalized APR-ore�etion at bp2if p4 = 0). Next we apply the APR-ore�etion at bp2−i followed by thegeneralized APR-ore�etion at bp2
for i = 1, . . . , r2 (we do nothing in thisstep if r2 = 0, hene in partiular if p2 = 1), and �nally we apply theAPR-ore�etions at bp2−r2−1, . . . , b1 (there is nothing to do if r2 = p2 − 1,hene again if p2 = 1).Corollary 1.6. If p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1] and r2 ∈

[0, p2 − 1], are suh that p3 + r1 + r2 ≥ 1, then Λ2(p1, p2, p3, r1, r2) and
Λ2(p2, p1, p3, r2, r1) are tilting-otilting equivalent.Proof. This follows immediately from the above lemma, sine it is eas-ily seen that Λ2(p1, p2, p3, r1, r2) and Λ2(p2, p1, p3, r2, r1) are isomorphi to
Λ′

2(p1, p2, p3, 0, r1, r2) and Λ′
2(p1, p2, 0, p3, r1, r2), respetively.Proposition 1.7. If Λ is one of the algebras listed in Theorems 1 and 2,then Λ and Λop are tilting-otilting equivalent.Proof. If either Λ = Λ0(p, r) for some p ∈ N+ and r ∈ [0, p − 1], or

Λ = Λ′
0(p, 0) for some p ∈ N+, then the laim follows immediately by shiftingrelations. If Λ = Λ1(p1, p2, p3, p4, r1) for some p1, p2 ∈ N+, p3, p4 ∈ N, and

r1 ∈ [0, p1] suh that p2+p3 ≥ 2 and r1+p4 ≥ 1, then we have to additionallyapply APR-ore�etions. Finally, if Λ = Λ2(p1, p2, p3, r1, r2) for some p1, p2 ∈
N+, p3 ∈ N, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1] suh that p3 + r1 + r2 ≥ 1,then the laim follows from Corollary 1.6.An important onsequene of the above lemma is that in our onsidera-tions we may always replae an algebra by its opposite algebra. Indeed, if foran algebra Γ we are able to prove that Γ op is tilting-otilting equivalent to
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an algebra Λ listed in Theorems 1 and 2, then obviously Γ is tilting-otiltingequivalent to Λop, hene also to Λ. In partiular, one Theorems 1 and 2 areproved, we know that if Γ is a gentle two-yle algebra, then Γ and Γ op aretilting-otilting equivalent.We �nish this setion by analyzing two partiular families of gentle two-yle bound quivers. First, we prove the following.Proposition 1.8. If (∆, R) is a gentle bound quiver suh that

∆ =

•
α1

��~~
~~

~~
~

•· · ·oo •
αp1+1

��~~
~~

~~
~

•· · ·oo

• •
αp1

__@@@@@@@

βq1

��~~
~~

~~
~

•

αp1+p2

__@@@@@@@

βq1+q2��~~
~~

~~
~

•
β1

__@@@@@@@
•· · ·oo •

βq1+1

__@@@@@@@
•· · ·oofor some p1, p2, q1, q2 ∈ N+, then the bound quiver algebra of (∆, R) is tilting-otilting equivalent to Λ′

0(p, r) for some p ∈ N+ and r ∈ [0, p − 1].We �rst show that also in the proof of this theorem we may pass toopposite algebras.Lemma 1.9. If p ∈ N+ and r ∈ [1, p−1], then Λ′
0(p, r) and Λ0(p+1, r−1)are tilting-otilting equivalent.Proof. In order to prove this equivalene, we put x = tβ, z = sδ and x1 =

sα1, and apply the APR-re�etion at x followed by the APR-ore�etion at
z and the APR-re�etion at x1 to Λ′

0(p, r). Then the laim follows by shiftingrelations.Corollary 1.10. If p ∈ N+ and r ∈ [0, p − 1], then Λ′
0(p, r) and

Λ′
0(p, r)op are tilting-otilting equivalent.Proof. This follows either from Proposition 1.7 (if r = 0), or from theprevious lemma and Proposition 1.7 (if r > 0).In the proof of Proposition 1.8 we will need the following families ofalgebras:
• Γ0(p, q, r) for p, q ∈ N+ and r ∈ [0, p − 1] is the algebra of the quiver

•
a1

α1

��~~
~~

~~
~

•
ap−1

· · ·oo

•
x

•
y

αp

__@@@@@@@

βq��~~
~~

~~
~

•
z

αp+1

vv

βq+1

hh

•
b1

β1

__@@@@@@@
•

bq−1

· · ·oobound by αiαi+1 for i ∈ [p − r, p] and βqβq+1,
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• Γ1(p, q, r, r′) for p, q ∈ N+, r ∈ [0, p − 1], and r′ ∈ N, is the algebra ofthe quiver
•
a1

α1

��~~
~~

~~
~

•
ap−1

· · ·oo •
ap

αp+1

��~~
~~

~~
~

•
ap+r′−1

· · ·oo

•
x

•
y

αp

__@@@@@@@

βq��~~
~~

~~
~

•
z

αp+r′+1

__@@@@@@@βq+1oo

•
b1

β1

__@@@@@@@
•

bq−1

· · ·oobound by αiαi+1 for i ∈ [p − r, p + r′] and βqβq+1,
• Γ2(p, q, r, r′) for p, q ∈ N+, r ∈ [0, p − 1], and r′ ∈ N is the algebra ofthe quiver

•
a1

α1

��~~
~~

~~
~

•
ap−1

· · ·oo

•
x

•
y

αp

__@@@@@@@

βq��~~
~~

~~
~

•
z

βq+r′+1��~~
~~

~~
~

αp+1oo

•
b1

β1

__@@@@@@@
•

bq−1

· · ·oo •
bq

βq+1

__@@@@@@@
•

bq+r′−1

· · ·oobound by αiαi+1 for i ∈ [p − r, p] and βiβi+1 for i ∈ [q, q + r′],and the following series of lemmas.Lemma 1.11. If p, q ∈ N+, r ∈ [0, p − 1], and q > 1, then Γ0(p, q, r) istilting-otilting equivalent to Γ0(p + 1, q − 1, r).Proof. It is enough to apply the generalized APR-re�etion at bq−1, fol-lowed by the APR-ore�etion at z, the generalized APR-ore�etion at y,and the APR-ore�etions at bq−2, . . . , b1 (we omit the last step if q = 2).Lemma 1.12. If p, q,∈ N+, r ∈ [0, p − 1], r′ ∈ N, and r′ ≥ r, then
Γ1(p, q, r, r′) is tilting-otilting equivalent to Γ2(q + r′ − r, p, r′ − r, r).Proof. First for eah i ∈ [1, r] we apply the HW-ore�etion at z fol-lowed by the APR-re�etion at z, and the generalized APR-orefletion at
ap+r′−i applied r + r′ + 1 − i times. Next we apply the HW-ore�etionsat z, ap+r′−r−1, . . . , ap (only at z if r = r′) and we obtain a bound quiverwhose bound quiver algebra is easily seen to be tilting-otilting equivalentto Γ2(q + r′ − r, p, r′ − r, r).Lemma 1.13. If p, q,∈ N+, r ∈ [0, p − 1], r′ ∈ N, and r ≥ r′, then
Γ1(p, q, r, r′) is tilting-otilting equivalent to Γ2(p + 2r′ − r, q, r′, r − r′).Proof. Sine Γ1(p, q, r, r′) is tilting-otilting equivalent to Γ1(p + r′ − r,
q, r′, r)op and Γ2(p + 2r′ − r, q, r′, r − r′) is tilting-otilting equivalent to
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Γ2(q+r−r′, p+r′−r, r−r′, r′)op, hene the laim follows from the previouslemma.Lemma 1.14. If p, q ∈ N+, r ∈ [0, p − 1], r′ ∈ N, and r ≥ r′, then
Γ2(p, q, r, r′) is tilting-otilting equivalent to Γ2(p, q, r − r′, r′).Proof. By applying the APR-ore�etion at z followed by the generalizedAPR-ore�etion at z applied r′ times, we replae Γ2(p, q, r, r′) by (an algebraisomorphi to) the bound quiver algebra of the quiver

•
a′

1

α′

1

��~~
~~

~~
~

•
ap−r′−1′

· · ·oo •
a′

p−r′

α′

p−r′+2

��~~
~~

~~
~

•
a′

p−1

· · ·oo

•
x′

•
y′

α′

p−r′
__@@@@@@@

β′

q��~~
~~

~~
~

•
z

β′

q+r′+1��~~
~~

~~
~

α′

p−r′+1oo

•
b1

β′

1

__@@@@@@@
•

b′q−1

· · ·oo •
b′q

β′

q+1

__@@@@@@@
•

b′
q+r′−1

· · ·oo

bound by α′
iα

′
i+1 for i ∈ [p − r, p] and β′

iβ
′
i+1 for i ∈ [q, q + r′]. It is easilyseen that this algebra is tilting-otilting equivalent to Γ2(p, q, r − r′, r′) (wejust shift relations su�iently many times).Lemma 1.15. If p, q ∈ N, r ∈ [0, p − 1], r′ ∈ N, and r′ ≥ r, then

Γ2(p, q, r, r′) is tilting-otilting equivalent to Γ2(p, q + r, r, r′ − r).Proof. Sine Γ2(p, q, r, r′) is tilting-otilting equivalent to Γ2(q + r′,
p−r, r′, r)op and Γ2(p, q+r, r, r′−r) is tilting-otilting equivalent to Γ2(q+r′,
p − r, r′ − r, r)op, the laim follows from the previous lemma.Proof of Proposition 1.8. Without loss of generality we may assume that
αp1

αp1+1 ∈ R and βq1
βq1+1 ∈ R. We �rst show that either αiαi+1 6∈ Rfor all i ∈ [1, p1 − 1], or βiβi+1 6∈ R for all i ∈ [1, q1 − 1]. Assume this isnot the ase. In partiular, p1, q1 ≥ 2. By shifting relations we may assumethat α1α2 ∈ R and β1β2 ∈ R. If (∆′, R′) is the quiver obtained from (∆, R)by applying the HW-re�etion at x followed by the APR-re�etion at x,where x = tα1, then ∆′ = ∆ and R′ = R \ {α1α2, β1β2}, hene the laimfollows by indution. Similarly, we prove that either αiαi+1 6∈ R for all

i ∈ [p1 + 1, p1 + p2 − 1], or βiβi+1 6∈ R for all i ∈ [q1 + 1, q1 + q2 − 1].Consequently, by shifting relations one easily observes that the bound quiveralgebra of (∆, R) is tilting-otilting equivalent either to Γ1(p, q, r, r′) or to
Γ2(p, q, r, r′) for some p, q ∈ N+, r ∈ [0, p − 1], and r′ ∈ N. Sine

Γ1(p, q, r, 0) = Γ0(p, q, r) = Γ2(p, q, r, 0)for all p, q ∈ N+ and r ∈ N, Γ1(p, q, 0, r′) ≃ Γ0(p + r′, q, r′)op and
Γ2(p, q, 0, r′) ≃ Γ0(q + r′, p, r′)op
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for all p, q ∈ N+ and r′ ∈ N, and Γ0(p, 1, r) is tilting-otilting equivalent to
Λ′

0(p, r) for all p ∈ N+ and r ∈ [0, p − 1], the laim follows from the aboveseries of lemmas.We �nish this setion with the following.Proposition 1.16. If (∆, R) is a gentle bound quiver suh that
∆ =

•
x1

α1

��~~
~~

~~
~

•
xp1−1

· · ·oo

•u
βp2 // •

yp2−1
· · · // •

y1

β1 // •v

αp1

__@@@@@@@

γp3��~~
~~

~~
~

•
z1

γ1

__@@@@@@@
•

zp3−1
· · ·oofor some p1, p2, p3 ∈ N+, and βp2

α1, γp3
β1 ∈ R, then the bound quiver algebraof (∆, R) is tilting-otilting equivalent to Λ0(p, r) for some p ∈ N+ and r ∈

[0, p − 1].Proof. Let r1 be the number of i ∈ [1, p1 − 1] suh that αiαi+1 ∈ R,let r2 be the number of i ∈ [1, p2 − 1] suh that βiβi+1 ∈ R, and let r3 bethe number of i ∈ [1, p3 − 1] suh that γiγi+1 ∈ R. We prove the laim byindution on r1 + r2 + r3.If r1 = 0 = r3, then it follows by shifting relations that the bound quiveralgebra of (∆, R) is tilting-otilting equivalent to Λ0(p1 + p2 + p3 − 2, r2).If r1 > 0 and r3 = 0, then by shifting relations we may assume that
p3 = 1 and α1α2 ∈ R. If (∆′, R′) is the bound quiver obtained from (∆, R) byapplying the generalized APR-re�etion at u followed by the APR-re�etionat x1, then R′ = (R \ {α1α2, βp2

α1, γ1β1}) ∪ {γ1α2, βp2
γ1} and

∆′ =

•
x2

α2

��~~
~~

~~
~

•
xp1−1

· · ·oo

•u
γ1 // •v

αp1

__@@@@@@@

βp2��~~
~~

~~
~

•
x1

α1

__@@@@@@@
•
y1

β1oo •
yp2−1

· · ·oohene the laim follows by indution. Dually, the laim follows if r1 = 0 and
r3 > 0.Assume �nally that r1 > 0 and r3 > 0. By shifting relations we mayassume that α1α2 ∈ R and γ1γ2 ∈ R. If (∆′, R′) is obtained from (∆, R) byapplying the generalized APR-re�etion at u followed by the APR-re�etion
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at x1, then R′ = (R \ {α1α2, βp2

α1, γ1γ2}) ∪ {βp2
γ1, γ1α2} and

∆′ =

•
x2

α2

��~~
~~

~~
~

•
xp1−1

· · ·oo

•u
γ1 // •

z1

βp2 // •
yp2−1

· · · // •
y1

β1 // •v

αp1

__@@@@@@@

γp3��~~
~~

~~
~

•
x1

α1

__@@@@@@@
•
z2

γ2oo •
zp2−1

· · ·ooand the laim again follows by indution.2. Completeness of the list. We start our onsiderations in this se-tion by extending the list of algebras in Theorems 1 and 2. Namely, as a on-sequene of Lemmas 1.4 and 1.9 and Corollary 1.6, to show the ompletenessof the lists in Theorems 1 and 2, it is enough to prove the following.Proposition 2.1. If (∆, R) is a gentle two-yle bound quiver , then thebound quiver algebra of (∆, R) is tilting-otilting equivalent to one of thefollowing algebras :
• Λ0(p, r) for some p ∈ N+ and r ∈ [0, p − 1],
• Λ′

0(p, r) for some p ∈ N+ and r ∈ [0, p − 1],
• Λ1(p1, p2, p3, p4, r1) for some p1, p2∈N+, p3, p4∈N, and r1∈ [0, p1 − 1]suh that p2 + p3 ≥ 2 and p4 + r1 ≥ 1,
• Λ2(p1, p2, p3, r1, r2) for some p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1],

r2 ∈ [0, p2 − 1] suh that p3 + r1 + r2 ≥ 1.For the rest of the setion we assume that (∆, R) is a gentle two-ylebound quiver. We show, in a sequene of steps, that the bound quiver algebraof (∆, R) is tilting-otilting equivalent to one of the algebras listed in theabove proposition.We divide the arrows in ∆ into three disjoint groups:
• α ∈ ∆1 is alled a yle arrow if the quiver (∆0, ∆1\{α}) is onneted,
• α ∈ ∆1 is alled a branh arrow if the quiver (∆0, ∆1 \ {α}) has aonneted omponent whih is a two-yle quiver,
• α ∈ ∆1 is alled a onneting arrow if the quiver (∆0, ∆1 \ {α}) hastwo onneted omponents whih are one-yle quivers.A vertex x of ∆ is alled a onneting vertex if there exist at least threearrows adjaent to x whih are not branh arrows. We all αβ ∈ R a branhrelation if either α or β is a branh arrow.Step 1. We may assume that there are no branh relations in R.
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Proof. If there exists a branh relation in (∆, R), then by passing to theopposite algebra if neessary, we may assume that there exists a subquiver
Σ = •

x0
· · ·

α1 •
xn−2

αn−2

•
xn−1

αn−1oo •
xn

αnooof ∆ for some n ≥ 2, where α1, . . . , αn−2 are free arrows, αn−1αn ∈ R,and there are no other arrows adjaent to x0, . . . , xn−2 (in partiular, αn−1is a branh arrow, hene αn−1αn is a branh relation). By applying APR-ore�etions we may assume that sαi = xi for all i ∈ [1, n − 2]. If (∆′, R′)is the bound quiver obtained from (∆, R) by applying the generalized APR-re�etions at xn−2, . . . , x1 followed by the APR-re�etion at x0, then R′ =
R \ {αn−1αn} and ∆′ is obtained from ∆ by replaing Σ by the quiver

•
xn−1

•
x0

α1oo · · ·
α2oo •

xn−2

αn−1oo •
xn

αnoo .In partiular, the number of branh relations dereases, hene the laimfollows by indution.By a branh in ∆ we mean a maximal nontrivial (i.e. with nonempty setof arrows) onneted subquiver of ∆ all of whose arrows are branh arrows.We say that a branh B in ∆ is rooted at x if x ∈ B0 and there exists α ∈ ∆1adjaent to x whih is not a branh arrow. An immediate onsequene of theassumption made in the above step is that eah branh B in ∆ is a linearquiver rooted at one of its ends. Moreover, by applying APR-re�etions wemay assume that B is equioriented and rooted at its unique sink.Step 2. We may assume that there are no branh arrows in ∆.Proof. We say that x ∈ ∆0 is an insertion vertex if either x is a on-neting vertex, or there exists α ∈ ∆1 suh that sα = x, α is not a branharrow, and there is no β ∈ ∆1 with tβ = x and αβ ∈ R. Observe that nobranh is rooted at an insertion vertex. Moreover, for eah x ∈ ∆0 thereexists a path in ∆ starting at an insertion vertex and terminating at x. Inpartiular, if B is a branh rooted at x, then we all the minimal length ofsuh a path the distane between B and an insertion vertex. We prove ourlaim by indution on the number of branhes in (∆, R) and, for a givenbranh B, by indution on the distane between B and an insertion vertex.Let
B = •

x0
•
x1

α1oo •
xn−1

· · ·oo •
xn

αnoo , n ∈ N+,be a branh in ∆. Let α and β be the arrows in ∆ with sα = x0 = tβ and
β 6= α1. Observe that αβ ∈ R and there are no other arrows adjaent to x0.Put y = tα and z = sβ.Assume �rst that there is no γ ∈ ∆1 with tγ = z and βγ ∈ R. If (∆′, R′)is the bound quiver obtained from (∆, R) by applying the generalized APR-
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re�etions at x0, . . . , xn−1, then R′ = (R\{αβ})∪{ααn} and ∆′ is obtainedfrom ∆ by replaing the subquiver

•
y

•
z

β // •
x0

α

OO

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnooby the quiver
•
z

•
x0

βoo •
x1

α1oo •
xn−1

· · ·oo αn // •
xn

α // •
y ,hene the laim follows in this ase.Assume now that there exists γ ∈ ∆1 with tγ = z and βγ ∈ R, and z is aonneting vertex in ∆1. Put v = sγ. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the generalized APR-re�etions at x0, . . . , xn−1,then R′ = (R\{αβ, βγ})∪{ααn, αnγ} and ∆′ is obtained from ∆ by replaingthe subquiver

•
y

•
v

γ // •
z

β // •
x0

α

OO

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnooby the quiver
•v

γ

��
•
z

•
x0

βoo •
x1

α1oo •
xn−1

· · ·oo αn // •
xn

α // •
yObserve that the assumption that z is a onneting vertex in ∆ implies that

β, α1, . . . , αn−1 are not branh arrows in ∆′.Finally, assume that there exists γ ∈ ∆1 with tγ = z and βγ ∈ R, but zis not a onneting vertex in ∆1. By indution we may assume that there isno branh rooted at z. If (∆′, R′) is the bound quiver obtained from (∆, R)by applying the HW-ore�etion at xi followed by the APR-re�etion at xifor i = n, . . . , 1, then R′ = R and ∆′ is obtained from ∆ by replaing thesubquiver
•
z

β // •
x0

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnooby the quiver
•
x0

•
z

βoo •
x1

α1oo •
xn−1

· · ·oo •
xn

αnoo ,and the laim follows by indution.
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We say that ∆ is speial if either there is a unique onneting vertex in
∆, or there is a onneting arrow in ∆. Otherwise, we all ∆ proper. We nowonentrate on the ase when ∆ is speial. We �rst desribe its struture morepreisely. We may divide the yle arrows of ∆ into two disjoint subsets ∆

(1)
1and ∆

(2)
1 in suh a way that yle arrows α and β belong to the same subsetif and only if the quiver (∆0, ∆1 \ {α, β}) has a onneted omponent whihis a one-yle quiver. For j ∈ [1, 2] we denote by ∆(j) the minimal subquiverof ∆ with the set of arrows ∆

(j)
1 . Observe that ∆(j) is a (not neessarilyoriented) yle. We divide the arrows in ∆(j) into disjoint subsets ∆

(j)
1,− and

∆
(j)
1,+ in suh a way that if α, β ∈ ∆

(j)
1 , α 6= β, are adjaent to the samevertex, then they belong to the same subset if and only if either sα = tβ or

tα = sβ. For ε ∈ {−, +} we put
R(j)

ε = {αβ ∈ R | α, β ∈ ∆
(j)
1,ε}.Step 3. If ∆ is speial , then we may assume that for eah j ∈ [1, 2] thereexists ε ∈ {−, +} suh that R

(j)
ε = ∅.Proof. If ∆(j) is an oriented yle, then there is nothing to prove, heneassume that ∆(j) is not an oriented yle and R

(j)
− 6= ∅ 6= R

(j)
+ . There existsa subquiver

Σ = •
y1

•
y2

α1oo •
x0

α2oo · · ·
γ1 γn

•
xn

β2 // •
z2

β1 // •
z1of ∆ for some n ∈ N suh that α1α2 ∈ R

(j)
− , β1β2 ∈ R

(j)
+ , there are noother arrows adjaent to x0, . . . , xn, and γ1, . . . , γn are free arrows. By ap-plying appropriate APR-re�etions at x1, . . . , xn−1 (see the disussion afterLemma 1.3) we may assume that

Σ = •
y1

•
y2

α1oo •
x0

α2oo · · ·
γ1oo •

xk

γkoo
γk+1 // · · ·

γn // •
xn

β2 // •
z2

β1 // •
z1for some k ∈ [0, n]. By shifting the relations α1α2 and β1β2 to the right, wemay assume that n = 0, i.e.

Σ = •
y1

•
y2

α1oo •
x

α2oo β2 // •
z2

β1 // •
z1

.Assume �rst that neither y2 nor z2 is a onneting vertex. If (∆′, R′) is thebound quiver obtained from (∆, R) by applying the APR-orefletions at
x, y2, and z2, then R′ = R \ {α1α2, β1β2} and ∆′ is obtained from ∆ byreplaing Σ by the quiver

•
y1

•
z2

α1oo •
x

β2oo α2 // •
y2

β1 // •
z1

,and the laim follows by indution. Otherwise, we may assume without loss
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of generality that y2 is a onneting vertex and z2 is not a onneting vertex.If (∆′, R′) is the bound quiver obtained from (∆, R) by applying the APR-ore�etions at x and z2, then R′ = (R \ {α1α2, β1β2}) ∪ {β1α2} and ∆′ isobtained from ∆ by replaing Σ by the quiver

•
y2

α2

��
•
y1

•
z2

α1oo •
x

β2oo β1 // •
z1Observe that α2 is a onneting arrow in ∆′, hene the laim again followsby indution.Step 4. If ∆ is speial , then for eah j ∈ [1, 2] we may assume thateither ∆(j) is an oriented yle, or there is a unique soure (equivalently ,unique sink) in ∆(j).Proof. This follows easily by applying APR-re�etions and shifts of re-lations (see the disussion after Lemma 1.3).Step 5. If ∆ is speial , then we may assume that either there is noonneting arrow in ∆, or , for eah j ∈ [1, 2], ∆(j) is an oriented yle and

αβ ∈ R for all α, β ∈ ∆
(j)
1 with sα = tβ.Proof. We prove the laim by indution on the sum of the number ofonneting arrows and the number of onneting relations, where we saythat αβ ∈ R is a onneting relation if both α and β are onneting arrows.We may assume without loss of generality that either ∆(1) is not an orientedyle, or there exist α, β ∈ ∆

(1)
1 with sα = tβ and αβ 6∈ R. Let x ∈ ∆

(1)
0 be aonneting vertex. Let α be the onneting arrow adjaent to x. Without lossof generality we may assume that x = sα. Let β and γ be the arrows adjaentto x di�erent from α. Again we may assume without loss of generality that

x = tβ. By symmetry we may also assume that αβ ∈ R if x = tγ. Put y = tαand z = sβ. In order to make it easier to follow the proof we will numberthe ases.(1) Assume that αβ 6∈ R. Aording to our assumptions this implies that
x = sγ and γβ ∈ R. Put v = tγ. If ∆(1) is not an oriented yle, then byapplying APR-re�etions and the dual of Lemma 1.2 we may assume that vis a sink. In partiular, there is no γ′ ∈ ∆1 with sγ′ = v and γ′γ ∈ R. Byshifting relations we may also assume that this ondition is satis�ed if ∆(1)is an oriented yle. Let (∆′, R′) be the bound quiver obtained from (∆, R)by applying the generalized APR-ore�etion at x. If there is no α′ ∈ ∆1with sα′ = y and α′α ∈ R, then R′ = (R \ {γβ})∪ {αβ} and ∆′ is obtained
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from ∆ by replaing the subquiver
•z

β

��
•
v

•
x

γoo α // •
yby the quiver

•
v

γ // •
x

•
y

αoo •
z

βoo .On the other hand, if there exists α′ ∈ ∆1 with sα′ = y and α′α ∈ R, then
R = (R \ {γβ, α′α})∪{αβ, α′γ} and ∆′ is obtained from ∆ by replaing thesubquiver

•z

β

��
•
v

•
x

γoo α // •
y

α′

// •
y′by the quiver

•
y′

•
v

γ // •
x

α′

OO

•
y

αoo •
z

βoowhere y′ = tα′. Observe that either ∆′ is proper (if y is a onneting ver-tex in the seond ase), or we derease the number of onneting arrows(otherwise), hene the laim follows by indution.(2) Assume that αβ ∈ R.(2.1) Assume that there is no α′ ∈ ∆′
1 with sα′ = y and α′α ∈ R.(2.1.1) Assume that y is a onneting vertex. If either ∆(2) is not anoriented yle, or there exist δ′, δ′′ ∈ ∆

(2)
1 with sδ′ = tδ′′ and δ′δ′′ 6∈ R, thenthe laim follows by symmetry from (1), thus we may assume that ∆(2) isan oriented yle suh that δ′δ′′ ∈ R for all δ′, δ′′ ∈ ∆

(2)
1 with sδ′ = tδ′′.(2.1.1.1) Assume that |∆(2)

1 | = 1. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the generalized APR-re�etion at y, then R′ = Rand ∆′ is obtained from ∆ by replaing the subquiver
•
z

β // •
x

α // •
yby the quiver

•
z

β // •
y

α // •
x

,hene the laim follows.
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(2.1.1.2) Assume that |∆(2)

1 | > 1. Let α′ and β′ be the arrows in ∆(2) with
sα′ = y = tβ′. Put v′ = tα′ and x′ = sβ′. Let γ′ be the arrow in ∆(2) with
tγ′ = x′. Put z′ = sγ′. Reall that α′β′, β′γ′ ∈ R. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the generalized APR-re�etion at
y followed by the APR-re�etion at x′, then R′ = (R \ {αβ, α′β′, β′γ′})
∪ {αγ′, α′α} and ∆′ is obtained from ∆ by replaing the subquiver

•v
′

•
z

β // •
x

α // •
y

α′

OO

•
x′

β′

oo •
z′

γ′

ooby the quiver
•z
′

γ′

��
•
z

β // •
x′

β′

// •
y

α // •
x

α′

// •
v′hene the laim follows in this ase.(2.1.2) Assume that y is not a onneting vertex.(2.1.2.1) Assume that there exists α′ ∈ ∆1 with sα′ = y. Our assumptionsimply that α′α 6∈ R. Put y′ = tα′. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the generalized APR-re�etion at y, then R′ =

(R \ {αβ}) ∪ {α′α} and ∆′ is obtained from ∆ by replaing the subquiver
•
z

β // •
x

α // •
y

α′

// •
y′by the quiver

•
z

β // •
y

α // •
x

α′

// •
y′

,hene the laim follows by indution.(2.1.2.2) Assume there exists α′ ∈ ∆′ with tα′ = y. Put x′ = sα′.(2.1.2.2.1) Assume that either x′ is a onneting vertex or α′ is a freearrow. Moreover, if x′ is a onneting arrow and α′ is not a free arrow, thenlet β′ be the arrow in ∆ with tβ′ = x′ and α′β′ ∈ R, and put z′ = sβ′. Let
(∆′, R′) be the bound quiver obtained from (∆, R) by applying the APR-re�etion at y. If α′ is a free arrow, then R′ = (R \ {αβ})∪ {α′β} and ∆′ isobtained from ∆ by replaing the subquiver

•
z

β // •
x

α // •
y

•
x′

α′

oo
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by the quiver
•z

β

��
•
x

•
y

αoo α′

// •
x′hene the laim follows by indution. On the other hand, if x′ is a onnetingarrow and α′ is not a free arrow, then R′ = (R\{αβ, α′β′})∪{αβ′, α′β} and

∆′ is obtained from ∆ by replaing the subquiver
•
z

β // •
x

α // •
y

•
x′

α′

oo •
z′

β′

ooby the quiver
•z

β

��@
@@

@@
@@

•z
′

β′

��~~
~~

~~
~

•
x

•
y

αoo α′

// •
x′hene the laim follows.(2.1.2.2.2) Assume that x′ is not a onneting vertex and there exists

β′ ∈ ∆1 with tβ′ = x′ and α′β′ ∈ R. Put z′ = sβ′. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the APR-re�etions at y and x′,then R′ = (R \ {αβ, α′β′}) ∪ {αβ′} and ∆′ is obtained from ∆ by replaingthe subquiver
•
z

β // •
x

α // •
y

•
x′

α′

oo •
z′

β′

ooby the quiver
•x

•
z

β // •
x′

α′

// •
y

α

OO

•
z′

β′

oohene the laim follows by indution.(2.2) Assume that there exists α′ ∈ ∆1 with sα′ = y and α′α ∈ R. Put
y′ = tα′.(2.2.1) Assume that x = tγ. Let β1 · · ·βn and γ1 · · · γm be the maximalpaths in ∆ terminating at x with β1 = β and γ1 = γ. Put u = sβn, u′

i = sβifor i ∈ [1, n − 1] and u′′
i = sγi for i ∈ [1, m − 1].(2.2.1.1) Assume that there exists i ∈ [1, m−1] suh that γiγi+1 ∈ R. Byshifting relations we may assume that γm−1γm ∈ R. Observe that βiβi+1 6∈ Rfor all i ∈ [1, n − 1]. If (∆′, R′) is the bound quiver obtained from (∆, R)by applying the HW-ore�etion at u followed by the omposition of theHW-ore�etion at u′

i and the APR-re�etion at u′
i for i = n−1, . . . , 1, then
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R′ = (R \ {γm−1γm, αβ}) ∪ {βnγ} and ∆′ is obtained from ∆ by replaingthe subquiver

•
u′′

m−1

•
u

γmoo βn // •
u′

n−1

· · · // •
u′

1

β1 // •
xby the quiver

•
u′′

m−1

γm // •
u′

n−1

· · · // •
u′

1

β1 // •
u

•
x

βnoo ,hene we redue the proof to (1).(2.2.1.2) Assume that γiγi+1 6∈ R for all i ∈ [1, m−1]. Let r be the numberof i ∈ [1, n − 1] suh that βiβi+1 ∈ R. By shifting relations we may assume
βiβi+1 ∈ R for all i ∈ [n − r, n − 1]. Put β0 = α. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the generalized APR-ore�etionsat u′

1, . . . , u
′
n−r−1, then R′ = (R \ {αβ})∪ {βn−r−1βn−r} and ∆′ is obtainedfrom ∆ by replaing the subquiver

•
u

βn // · · ·
β1 // •

x

β0 // •
yby the quiver

•
u

βn // · · ·
βn−r // •

x

βn−r−1// · · ·
β0 // •

y
.Let γ′

1 · · · γ
′
l be the maximal path in (∆′, R′) with γ′

l = α. Observe that l > 1implies that y is a onneting vertex. Put
u′ =

{
u′

n−1 if r ≥ 1,
x if r = 0, v′ = tγ′

1.Let (∆′′, R′′) be the bound quiver obtained from (∆′, R′) by applying theHW-ore�etion at u followed by the omposition of the HW-ore�etionat u′′
i and the APR-re�etion at u′′

i for i = m − 1, . . . , 1. If there exists
δ in ∆ with tδ = v′ and δ 6= γ′

1, then R′′ = (R′ \ {βn−1βn}) ∪ {γmδ},while R′′ = R′ \ {βn−1βn}, otherwise. Moreover, ∆′′ is obtained from ∆′ byreplaing the subquiver
•
u′

•
u

βnoo γm // •
u′′

m−1

γm−1 // · · ·
γ1 // •

x

βn−r−1// · · ·
β0 // •

y

γ′

l−1 // · · ·
γ′

1 // •
v′by the quiver

•
u′

βn // •
u′′

m−1

γm−1 // · · ·
γ1 // •

u
•
v′

γmoo · · ·
γ′

1oo •
y

γ′

l−1oo · · ·
β0oo •

x

βn−r−1oo ,and the laim follows (by indution if y is not a onneting vertex).(2.2.2) Assume that x = sγ. Put v = tγ.
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(2.2.2.1) Assume that there exists γ′ ∈ ∆1 with sγ′ = v and γ′γ ∈ R (byshifting relations we may assume that this ondition is satis�ed if ∆(1) is anoriented yle). Put v′ = tγ′. If (∆′, R′) is the bound quiver obtained from
(∆, R) by applying the generalized ore�etion at x followed, if y is not aonneting vertex, by the APR-ore�etion at y, then
R′ =

{
(R \ {α′α, αβ, γ′γ}) ∪ {γ′α, γβ, α′γ} if y is a onneting vertex,
(R \ {α′α, αβ, γ′γ}) ∪ {γβ, α′γ} otherwiseand ∆′ is obtained from ∆ by replaing the subquiver

•z

β

��
•
v′

•
v

γ′

oo •
x

γoo α // •
y

α′

// •
y′by the quiver

•v
′

•
y′

•
z

β // •
v

γ // •
x

α′

??~~~~~~~

γ′

__@@@@@@@
•
y

αooif y is a onneting vertex, and by
•
y′

•
v′

•
y

γ′

oo •
x

αoo

α′

OO

•
v

γoo •
z

βoootherwise, hene the laim again follows.(2.2.2.2) Assume that ∆(1) is not an oriented yle. Let γ1 · · · γn be themaximal path in ∆ with γn = γ. We may additionally assume that γiγi+1 6∈
R for all i ∈ [1, n − 1]. Consequently, we may redue the proof in this aseto (2.2.1) by applying APR-re�etions and shifts of relations.Step 6. If ∆ is speial , then we may assume that for eah j ∈ [1, 2], ∆(j)is an oriented yle or either the soure or the sink in ∆(j) is a onnetingvertex.Proof. If both ∆(1) and ∆(2) are oriented yles, then there is nothingto prove, so without loss of generality we may assume that ∆(1) is not anoriented yle. Observe that our assumptions imply that there are no on-neting arrows in ∆. Let x be the onneting vertex in ∆ and assume that
x is neither a soure nor a sink in ∆(1). Observe that x ∈ ∆

(1)
0 ∩∆

(2)
0 . Let α,

β, α′ and β′ be the arrows in ∆ with sα = tβ = x = sα′ = tβ′, α, β ∈ ∆
(1)
1 ,and α′, β′ ∈ ∆

(2)
1 . Put y = tα, y′ = tα′, z = sβ, and z′ = sβ′. By applying
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APR-ore�etions, shifts of relations and Lemma 1.2 we may assume that zis a soure in ∆(1).Assume �rst that α′ = β′. Then αβ ∈ R and α′β′ ∈ R. Let γ1 · · · γm bethe maximal path in ∆ starting at z with γm 6= β. Observe that γiγi+1 6∈ Rfor all i ∈ [1, m − 1]. Put vi = sγi for i ∈ [1, m − 1]. The bound quiveralgebra of the bound quiver obtained from (∆, R) by applying the APR-ore�etions at z, vm−1, . . . , v1 is easily seen to be tilting-otilting equivalentto Λ2(p, 1, m, r, 0) for some p ∈ N+ and r ∈ [0, p−1], hene the laim followsin this ase.Assume now that αβ ∈ R and α′β′ ∈ R, but α′ 6= β′. Let (∆′, R′) bethe bound quiver obtained from (∆, R) by applying the generalized APR-re�etion at x. If there exists β′′ ∈ ∆1 with tβ′′ = z′ and β′β′′ ∈ R, then
R′ = (R \ {αβ, α′β′, β′β′′}) ∪ {αβ′, α′β, ββ′′} and ∆′ is obtained from ∆ byreplaing the subquiver

•
y

•
y′

•
z

β // •
x

α
__@@@@@@@

α′

??~~~~~~~
•
z′

β′

oo •
z′′

β′′

ooby the quiver
•z
′′

β′′

��
•
y

•
z′

αoo •
x

β′

oo β // •
z

α′

// •
y′where z′′ = sβ′′. Otherwise, R′ = (R \ {αβ, α′β′}) ∪ {αβ′, α′β} and ∆′ isobtained from ∆ by replaing the subquiver

•
y

•
y′

•
z

β // •
x

α
__@@@@@@@

α′

??~~~~~~~
•
z′

β′

ooby the quiver
•
y

•
z′

αoo •
x

β′

oo β // •
z

α′

// •
y′

.In partiular, in both ases ∆′ proper.Assume �nally that αβ′ ∈ R and α′β ∈ R. Let γ be the arrow in ∆with sγ = z and γ 6= β. Put v = tγ. If there exists γ′ ∈ ∆1 with sγ′ = vand γ′γ ∈ R, then let (∆′, R′) be the bound quiver obtained from (∆, R) byapplying the APR-ore�etions at z and v, and let v′ = tγ′. Observe that
R′ = (R \ {α′β, γ′γ}) ∪ {γ′β} and ∆′ is obtained from ∆ by replaing the



GENTLE TWO-CYCLE ALGEBRAS 59

subquiver
•
v′

•
v

γ′

oo •
z

γoo β // •
x

α′

// •
y′by the quiver

•x

β

��
•
v′

•
z

γ′

oo γ // •
v

α′

// •
y′Otherwise, if (∆′, R′) is the bound quiver obtained from (∆, R) by applyingthe APR-ore�etion at z, then R′ = (R \ {α′β})∪{α′γ} and ∆′ is obtainedfrom ∆ by replaing the subquiver

•
v

•
z

γoo β // •
x

α′

// •
y′by the quiver

•
y′

•
v

γ // •
z

α′

OO

•
x

βooAgain in both ases ∆′ is proper and this �nishes the proof.Step 7. We may assume that (∆, R) is proper.Proof. If ∆(1) is not an oriented yle, then neither is ∆(2) and the laimfollows from Proposition 1.8; thus assume that ∆(1) (and onsequently also
∆(2)) is an oriented yle.Assume �rst that there are no onneting arrows in ∆ and let x bethe onneting vertex in ∆. Let α, β, α′ and β′ be the arrows in ∆ with
sα = tβ = x = sα′ = tβ′, α, β ∈ ∆

(1)
1 , and α′, β′ ∈ ∆

(2)
1 . If αβ ∈ Rand α′β′ ∈ R, then it follows by shifting relations that the bound quiveralgebra of (∆, R) is tilting-otilting equivalent to Λ2(p1, p2, 0, r1, r2) for some

p1, p2 ∈ N+, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1] suh that r1 + r2 ≥ 1. Onthe other hand, if αβ′ ∈ R and α′β ∈ R, then it follows by shifting relationsthat the bound quiver algebra of (∆, R) is tilting-otilting equivalent to
Λ1(p1, p2, 0, 0, r1) for some p1, p2 ∈ N+, p1, p2 ≥ 2, and r1 ∈ [1, p1 − 1].Now assume that there are onneting arrows in ∆. Reall that in thisase αβ ∈ R for all yle arrows α and β with sα = tβ. Let ∆(0) be theminimal subquiver of ∆ with the set of arrows onsisting of the onnetingarrows. Let x ∈ ∆

(1)
0 and y ∈ ∆

(2)
0 be the onneting verties. Observe that

∆(0) is a linear quiver. We show that we may assume that x is a uniquesink in ∆(0), y is a unique soure in ∆(0), and there are no α, β ∈ ∆
(0)
1 with
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sα = tβ and αβ ∈ R. This will immediately imply that the bound quiveralgebra of (∆, R) is tilting-otilting equivalent to Λ2(p1, p2, p3, p1−1, p2 −1)for some p1, p2, p3 ∈ N+.By repeating arguments from the proofs of Steps 3 and 4 and passing tothe opposite algebra if neessary, we may assume that

∆ = •
x

•
x1

α1oo •
xn−1

· · ·oo •
z

αnoo βm // •
ym−1

· · · // •
y1

β1 // •
yfor some n ∈ N+ and m ∈ N, and βiβi+1 6∈ R for all i ∈ [1, m − 1]. It isenough to show that we may additionally assume that αiαi+1 6∈ R for all

i ∈ [1, n − 1], sine then the laim follows from Lemma 1.5. Assume this isnot the ase. By shifting relations we may assume that α1α2 ∈ R.If |∆(1)
1 | = 1 and (∆′, R′) is the bound quiver obtained from (∆, R) by ap-plying the generalized APR-re�etion at x followed by the APR-re�etion at

x1, then R′ = R\{α1α2} and ∆′ = ∆. Otherwise, let γ, δ and δ′ be the arrowsin ∆(1) with sγ = x = tδ and tδ′ = sδ. Observe that our assumptions implythat γδ, δδ′ ∈ R. Put u = tγ, v = sδ and v′ = sδ′. If (∆′, R′) is the bound qui-ver obtained from (∆, R) by applying the generalized APR-re�etion at x fol-lowed by the APR-re�etion at v, then R′ = (R\{γδ, δδ′, α1α2})∪{γα1, α1δ
′}and ∆′ is obtained from ∆ by replaing the subquiver

•u

•
v′

δ′ // •
v

δ // •
x

γ

OO

•
x1

α1oo •
x2

α2ooby the quiver
•v
′

δ′

��
•
u

•
x1

γoo •
x

α1oo •
v

δoo •
x2

α2oowhere x2 = z if n = 2. Consequently, in both ases the laim follows byindution.We now investigate the ase when ∆ is proper. In this ase we maydivide the arrows in ∆ into three disjoint subsets ∆
(1)
1 , ∆

(2)
1 , ∆

(3)
1 in suha way that α, β ∈ ∆1 belong to the same subset if and only if the quiver

(∆0, ∆1 \ {α, β}) has a onneted omponent whih is a one-yle quiver.For j ∈ [1, 3] we denote by ∆(j) the minimal subquiver of ∆ with the set ofarrows ∆
(j)
1 . Observe that ∆(j) is a linear quiver. We divide the arrows in

∆(j) into disjoint subsets ∆
(j)
1,− and ∆

(j)
1,+ in suh a way that if α, β ∈ ∆

(j)
1 ,

α 6= β, are adjaent to the same vertex then they belong to the same subsetif and only if either sα = tβ or tα = sβ. For j ∈ [1, 3] and ε ∈ {−, +} we
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put
R(j)

ε = {αβ ∈ R | α, β ∈ ∆
(j)
1,ε}.Step 8. We may assume that either R

(j)
+ = ∅ or R

(j)
− = ∅ for eah

j ∈ [1, 3].Proof. Analogous to the proof of Step 3.Step 9. We may assume that either there is at most one sink in ∆(j) orthere is at most one soure in ∆(j), for eah j ∈ [1, 3].Proof. We prove the laim by indution on |R| and, for a �xed j, on
|∆

(j)
1 |. Fix j ∈ [1, 3] and assume that there is either a unique soure or aunique sink in ∆(l) for eah l ∈ [1, j − 1]. Let u and v be the onnetingverties in ∆, and let α and β be the arrows in ∆(j) adjaent to u and v,respetively. The laim follows by the arguments presented after Lemma 1.3,unless the following ondition (or its dual) is satis�ed: sα = u, tβ = v, thereexists α′ ∈ ∆1 with tα′ = u and αα′ ∈ R, and there exists β′ ∈ ∆1 with

sβ′ = v and β′β ∈ R. Assume the above ondition is satis�ed. Put x = sβand v′ = tβ′. If ∆(j) is not an equioriented linear quiver, then by applyingAPR-ore�etions, shifts of relations, and Lemma 1.2, we may assume thatthere exists γ ∈ ∆1 with γ 6= β and sγ = x. Put y = tγ.Assume there exists γ′ ∈ ∆1 with sγ′ = y and γ′γ ∈ R. Put y′ = tγ′.If (∆′, R′) is the bound quiver obtained from (∆, R) by applying the APR-ore�etions at x and y, then R′ = (R\{β′β, γ′γ})∪{γ′β} and ∆′ is obtainedfrom ∆ by replaing the subquiver
•
y′

•
y

γ′

oo •
x

γoo β // •
v

β′

// •
v′by the quiver

•v

β

��
•
y′

•
x

γ′

oo γ // •
y

β′

// •
v′In partiular, |R′| < |R|, hene the laim follows by indution in this ase.Otherwise, if (∆′, R′) is the bound quiver obtained from (∆, R) by ap-plying the APR-ore�etion at x, then R′ = (R \ {β′β}) ∪ {β′γ} and ∆′ isobtained from ∆ by replaing the subquiver

•
y

•
x

γoo β // •
v

β′

// •
v′
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by the quiver

•v

β

��
•
y

γ // •
x

β′

// •
v′Observe that if l ∈ [1, j − 1] and there is no δ ∈ ∆

(l)
1 with sδ = v and

δ 6= β′, then there is either a unique soure or a unique sink in ∆′(l). On theother hand, if there exists suh an arrow, then we may assume that there iseither a unique soure or a unique sink in ∆′(l), sine β is a free arrow in
(∆′, R′). In partiular, in both ases the laim follows again by indution,sine |∆

′(j)
1 | < |∆

(j)
1 |.Step 10. We may assume that if either sα = x = sβ or tα = x = tβfor a onneting vertex x, α ∈ ∆

(j1)
1,ε1

, and β ∈ ∆
(j2)
1,ε2

, with j1 6= j2 and
ε1, ε2 ∈ {−, +}, then either R

(j1)
ε1

= ∅ or R
(j2)
ε2

= ∅.Proof. Without loss of generality we may assume that sα = x = sβ. If
R

(j1)
ε1

6= ∅ or R
(j2)
ε2

6= ∅, then by shifting relations we may assume that thereexist arrows α′ and β′ in ∆ with sα′ = tα, sβ′ = tβ, and α′α, β′β ∈ R.Let γ be the arrow in ∆ with tγ = x. Without loss of generality we mayassume that αγ ∈ R and βγ 6∈ R. Put y′ = tα′, z′ = tβ′, and u = sγ. If
(∆′, R′) is the bound quiver obtained from (∆, R) by applying the generalizedAPR-ore�etions at x and y, then

R′ = R(\{α′α, β′β, αγ}) ∪ {α′β, βγ}and ∆′ is obtained from ∆ by replaing the subquiver
•u

γ

��
•
y′

•
y

α′

oo •
x

αoo β // •
z

β′

// •
z′by the quiver

•
y′

•
u

γ // •
z

β // •
x

α //

α′

OO

•
y

β′

// •
z′In partiular, |R′(j1)

ε1
| < |R

(j1)
ε1

| and |R
′(j2)
ε2

| < |R
(j2)
ε2

|, hene the laim followsby indution.Step 11. We may assume that there exists j ∈ [1, 3] suh that ∆(j) isequioriented.
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Proof. If the above ondition is not satis�ed, then without loss of gener-ality we may assume that
∆(1) = •

u
•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v ,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
y

•
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
v

β′

q2oo ,

∆(3) = •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
z

•
z′
1

γ′

1oo •
z′q3−1

· · ·oo •
v

γ′

q3oo ,for some p1, p2, p3, q1, q2, q3 ∈ N+. Moreover, we may assume that βp2
α1 ∈ R.Consequently, by shifting relations we may assume that βiβi+1 ∈ R for all

i ∈ [1, p2 − 1]. There are two ases to onsider.Assume �rst γiγi+1 6∈ R for all i ∈ [1, p3 − 1]. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the generalized APR-ore�etionat u followed by the omposition of the APR-ore�etion at yi and thegeneralized APR-ore�etion at u for i = p2 − 1, . . . , 1, then
R′=

{
(R \ {βp2

α1, β1β2}) ∪ {γp3
α1, βp2

γp3
} if p2 > 1,

(R \ {βp2
α1}) ∪ {γp3

α1} if p2 = 1,
∆′(1) = •

zp3−1
•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

,

∆′(2) = •
zp3−1

γp3 // •
yp2−1

βp2 // •
yp2−2

· · · // •
u

•
y

β1oo •
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
v

β′

q2oo ,
∆′(3) = •

zp3−1
· · · // •

z1

γ1 // •
z

•
z′
1

γ′

1oo •
z′q3−1

· · ·oo •
v

γ′

q3oo ,where zp3−1 = z if p3 = 1. Consequently, the laim follows by an easyindution.Assume now that there exists i ∈ [1, p3 − 1] suh that γiγi+1 ∈ R.Consequently, p2 = 1. Moreover, by shifting relations we may assume that
γp3−1γp3

∈ R. If (∆′, R′) is the bound quiver obtained from (∆, R) by ap-plying the generalized APR-ore�etion at u, then
R′ = (R \ {β1α1, γp3−1γp3

}) ∪ {γp3
α1, γp3−1β1},

∆′(1) = •
u

•
zp3−1

γp3oo •
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v
,

∆′(2) = •
u

•
y

β1oo •
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
u

β′

q2oo ,
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∆′(3) = •

u

γp3−1 // •
zp3−2

· · · // •
z

•
z′
1

γ′

1oo •
z′q3−1

· · ·oo •
u

γ′

q3oo ,

thus the laim follows.Step 12. We may assume that there is at most one j ∈ [1, 3] suh that
∆(j) is not equioriented.Proof. If the above ondition is not satis�ed, then without loss of gener-ality we may assume that

∆(1) = •
u

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
y

•
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
v

β′

q2oo ,

∆(3) = •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
v

,for some p1, p2, p3, q1, q2 ∈ N+. In this proof we will again number the ases.Up to symmetry, there are three main ases to onsider: either βp2
α1 ∈ Rand β′

q2
α′

1 ∈ R, or βp2
α1 ∈ R and β′

q2
γ1 ∈ R, or γp3

α1 ∈ R and β′
q2

γ1 ∈ R.(1) Assume βp2
α1 ∈ R and β′

q2
α′

1 ∈ R. In this ase we may apply thesame arguments as in the proof of the previous step. Note, however, thatif γiγi+1 6∈ R for all i ∈ [1, p3 − 1], then we obtain a gentle bound quiverwhose bound quiver algebra is tilting-otilting equivalent to Λ′
0(p, r) for some

p ∈ N+ and r ∈ [0, p − 1] aording to Proposition 1.8.(2) Assume that βp2
α1 ∈ R and β′

q2
γ1 ∈ R.(2.1) Assume that α′

iα
′
i+1 6∈ R for all i ∈ [1, q1 − 1] and β′

iβ
′
i+1 6∈ R forall i ∈ [1, q2 − 1]. By shifting the relation β′

q2
γ1 to the left we may assumethat q2 = 1.(2.1.1) Assume that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting therelation βp2

α1 to the left we may assume that p2 = 1. Consequently, the pathalgebra of the bound quiver obtained from (∆, R) by appliation of the APR-re�etions at y, v, x′
1, . . . , x

′
q1−1 is easily seen to be tilting-otilting equivalentto Λ2(p3 + 1, p1 + 1, q1, r3, r1), where r1 is the number of i ∈ [1, p1 − 1] suhthat αiαi+1 ∈ R and r3 is the number of i ∈ [1, p3 − 1] suh that γiγi+1 ∈ R.(2.1.2) Assume that there exists i ∈ [1, p2 − 1] suh that βiβi+1 ∈ R.By shifting relations we may assume that β1β2 ∈ R. If (∆′, R′) is thebound quiver obtained from (∆, R) by applying the APR-re�etions at

y, y1, v, x′
1, . . . , x

′
q1−1, then
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R′ = (R \ {β1β2, β
′
1γ1}) ∪ {α′

q1
β2},

∆′(1) = •
u

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo •
x′

q1−1

α′

q1oo ,

∆′(2) = •
u

· · · // •
y2

β2 // •
x′

q1−1

,

∆′(3) = •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
y1

β1 // •
y

•
v

β′

1oo •
x′

1

α′

1oo •· · ·oo
x′

q1−1

,
where x′

q1−1 = v if q1 = 1, hene the laim follows.(2.2) Assume that there exists i ∈ [1, q2 − 1] suh that β′
iβ

′
i+1 ∈ R. Byshifting relations we may assume that β′

1β
′
2 ∈ R. Moreover, this onditionimplies that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting the relation βp2

α1to the left we may assume p2 = 1. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the APR-re�etions at y and y′1, then
R′ = (R \ {β1α1, β

′
1β

′
2}) ∪ {β1β

′
2},

∆′(1) = •
y

•
y′

1

β′

1oo •
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v
,

∆′(2) = •
y

•
y′

2

β′

2oo •
v

· · ·oo ,

∆′(3) = •
y

β1 // •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
v ,hene the laim follows again.(2.3) Assume that β′

iβ
′
i+1 6∈ R for all i ∈ [1, q2 − 1] and there exists

i ∈ [1, q1−1] suh that α′
iα

′
i+1 ∈ R. Observe that in this ase αiαi+1 6∈ R forall i ∈ [1, p1 − 1], hene by shifting the relation βp2

α1 to the right we mayassume that p1 = 1. Similarly, γiγi+1 6∈ R for all i ∈ [1, p3 − 1].(2.3.1) Assume that there exists i ∈ [1, p2−1] suh that βiβi+1 ∈ R, thenby shifting relations we may assume that β1β2 ∈ R. Moreover, by shiftingthe relation β′
q2

γ1 to the left we may assume that q2 = 1. Additionally, byshifting relations we may assume that α′
1α

′
2 ∈ R. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the HW-re�etion at y followed bythe APR-ore�etion at y and the APR-re�etions at v, z1, . . . , zp3−1, then

R′ = (R \ {α′
1α

′
2, β1β2, β

′
1γ1}) ∪ {γp3

α′
2},

∆′(1) = •
u

•
x

α1oo · · · // •
x′

2

α′

2 // •
zp3−1

,
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∆′(2) = •

u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
y

•
x′

1

β′

1oo •
v

α′

1oo •
z1

γ1oo •
zp3−1

· · ·oo ,
∆′(3) = •

u
•

zp3−1

γp3oo ,where zp3−1 = v if p3 = 1. In partiular, we redue the proof to the situationdual either to (2.1) or to (2.2).(2.3.2) Assume that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting therelation β′
q2

γ1 to the right we may assume that p3 = 1. Additionally, byshifting relations we may assume that α′
q1−1α

′
q1

∈ R. The bound quiveralgebra of the bound quiver obtained from (∆, R) by applying the APR-ore�etions at x, x′
q1−1, u, x, x′

q1−1, yp2−1, . . . , y1 is easily seen to be tilting-otilting equivalent to Λ2(q2 +1, q1, p2 +1, 0, r′1 − 1), where r′1 is the numberof i ∈ [1, q1 − 1] suh that α′
iα

′
i+1 ∈ R.(3) Assume that γp3

α1 ∈ R and β′
q2

γ1 ∈ R.(3.1) Assume that there exists i ∈ [1, p2 − 1] suh that βiβi+1 ∈ R.By shifting relations we may assume that βp2−1βp2
∈ R. Sine in this ase

γiγi+1 6∈ R for all i ∈ [1, p3−1], we may assume, by shifting the relation γp3
α1to the left, that p3 = 1. Consequently, the bound quiver algebra of the boundquiver obtained from (∆, R) by applying the generalized APR-ore�etion at

u is tilting-otilting equivalent to Λ′
0(p, r) for some p ∈ N+ and r ∈ [0, p− 1]aording to Proposition 1.8.(3.2) Assume that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting relationswe may also assume that γiγi+1 ∈ R for all i ∈ [1, p3 − 1]. If (∆′, R′) is thebound quiver obtained from (∆, R) by applying the APR-ore�etion at ufollowed by the omposition of the APR-ore�etion at zi and the generalizedAPR-ore�etion at u for i = p3 − 1, . . . , 1, then

R′ =

{
(R \ {γp3

α1, γ1γ2, β
′
q2

γ1}) ∪ {βp2
α1, γp3

βp2
, β′

q2
γ2} if p3 > 1,

(R \ {γ1α1, β
′
q2

γ1}) ∪ {βp2
α1, β

′
q2

βp2
} if p3 = 1,

∆′(1) = •
yp2−1

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

γp3 // •
u
,

∆′(2) = •
yp2−1

· · · // •
y1

β1 // •
y

•
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
u

β′

q2oo ,

∆′(3) = •
yp2−1

βp2 // •
zp3−1

· · · // •
z1

γ2 // •
u ,where yp2−1 = y if p2 = 1. Consequently, the laim follows by indution.
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For p1, p2, p3 ∈ N+, p2 ≥ 2, r1 ∈ [0, p1 − 1], and r2 ∈ [1, p2 − 1], let
Λ′

2(p1, p2, p3, r1, r2) be the algebra of the quiver
• · · · // •

α1

��@
@@

@@
@@

•

αp1

??~~~~~~~

δp3

��

•

γp2

��

βoo

• ··· // •
δ1 // • •

γ1oo •···oobound by αiαi+1 for i ∈ [p1−r1, p1−1], αp1
β, βα1, γiγi+1 for i ∈ [1, r2]. Ob-serve that Λ′

2(p1, p2, p3, r1, r2) is tilting-otilting equivalent to Λ2(p2, p1+1,
p3, r2 − 1, r1 + 1). Indeed, it is enough to apply the HW-re�etion at xi fol-lowed by the APR-ore�etion at xi for i = 1, . . . , p3, where xi = tδi for
i ∈ [1, p3].Step 13. We may assume that ∆(j) is equioriented for eah j ∈ [1, 3].Proof. Suppose that there exists j ∈ [1, 3] suh that ∆(j) is not equiori-ented. Without loss of generality we may assume that

∆(1) = •
u

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
v ,

∆(3) = •
u

•
z1

γ1oo •
zp3−1

· · ·oo •
v

γp3oo ,for some p1, p2, p3, q1 ∈ N+. We may additionally assume that αi+1αi 6∈ Rfor all i ∈ [1, p1 − 1]. Let r′1 be the number of i ∈ [1, q1 − 1] suh that
α′

iα
′
i+1 ∈ R, let r2 be the number of i ∈ [1, p2 − 1] suh that βiβi+1 ∈ R, andlet r3 be the number of i ∈ [1, p3 − 1] suh that γiγi+1 ∈ R. Observe that bysymmetry we may assume that r′1 > 0 if γp3

α′
1 ∈ R and βp2

α1 6∈ R.Assume �rst that βp2
α1 ∈ R. In this ase by shifting the relation βp2

α1 tothe right we may assume that p1 = 1. Observe that either r′1 = 0 or r2 = 0.If r3 ≥ 1, then by shifting relations we may assume that γ1γ2 ∈ R. If
(∆′, R′) is the bound quiver obtained from (∆, R) by applying the generalizedAPR-re�etion at u, then

R′ = (R \ {βp2
α1, γ1γ2}) ∪ {α1γ2, βp2

γ1},

∆′(1) = •
u

α1 // •
x

α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v ,

∆′(2) = •
u

γ1 // •
z1

βp2 // •
yp2−1

· · · // •
y1

β1 // •
v ,
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∆′(3) = •

u
•
z2

γ2oo •
v

· · ·oo ,hene the laim follows in this ase.Assume now that r3 = 0. There are two additional possibilities in thisase. If γp3
α′

1 ∈ R, then r2 ≥ 1 (sine (∆, R) is a bound quiver). Conse-quently, r′1 = 0 and we have the situation symmetri to the previous one.On the other hand, if γp3
β1 ∈ R, then by shifting the relation γp3

β1 to theleft we may assume that p3 = 1. Consequently, if (∆′, R′) is the bound quiverobtained from (∆, R) by applying the generalized APR-re�etion at u, then
R′ = (R \ {βp2

α1, γ1β1}) ∪ {α1β1, βp2
γ1},

∆′(1) = •
u

α1 // •
x

α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v ,

∆′(2) = •
u

•
y1

β1oo •
yp2−1

· · ·oo •
v

βp2oo ,

∆′(3) = •
u

γ1 // •
v ,hene the laim follows.Assume now that βp2

γ1 ∈ R. If γp3
β1 ∈ R, then it follows easily that thebound quiver algebra of (∆, R) is tilting-otilting equivalent either to Λ2(p2+

p3 − r2 − 1, r2 + 1, q1, p1, r3)
op if r′1 = 0, or to Λ′

2(p2 + p3 − 1, q1, p1, r3, r
′
1)

opif r′1 ≥ 1. Sine Λ′
2(p2 + p3 − 1, q1, p1, r3, r

′
1) is tilting-otilting equivalent to

Λ2(q1, p2+p3, p1, r
′
1−1, r3+1), we may assume that γp3

α′
1 ∈ R. Consequently,by shifting relations we may assume that α′

iα
′
i+1 ∈ R for all i ∈ [1, q1 − 1].Reall that q1 > 1 in this ase. If (∆′, R′) is the bound quiver obtained from

(∆, R) by applying the APR-ore�etion at x followed by the omposition ofthe HW-ore�etion at x′
q1−1 and the APR-re�etion at x′

q1−1 applied q1 −1times, then
R′ = (R \ {α′

q1−1α
′
q1
}) ∪ {α′

q1−1αp1
},

∆′(1) =





•
u

•
x1

α1oo •
xp1−1

· · ·oo
αp1 // •

x

α′

q1−1 // •
x′

q1−2

· · · // •
v

if p1 > 1,
•
u

α1 // •
x

α′

q1−1 // •
x′

q1−2

· · · // •
v if p1 = 1,

∆′(2) = •
u

β1 // •
y1

· · · // •
yp2−1

βp2 // •
x′

q1−1

α′

q1 // •
v

,

∆′(3) = •
u

•
z1

γ1oo •
zp3−1

· · ·oo •
v

γp3oo ,thus the laim follows by indution.
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We may now prove Proposition 2.1. Aording to our onsiderations wemay assume that (∆, R) is proper, and
∆(1) = •

u
•
x1

α1oo •
xp1−1

· · ·oo •
v

αp1oo ,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
v

,

∆(3) = •
u

•
z1

γ1oo •
zp3−1

· · ·oo •
v

γp3oo ,for some p1, p2, p3 ∈ N+. Moreover, we may additionally assume that αiαi+1

6∈ R for all i ∈ [1, p1 − 1]. Let r2 be the number of i ∈ [1, p2 − 1] suh that
βiβi+1 ∈ R and let r3 be the number of i ∈ [1, p3 − 1] suh that γiγi+1 ∈ R.Observe that if either βp2

α1 ∈ R and γp3
β1 ∈ R, or βp2

γ1 ∈ R and
αp1

β1 ∈ R, then the laim follows from Proposition 1.16, thus we have toonsider two remaining ases.Assume �rst that βp2
α1 ∈ R and αp1

β1 ∈ R. In this ase by shiftingthe relation βp2
α1 to the right we may assume that p1 = 1. If r3 = 0,then the bound quiver algebra of (∆, R) is tilting-otilting equivalent to

Λ1(p2, 1, p3, 0, r2) (observe that r2 ≥ 1 sine (∆, R) is a bound quiver).On the other hand, if there exists i ∈ [1, p3 − 1] suh that γiγi+1 ∈ R,then by shifting relations we may assume that γ1γ2 ∈ R. Consequently,the bound quiver algebra of the bound quiver obtained from (∆, R) by ap-plying the generalized APR-re�etion at u is tilting-otilting equivalent to
Λ2(p2 + 1, p3, 0, r2 + 1, r3 − 1), and this �nishes the proof in this ase.Assume now that βp2

γ1 ∈ R and γp3
β1 ∈ R. In this ase it follows byshifting relations that the bound quiver algebra of (∆, R) is tilting-otiltingequivalent to Λ1(p2 + p3 − r3 − 1, r3 + 1, p1, 0, r2) (again r2 ≥ 1 sine (∆, R)is a bound quiver), and this �nishes the proof.3. Minimality of the list. In this setion we prove that di�erent alge-bras from the list in Theorem 1 are not derived equivalent. We also hek thatthe algebras listed in Theorem 1 are nondegenerate, while the algebras listedin Theorem 2 are degenerate. A tool used in order to distinguish betweenderived equivalene lasses of these algebras will be the derived invariantintrodued by Avella-Alaminos and Geiss in [7℄.Let (∆, R) be a gentle quiver. By a permitted thread in (∆, R) we meaneither a maximal path in (∆, R), or x ∈ ∆0 suh that there is at mostone arrow α with sα = x, there is at most one arrow β with tβ = x, and

αβ 6∈ R for all α, β ∈ ∆1 with sα = x = tβ. Similarly, we de�ne the notionof a forbidden thread in (∆, R). Namely, �rst we say that by an anti-pathin (∆, R) we mean a path α1 · · ·αn in ∆ suh that αiαi+1 ∈ R for all
i ∈ [1, n−1]. In partiular, every trivial path is an anti-path. By a forbidden
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thread we mean either a maximal anti-path in (∆, R), or x ∈ ∆0 suh thatthere is at most one arrow α with sα = x, there is at most one arrow β with
tβ = x, and αβ ∈ R for all α, β ∈ ∆1 with sα = x = tβ.By a harateristi sequene in a gentle bound quiver (∆, R) we mean asequene (σi, τi)i∈Z of permitted threads σi, i ∈ Z, and forbidden threads τi,
i ∈ Z, suh that for eah i ∈ Z the following onditions are satis�ed:(1) tτi = tσi and sσi+1 = sτi,(2) if σi = x = τi for x ∈ ∆0, then σi+1 6= x, unless ∆1 = ∅,(3) if τi = x = σi+1 for x ∈ ∆0, then τi+1 6= x, unless ∆1 = ∅,(4) if neither σi nor τi is a trivial path, then the terminating arrow of τidi�ers from the terminating arrow of σi,(5) if neither τi nor σi+1 is a trivial path, then the starting arrow of σi+1di�ers from the starting arrow of τi.We identify harateristi sequenes (σi, τi)i∈Z and (σ′

i, τ
′
i)i∈Z if there exists

l ∈ Z suh that σi = σ′
i+l and τi = τ ′

i+l for all i ∈ Z. By the type of theharateristi sequene (σi, τi)i∈Z we mean a pair (n, m) ∈ N×N de�ned by
n = min{l ∈ N+ | σl = σ0} and m =

∑
i∈[1,n] ℓ(τi). In the above situation wealso write (σ1, τ1, . . . , σn, τn) instead of (σi, τi)i∈Z. Additionally, we also alla sequene (αi)i∈Z of arrows in ∆ a harateristi sequene if sαi = tαi+1and αiαi+1 ∈ R for all i ∈ Z. Again we identify sequenes (αi)i∈Z and

(α′
i)i∈Z if there exists l ∈ Z suh that αi = α′

i+l for all i ∈ Z. The type ofa harateristi sequene (αi)i∈Z of the above type is by de�nition (0, m),where m = min{l ∈ N+ | αl = α0}. In the above situation we also write
α1 · · ·αm instead of (αi)i∈Z.If (∆, R) is a gentle bound quiver, then the funtion φ∆,R : N × N → N,where φ∆,R(n, m) is the number of the harateristi sequenes of type (n, m)for (n, m) ∈ N × N, is a derived invariant, i.e. if (∆, R) and (∆′, R′) arederived equivalent gentle bound quivers, then φ∆,R = φ∆′,R′ . If Λ is thebound quiver algebra of a gentle bound quiver (∆, R), then we also write φΛinstead of φ∆,R. We will write φ∆,R as a �multi-set� [(n1, m1), . . . , (nl, ml)],where (n, m) appears φ∆,R(n, m) times.We alulate the values of the above invariant for algebras appearing inTheorems 1 and 2, and this will �nish the proofs of these theorems. Theproof of the following lemma is left to the reader as an easy exerise.Lemma 3.1. We have the following.(1) If p ∈ N+ and r ∈ [0, p − 1], then

φΛ0(p,r) = [(p, p + 2)].(2) If p ∈ N+, then
φΛ′

0
(p,0) = [(p + 1, p + 3)].



GENTLE TWO-CYCLE ALGEBRAS 71

(3) If p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1−1] are suh that p2+p3 ≥ 2and r1 + p4 ≥ 1, then
φΛ1(p1,p2,p3,p4,r1) = [(p1−r1−1, p1+p2), (p2+p3−1, p3), (r1+p4, p4)].(4) If p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1], r2 ∈ [0, p2 − 1], are suh that
p3 + r1 + r2 ≥ 1, then
φΛ2(p1,p2,p3,r1,r2) = [(p1−r1−1, p1), (p2−r2−1, p2), (r1+r2 +p3, p3)].

REFERENCES[1℄ H. Asashiba, The derived equivalene lassi�ation of representation-�nite selfinjet-ive algebras, J. Algebra 214 (1999), 182�221.[2℄ I. Assem and D. Happel, Generalized tilted algebras of type An, Comm. Algebra 9(1981), 2101�2125.[3℄ I. Assem, D. Simson and A. Skowro«ski, Elements of the Representation Theory ofAssoiative Algebras 1: Tehniques of Representation Theory, London Math. So.Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.[4℄ I. Assem and A. Skowro«ski, Iterated tilted algebras of type Ãn, Math. Z. 195 (1987),269�290.[5℄ �, �, Algebras with yle-�nite derived ategories, Math. Ann. 280 (1988), 441�463.[6℄ M. Auslander, M. I. Platzek and I. Reiten, Coxeter funtors without diagrams,Trans. Amer. Math. So. 250 (1979), 1�46.[7℄ D. Avella-Alaminos and Ch. Geiss, Combinatorial derived invariants for gentle al-gebras, J. Pure Appl. Algebra 212 (2008), 228�243.[8℄ M. Barot and H. Lenzing, One-point extensions and derived equivalene, J. Algebra264 (2003), 1�5.[9℄ J. Biaªkowski, T. Holm and A. Skowro«ski, Derived equivalenes for tame weaklysymmetri algebras having only periodi modules, J. Algebra 269 (2003), 652�668.[10℄ G. Bobi«ski, Ch. Geiss and A. Skowro«ski, Classi�ation of disrete derived ate-gories, Cent. Eur. J. Math. 2 (2004), 19�49.[11℄ R. Boian, T. Holm and A. Skowro«ski, Derived equivalene lassi�ation of one-parametri self-injetive algebras, J. Pure Appl. Algebra 207 (2006), 491�536.[12℄ K. Bongartz, Tilted algebras, in: M. Auslander and E. Lluis (eds.), Representationsof Algebras (Puebla, 1980), Leture Notes in Math. 903, Springer, Berlin, 1981,26�38.[13℄ S. Brenner and M. C. R. Butler, Generalizations of the Bernstein�Gel'fand�Pono-marev re�etion funtors, in: V. Dlab and P. Gabriel (eds.), Representation TheoryII (Ottawa, 1979), Leture Notes in Math. 832, Springer, Berlin, 1980, 103�169.[14℄ T. Brüstle, Derived-tame tree algebras, Compos. Math. 129 (2001), 301�323.[15℄ Ch. Geiss, Derived tame algebras and Euler-forms, Math. Z. 239 (2002), 829�862,with an appendix by the author and B. Keller.[16℄ D. Happel, On the derived ategory of a �nite-dimensional algebra, Comment. Math.Helv. 62 (1987), 339�389.[17℄ �, Triangulated Categories in the Representation Theory of Finite-DimensionalAlgebras, London Math. So. Leture Note Ser. 119, Cambridge Univ. Press, Cam-bridge, 1988.[18℄ �, Auslander�Reiten triangles in derived ategories of �nite-dimensional algebras,Pro. Amer. Math. So. 112 (1991), 641�648.



72 G. BOBI�SKI AND P. MALICKI
[19℄ D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. So. 274 (1982),399�443.[20℄ T. Holm, Derived equivalene lassi�ation of algebras of dihedral, semidihedral, andquaternion type, J. Algebra 211 (1999), 159�205.[21℄ D. Hughes and J. Washbüsh, Trivial extensions of tilted algebras, Pro. LondonMath. So. (3) 46 (1983), 347�364.[22℄ B. Keller, Deriving DG ategories, Ann. Si. Éole Norm. Sup. (4) 27 (1994), 63�102.[23℄ Z. Pogorzaªy and A. Skowro«ski, Self-injetive biserial standard algebras, J. Algebra138 (1991), 491�504.[24℄ J. Rikard,Morita theory for derived ategories, J. London Math. So. (2) 39 (1989),436�456.[25℄ �, Derived ategories and stable equivalene, J. Pure Appl. Algebra 61 (1989),303�317.[26℄ J. Shröer and A. Zimmermann, Stable endomorphism algebras of modules overspeial biserial algebras, Math. Z. 244 (2003), 515�530.[27℄ A. Skowro«ski and J. Washbüsh, Representation-�nite biserial algebras, J. ReineAngew. Math. 345 (1983), 172�181.[28℄ H. Tahikawa and T. Wakamatsu, Appliations of re�etion funtors for self-inje-tive algebras, in: V. Dlab, P. Gabriel and G. Mihler (eds.), Representation Theory,I (Ottawa, 1984), Leture Notes in Math. 1177, Springer, Berlin, 1986, 308�327.[29℄ J.-L. Verdier, Catégories dérivées, in: P. Deligne (ed.), Cohomologie Étale, LetureNotes in Math. 569, Springer, Berlin, 1977, 262�311.[30℄ D. Vossiek, The algebras with disrete derived ategory, J. Algebra 243 (2001),168�176.Faulty of Mathematis and Computer SieneNiolaus Copernius UniversityChopina 12/1887-100 Toru«, PolandE-mail: gregbob�mat.uni.torun.plpmaliki�mat.uni.torun.plReeived 16 May 2007;revised 9 July 2007 (4923)


