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BIPARTITE COALGEBRAS AND A REDUCTION FUNCTOR
FOR CORADICAL SQUARE COMPLETE COALGEBRAS

BY

JUSTYNA KOSAKOWSKA and DANIEL SIMSON (Torun)

Abstract. Let C be a coalgebra over an arbitrary field K. We show that the study
of the category C-Comod of left C-comodules reduces to the study of the category of
(co)representations of a certain bicomodule, in case C is a bipartite coalgebra or a coradi-
cal square complete coalgebra, that is, C' = C1, the second term of the coradical filtration
of C. If C = (1, we associate with C' a K-linear functor H¢ : C-Comod — Hc-Comod
that restricts to a representation equivalence Hc : C-comod — Hc-comodg,,, where Hc is
a coradical square complete hereditary bipartite K-coalgebra such that every simple Hc-
comodule is injective or projective. Here Hco-comodys,, is the full subcategory of Hco-comod
whose objects are finite-dimensional Hc-comodules with projective socle having no injec-

tive summands of the form [S(Oi,)} (see Theorem 5.11). Hence, we conclude that a coal-

gebra C with C' = ( is left pure semisimple if and only if H¢ is left pure semisimple.
In Section 6 we get a diagrammatic characterisation of coradical square complete coalge-
bras C that are left pure semisimple. Tameness and wildness of such coalgebras C' is also
discussed.

1. Introduction. Throughout this paper we fix an arbitrary field K
and we use the coalgebra representation theory notation and terminology
introduced in [14], [29]-[35]. The reader is referred to [1], [2], [12], [27], [37],
and [38] for the representation theory terminology and notation, and to
[16], [39] for the coalgebra and comodule terminology. In particular, given
a finite-dimensional K-algebra R, we denote by mod(R) the category of all
finite-dimensional R-modules.

Let C be a K-coalgebra with comultiplication A and counit . We recall
that a left C'-comodule is a K-vector space X together with a K-linear map
0x : X — C'® X such that (A ®idx)5x = (idc & 5)()(5_)( and (E ®idx)5x
is the canonical isomorphism X = K ® X, where ® = Q. Given a left
C-comodule X, we denote by Xg = soc X the socle of X, that is, the sum
of all simple C-subcomodules of X.
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A K-linear map f : X — Y between two left C-comodules X and Y is a
C-comodule homomorphism if oy f = (idc ® f)dx. The K-vector space of all
C-comodule homomorphisms from X to Y is denoted by Hom¢(X,Y). The
K-algebra of all C-comodule endomorphisms of X is denoted by End¢ X.

We denote by C-Comod the category of all left C-comodules, and by
C-comod the full subcategory of C-Comod formed by C-comodules of finite
K-dimension.

We recall that a K-coalgebra C is semisimple (resp. hereditary) if
Ext& (M, N) =0 (resp. ExtZ (M, N) = 0) for all M and N in C-Comod, or
equivalently, if M = soc M for all M in C-Comod (resp. if epimorphic im-
ages of injective C-comodules are injective C-comodules). A K-coalgebra C'
is said to be indecomposable (or connected) if C'is not a product of two sub-
coalgebras, or equivalently, if C-Comod is not a direct sum of two non-trivial
subcategories.

Given a coalgebra C, we denote by Cy C C; C --- C C the coradical
filtration of C, where Cy = soc ¢C (or equivalently, the sum of all simple
subcoalgebras of C), C1 = Cy A Cp is the wedge of two copies of Cp, and
Cm+1 = Co ANCy, for m > 1.

We call C' basic if there is a decomposition soc cC' = D¢, S(j) such
that {S(j); j € Ic} is a complete set of pairwise non-isomorphic simple left
C-comodules (see [4], [6], [26] and [29]).

One of the aims of this paper is to study the comodule categories and the
valued Gabriel quiver of the following class of coalgebras that are topologi-
cally dual (see [29]) to the class of (Jacobson) radical square zero algebras.

DEFINITION 1.1. A K-coalgebra C'is defined to be coradical square com-
plete if C = C1 = Cy A Cy.

Following an idea of Gabriel [10] (see also [2, Section X.2]), we reduce the
study of C-comodules over any coradical square complete coalgebra C' to the
study of comodules over a coradical square complete hereditary coalgebra
H¢ which is a bipartite coalgebra in the sense of Definition 2.0 below. More-
over, every simple subcomodule of H¢ is projective or injective. This is one
of the motivations for our investigations in this paper, because the represen-
tation theory of hereditary coalgebras is well understood by a reduction to
the study of nilpotent representations of quivers or K-species (see [14], [20],
[29]-[35]), and therefore we get an efficient tool for the study of C-comod.

We recall from [1], [2], [10], [12], [15], [27], [37], and [38] that triangu-
lar matrix algebras play an important role in the representation theory of
finite-dimensional algebras. In particular, we know from [10] and [2, Sec-
tion X.2] that the representation theory of radical square zero algebras of
finite K-dimension reduces to the representation theory of hereditary trian-
gular matrix algebras. In Section 2 we follow this idea and, in analogy to
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triangular matrix algebras and bipartite rings [27, Section 17.4], we intro-
duce a concept of a bipartite K-coalgebra

H/ H’UH”
H: [O H//

where (H', A')¢’) and (H", A" ") are K-coalgebras and /Uy is a H'-
H"-bicomodule, that is, gUp» is a left H'-comodule (U, é;,: U — H'®U)
equipped with a right H”-comodule structure given by a right H”-comodule
homomorphism 07, : U — U ® H”, which is a homomorphism of left H'-
comodules. Moreover, given H as above, we define an equivalence of cate-
gories between H-Comod and the category Reps (g Upr) of (co)representa-
tions of gUgr.

Y

In Section 4, following Gabriel [10], with each coradical square complete
coalgebra C' we associate a coradical square complete hereditary bipartite
K-coalgebra Heo and a K-linear functor

(1.2) He : C-Comod — He-Comod.

We prove in Theorem 5.11 that H¢ is full, carries injectives to injectives,
does not vanish on non-zero comodules, but vanishes on the C-comodule
homomorphisms f : X — Y such that f(soc X) = 0. Moreover, H¢ restricts
to a representation equivalence of categories (i.e. it is full, dense, and reflects
isomorphisms, see [27], [28], and [38])

(1.3) He : C-comod — Heg-comodg,,

where Hc—comod;p is the full subcategory of Ho-comod whose objects are
the finite-dimensional Hc-comodules with projective socle having no injec-
tive summands of the form [* (oil)] (see Theorem 5.11). It follows that C' is
left pure semisimple if and only if H¢ is. Hence, by applying [14], [20] and
[29], we get in Section 6 a diagrammatic characterisation of coradical square
complete coalgebras C that are left pure semisimple.

Following an idea of trivial extension algebra (see [2] and [13]), and
in connection with the reduction functor (1.2), we study in Section 4 the
trivial extension coalgebra D x pUp (see (4.8)) of a given coalgebra D by
a D-D-bicomodule pUp, the repetitive coalgebra R(D, pUp) (see (4.15)),
and the covering functor (see (4.17))

fv : %(D,DUD)—COInOd — (D X DUD)—COmOd
induced by the canonical coalgebra surjection
f : %(D,DUD) — D x DUD-

Also we complete the results given in [3], [14], [17], [32], and [41] by pre-
senting three alternative descriptions of the left valued Gabriel quiver of a
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given basic coalgebra

C =P Ela),

a€lc

with indecomposable left coideals E(a), a € Ic. The descriptions are given
by the Fy-Fp-bimodule isomorphisms (see (3.6)),

(1.4)  Hompg, (Exts(S(a), S(b)), Fy) o Irrc(E(b), E(a)) o~ o(C1/Co)p,

where S(j) = soc E(j) and Fj; = End¢S(j) for j € Ic.

Throughout this paper, by a quiver we mean a pair @ = (Qo, Q1), where
Qo is the set of vertices of @) and Q)1 is the set of arrows of Q). By a valued
quiver we mean a pair (Q,d), where @ is a quiver such that each arrow
B € @1 is equipped with a pair ( ’ﬂ, dg) of positive integers; we visualise
as the valued arrow

(d,dj3)
a ————b.

! 1 : : : (d,ﬂ’dg)
If dﬁ = djg =1, then we simply write a — b instead of a ——b.

By a valued quiver dual to (Q,d) we mean the valued quiver (Q°,d°),

(d.d3)

where Qf = Qo and, for each valued arrow a 2% bin (Q,d), we define

(df3,dj3)
the unique valued arrow 3° in (Q°,d°) to be b 2

Let X be a right C-comodule and Y be a left C-comodule. We recall
from [9] that the cotensor product X 0Y is the K-vector space

(1.5) X OY = Ker(X @ Yy XEW XN v o 0 gy,
It is known that X 0OC =2 X, COY 2Y, the functors
X0O-:C-Comod wmodK and —0OY :Comod-C — modK

are left exact, commute with arbitrary direct sums, and there is a functorial
isomorphism
X O0Y = Home (Y™, X)

for any X in Comod-C and any Y in C-comod, where Y* = Homg (Y, K)
is equipped with the K-dual right C-comodule structure (see [8] and [39]).

2. Bipartite coalgebras and representations of bicomodules. In
this section we introduce a concept of a bipartite coalgebra (see (2.1)) in
an analogy with the notion of a (generalised) triangular matrix algebra (see
[1, Appendix 2.7], [27], and [38, Section VX.1]). We prove that, for a bipar-
tite coalgebra H, the category H-Comod is equivalent to the category of
(co)representations of the bicomodule defining H.

Bipartite coalgebras. In analogy with [1, Appendix 2.7], [27, Section
17.4], and [38, Section VX.1], we introduce the following definition.
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DEFINITION 2.0. Let H' and H” be K-coalgebras, and let p/Ug» be
a non-zero H'-H"-bicomodule. We associate with gUpy» the bipartite K-
coalgebra

!
(2.1) H= [H U

O H//

consisting of all formal matrices h = [%/ iﬁ,], where ' € H', " € H"” and

u € U. We make the following identification:
H/®Hl H/®U HI®HII
(2.2) HoH=|U®H UU U®H"
H/l ® Hl H// ® U Hl/ ® H//
The comultiplication A : H — H ® H of H and the counit ¢ : H — K of H
are defined by the following formulae:

A(h) = A'(R) + A"(R") + 6 (w) + 67 (u)

AR) Sy(uw) 0
(2.3) =1 0 0 & |,
0 O A//(h//)

e(h) =€'(h') +"(h").
It is easy to check that H is a K-coalgebra, the K-subspaces

Hl Hl 0 U 0 /U 1"
(2.4) = and = e
0 0 0

H/l 0 Hl/
of H are left coideals and, under the above identification, the left H-comod-
ule i H has a direct sum decomposition

H'  gUgn H'

0 H/l
Moreover, the canonical projection 7 : H — H'@® H", defined by the formula

ﬂ[%/ ,fb‘,,] = (h',h"), is a K-coalgebra homomorphism and induces a faithful

K-linear embedding

U

(25) Hl/

(2.6) 7°: H-Comod — (H' & H")-Comod
associating to each left H-comodule (X,0x) the left (H "@® H")-comodule
(X,0x) with comultiplication 6y = (7 ® idx)odx : X — (H' ® H") ® X.

Denote by g : H — H' and wyr» : H — H” the obv10us projections.

Representations of bicomodules. In analogy with [1, Appendix 2.7] and
[38, Section VX.1], we introduce the following definition.
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DEFINITION 2.7. Let H' and H” be K-coalgebras. Given an H'-H"-
bicomodule g/Upn, we define the category Repy(g:Upr) of left (co)repre-
sentations of gUgr as follows.

(a) The objects of Repy(g:Upr) are triples (X', X", ), where X' is a
left H'-comodule, X" is a left H”-comodule and ¢ : X’ — UOX" is
a homomorphism of left H’-comodules.

(b) A morphism from (X', X" ¢) to (Y',Y" %) in Repg(gUpgr) is a
pair (f’, f"), where f' € Hompy: (X', Y"), f” € Hompg/(X",Y") and
(idy O f")¢ = ¥ f'. The composition of morphisms in Rep (g Upgn)
is componentwise.

(¢) The representation (X', X", ¢) is called finite-dimensional if the co-
modules X’ and X" are of finite K-dimension.

(d) We denote by repy(gy:Ugr) the full subcategory of Repy(g/Upr)
formed by the finite-dimensional representations.

It is clear that Repg (zUpr) and repy (g:Upgr) are abelian K-categories.
We show below that there is an equivalence of categories H-Comod =
Repy (g'Upr). For this, we define a pair of K-linear functors

(]
(28) H-Comod = RepD (H’ UHN)
"2

as follows.

The functor ¢. Before we define the functor @ (see (2.11)), we need a
preparation. Given a left H-comodule (X, dx), we decompose the K-vector
space X as X = X' @ X", where
(2.9) X' =0MH' ® X) and X" =47 (H" @ X).

It is easy to see that X' = (X', 6y = (SX)‘X/) and X" = (X" dxn =
(EX)‘ x) are a left H'-comodule and a left H”-comodule, respectively. We
denote by ¢ : X — U ® X" the composite K-linear map

Ty QT x 11
—

XX HeXx Ue X",

where m; : H — U is the canonical projection defined by FU[%, ,;%,] = u,
and 7y~ : X — X" is the obvious projection.

LEMMA 2.10. If ¢ : X — U ® X" is the map defined above then Im ¢ C
UoXx”.

Proof. Note that the diagram

Sx Ty ®id id@m 51/

X H®X U X U X"

lsx lid@éx lid@éx lid@gxu
ARid 7Ty ®id®id Q™ g1 QT 511

HX ————HRHRX ————UQHX ——UQH'9 X"
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is commutative. Indeed, by the definition of SX, the right square commutes.
Moreover, (id ® dx)dx = (A ® id)dx, because X is a left H-comodule.
The commutativity of this diagram yields
(ld & SX”)SZ = (7TU & TH! & WX”)(A X ld)(SX
Since the definition (2.3) of A yields (ry @ mg»)A = §;my, we obtain

(id ® dx)@ = (1 @ mn @ mxn)(A @ id)dx = (7 ® Tpn) A @ wxn)dx
= ( ZTFU ® mxn)0x = (55 ® id)(my @ wxn)dx = ( g ® id)p.
Hence, the required inclusion Im@ C U 0 X" follows. =

Denote by ¢ : X’ — U ® X" the composite K-linear map

TU QT X1
T

XXX HeX U X'

By Lemma 2.10, we have Im ¢ C U OX” C U ® X”. Now we show that ¢
is a homomorphism of left H’-comodules. Put ixs : X’ — X and note that
( /U ®id)p = ( /U ® id)(my @ mxn)dxixr = (5{]7TU ® id)(id @ mx»)dxixs

= ((ﬂ'H/ ® 7TU)A ® ld)(ld ® 7TX//)($XiX/

= ((7TH/ X 7TU) X ld)(ld ®id ® Fxl/)(A X ld)(SX’LX/

=((rpg @ mpy) ®id)(id ® id @ mx»)(id ® dx)dxixs

= (7TH/ ® (5)5)(7;)(/ = (id & QZ)(WH/ &® id)5xiX/ = (id ® ©)ix/,
that is, ¢ is a homomorphism of left H’-comodules.

To define the functor @, we denote by px : X’ — U 0O X" the unique
factorisation of ¢ through the embedding U0 X"” C U ® X”. It follows that
¢x is a homomorphism of left H'-comodules and therefore (X', X" px) is
an object of the category Repg(g/Ugr). We set
(2.11) P(X)= (X", X" ox).

Let f: X — Y be a homomorphism of left H-comodules, and let X =
X' @&X"Y =Y @&Y” be the decompositions defined by (2.9), where
X', Y’ are left H'-comodules and X", Y are left H”-comodules. It is easy
to see that f(X') C Y and f(X") C Y”. Then the restrictions f/x+ and
fix» induce K-linear maps f’: X’ — Y’ and f” : X" — Y", respectively.
A straightforward calculation shows that f’ and f” are homomorphisms of
left H'-comodules and H”-comodules, respectively, such that the diagram

X/ & U O X//
fll lldU®f”
Y/ A U O Yl/

in H'-Comod is commutative, that is, (f/, f”) : (X', X", ox) — Y, Y" 0y)
is a morphism in the category Repy (z'Up). We define @(f) : &(X) — @(Y)
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by setting @(f) = (f’, f”). It is clear that we have defined a K-linear, faithful
and exact functor ¢ : H-Comod — Repg (g2Ugr).

EXAMPLE 2.12. Let H be a bipartite algebra of the form (2.1). Con-
sider the left H-comodules [%/] and [ HUN ] To illustrate the definition of @,
we compute the representations @ ([#']) and &([ Y, ]). By (2.3) and (2.9),
we get @([H']) = (H',0,0) and @([ Y, ]) = (U, H", ¢). By the above con-
siderations and the definition of @, ¢ = §;; defines the right H”-comodule
structure on U.

The functor ¥. The functor ¥ in (2.8) is defined by setting, for each
object (X', X" ) in Repy(g:Ugn),

(2.13) U(X' X" p)=(X,0x),

where X = X' ® X" and 6x : X — H ® X is the K-linear map defined by

(') p(a) c H @ X' pUgr @ X"
0 53/(//(x//) 0 H' @ X"

Here we make the following identification of K-vector spaces:

Sx (2, 2") = CH®X.

H’ UH”

H// ® (X/ @ X//)

H/
H®X:[
0

H/®<X/@XH) H’UH”®<X/@XH)
0 H' @ (X' & X")
Now, we show that (X,dx) is a left H-comodule. The definition of dx
yields
8% (! !
(i ® 3x) 0 bx (2, 2") = (idy @ bx) o | X'\ T) P
0 53,(// (l'”)

_ [dy @ 6x)d () (idi © 6x)p(a) ]
0 (idg @ dx)0%, (2")

(i ® 80 (@), (A @ 985 (du @ F)p@) |

0 (idHN X & ,,)(53,(,,(33”)
Since X’ is a left H'-comodule and X" is a left H”-comodule, and ¢ is
a homomorphism of H’-comodules with Im ¢ C U 0 X", it follows that

(A ® idx/) 8% (2"), (6 @ idxr)p(z') (7 @ idxr)p(z)
0 (AH” X idx//)é’)’(” (x/l)
(') p(a)

and our claim is proved.

= (AH®idx)O ] :(AH®idx)O5x(£L',,l‘”),
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We define ¥ (f’, f") : (X', X", ) — ¥(Y',Y" 4) to be the homomor-
phism of left H-comodules given by f = f'& f/ : X' o X" - Y @ Y".
We show that if (f/,f") : (X, X", ¢) — (Y',Y" 1) is a morphism in
Repg(gUpr) then f = ffo f" + X' & X" — Y' @ Y" defines a ho-
momorphism of left H-comodules between ¥(X', X" ) = (X,dx) and
(YY" ) = (Y,dy). Indeed, given 2/ € X’ and 2" € X", we get

S f1(@)  W(f(2)) ]
0 59” f//(x”)
(idm ® f)0 () (idy ® f")pla’) ]
0 (idp @ f7)8% (2")
= (ldH ® f) o 6X(:LJ> :L'”)a

and therefore f is a homomorphism of left H-comodules.
It is clear that we have defined a K-linear, faithful and exact functor

¥ : Repy (g'Upr) — H-Comod.

A straightforward computation shows that ¥ is quasi-inverse to ¢ and vice
versa. Consequently, we get the following useful result.

Oy o f(a',2") = dy o (f'(), f"(2")) =

THEOREM 2.14. Let H' and H"” be K-coalgebras, g:Ugn a non-zero
H'-H"-bicomodule, and H the bipartite K-coalgebra (2.1). The K-linear
functors @ and ¥ in (2.8) are K-linear equivalences of categories quasi-
inverse to each other and they restrict to K-linear equivalences of categories

/

@
(2.15) H-comod f repy (g Ugr).

By applying the equivalences (2.8) and (2.15), we are able to prove the
following properties of the bipartite coalgebra H.

THEOREM 2.16. Let H' and H" be basic K -coalgebras with the decom-
positions soc H' = D, S'(j") and soc H" = DBjrer,,, S"(4") into direct
sums of simple left comodules (and simple coalgebras). Let g:Upn be a non-
zero H'-H"-bicomodule and H the bipartite K -coalgebra (2.1).

(a) The coalgebra H is basic and

soc H' 0 soc H' 0
socgH = = ®
0 soc H" 0 soc H"

= P sihe P sy,

J'ely Jelyn

where S(j") = [S/gj/)] if i € Iy, and S(j") = [S//?j//)] if 7 € Ign,
in the notation (2.4) and (2.5).
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(b) For each j' € Iy, the left H-comodule E(j') = [E/((]j,)] is the H-
injective envelope of S(j'), where E'(j') is the H'-injective envelope

of §'(j')-
(¢) The left H-comodule | Y, ] in (2.5) is injective and has a decompo-

sition
- D D B

t"elyn t"elyn

where E"(t") is the H"-injective envelope of S"(t"), Uy = U O
E"(t") is viewed as a left H'-subcomodule of gUpgn and

U
H//

U
H//

H’ Ut”
E// (t//)

H' Ut”

E(t”) - E" (t")

is the H-injective envelope of S(t").
(d) max{gl.dim H’,gl.dim H"} < gl.dim H < gl.dim H' + gl.dim H"” + 1.
(e) If H and H" are semisimple then
(1) H =Dy, 5'(") and H' = D¢y, 5" (3") are direct sums
of coalgebras and the H'-H" -bicomodule U has a K -vector
space decomposition

(2.16) g Ugn = @ @ s Uy,

s'€ly t" el g
where U = S'(s") Ogr Ugr 08" (t") is viewed as an S'(s)-
S"(t")-bicomodule (and H'-H"-bicomodule, in a natural way).
(e2) H is coradical square complete and every simple left H-comod-
ule S is projective or injective.

(e3) gl.dim H = 1.

Proof. (a) Since H' and H” are basic, by the definition (2.3) of the
comultiplication in H, S(j') and S(j”) are simple subcoalgebras of H for all
j' € Iy and j” € Ign, and [SOCOH/ SOCOH,,] C soc H.

To prove the opposite inclusion, we take a simple left subcomodule S
of H. In view of Theorem 2.14, we identify the category H-Comod with
Repy (g Upr) via the functor @ in (2.11). Then S has the form S= (5", 5", )
and (0,5”,0) is a left subcomodule of S. Hence, if S’ # 0, then S” =0 and
S = (5,0,0) is a simple left H'-comodule, and we are done; otherwise,
S'=0,58"+#0,and S = (0,5”,0) is a simple left H”-comodule. This proves
the required equality [SOCOH ' SOCOH,,] =soc H.

(b) Since E’(j') is the H'-injective envelope of S’(j'), it follows that E’(j")
is a direct summand of H' and soc E'(j') = S’(j'). Hence, E(j') = [E/(()j/)]
is a direct summand of [#'] C H (and of H), and soc E(j') = S(j'). This
means that E(j') is the H-injective envelope of S(j').
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(c) We have the decompositions

wH = @ E'(s) and peH'= @ E"(t")
s'€lgy t"elyn
into direct sums of indecomposable injective left comodules. The decompo-
sition of H” yields the decomposition

H’U = H/UDH” = H/UEI @ E”(t//) = @ H/UDE”(t”) = @ H’Ut”

t'elyn t'elyn t'elyn

of U, viewed as a left H'-comodule, where /Uy = U O E"(t") is viewed
as a left H'-comodule. We set E(t") = (g:Upr, E"(t"),id). Tt is clear that
Drcr,,, E(t")y=[4/] € H, and hence E(t") is an injective left H-comod-
ule, as a direct summand of yH. Since soc E(t”) = S(t") we conclude that
E(t") is the H-injective envelope of S(t").

(d) Each left H-comodule X is a triple X = (X', X", px) (see (2.11)).
In particular, we get (cf. Example 2.12):

. [}IJ,,] = (U, H", ), where 6f; : pU — U OH" is the canonical
isomorphism,

S@i") = (S'(i"),0,0) for i’ € Iy,

E@") = (E'(i),0,0) for i' € Iy,

S(t") = (0,58"(t"),0) for t" € Iyn,

E(t”) = (H/Ut//,E”(t//),id) for ¢ S IH//7 where id : H’Ut” — H/U g
E" (") is the identity map.

We recall that gl.dim H < n if and only if inj.dim .S < n for each simple
left H-comodule S (see [18]). By (a), the comodules S(i") with i’ € Iy, and
S(3") with j” € Ign, form a complete set of pairwise non-isomorphic simple
left H-comodules.

Given i’ € I'ys, we fix a minimal injective resolution

0—S(G')—> o - 1E — =, F — -

in H'-Comod of the simple left H'-comodule S’(i’). Then the induced se-
quence

0— S@') — (0F',0,0) — (1E',0,0) = -+ — (,,E',0,0) — - -
in H-Comod = Repy(m/Ugr) is a minimal injective resolution of the left
H-comodule (S(i’),0,0). It follows that inj.dim gS(i") = inj.dim g S’(i") for
each i’ € Iy, and so gl.dim H > gl.dim H’.

Now fix ¢ € I'yn. By (c), there is a non-split exact sequence
0—St") - E{t") — Lo(t") - 0

in H-Comod = Rep (g:Ugr), where

Lo(t") = (g:Upr, Ly (t"), @) and L3 (") = E"(#")/S"(").
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Let
0_>L,0/(t”) _>]_E,/_>2E”_)"'_)mE”_)"‘

be a minimal injective resolution of L{(¢”) in H”-Comod. If ,,, E” # 0 for all
m > 1, then gl.dim H” = oo and the induced exact sequence

0 — Lo(t") — (U D1 E" 1 E" 1h) — - — (UDmE", mE" mh) — -
in H-Comod = Repy (g Upgr), with ,,h =id : UO,,E" — U O,E" for
m>1, is a minimal injective resolution of Ly(¢"). Hence inj.dim z.S(¢") =00,
and we are done.

Assume that ,,,_1E” # 0 and ,,, E” = 0 for some m > 1. Then the induced
sequence

0 - LO(t”) - <U O lElla lE”7 lh) —_ (U O m—lE”7 m—lE”7 m—lh)
— (mNN,0,0) — 0,
with jh=1id: UO;E" — U O,;E" for j > 1, is exact. If ,,, N = 0 then

inj.dim yS(t") =m — 1 =1 + inj.dim g~ L{(t") = inj.dim g~ S" (t").
Assume that ,, [N # 0. Let

O_>mN_’mEl_>m+1El_>"'_>m+rE/_>"'
be a minimal injective resolution of ,, N in H'-Comod. Then the induced
sequence
0— (mN,0,0) - (mE/,0,0) o (erTE/vaO) o
is a minimal injective resolution of (,,, NV, 0,0) in H-Comod. Therefore

inj.dim g»S” (t") + gl.dim H' + 1 > inj.dim g S(¢") > inj.dim g»S" (t")
and (d) follows.

(e) Assume that the basic coalgebras H' and H” are semisimple. Then
we have decompositions H' = Dy, S'(s") and H" = Dircr,, S”(t") into
direct sums of simple coalgebras. By (c), the semisimple decomposition of
H" yields the decomposition

H/U >~ H’UDH” = @ H/Ut//
t”EIH//

of U, viewed as a left H'-comodule, where g/Upr = U DS” (") is viewed as
an H'-S”(t")-bicomodule. We note that E”(t") = S”(t") is a subcoalgebra
of H”. Similarly, the semisimple decomposition of H’ yields the H'-H"-
bicomodule decomposition

wUpr = g H OUpn = @ §'(s') OUnn = @ @ s Urr,
s'€lyy s'elyrt’elyn
where ¢Upr = S'(s') 00U = S'(s)OU OS" (") is viewed as an S’(s')-S" (t")-
bicomodule, and hence as an H’-H"-bicomodule. This proves (el).
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By (c), the left H-comodule [ FZI],,] is injective and has the decomposition

“I- @ P B,

"
H t'elyn t'elyn

H' Ut"
Sl/ (t”)

where /Uy = U 0 S”(t") is viewed as a left H'-subcomodule of p/Upn
and

aU
H//

Uy
S// (t//)
is the injective envelope of S(t”). Because (a) yields soc H = soc H' @soc H”,
the above considerations imply that (soc H) A (soc H) = H, that is, H is
coradical square complete. The remaining statement of (e2) is easily seen by
applying the identification H-Comod = Repy (g Upgr).

By (d), gl.dim H < 1, because the coalgebras H' and H" are semisimple.
Since U # 0, we have soc H = soc H' @soc H” & H and hence gl.dim H > 1.
This completes the proof of (e3) and of the theorem. =

E(t”) —

3. The valued Gabriel quiver of a bipartite coalgebra and of
a coradical square complete coalgebra. Let C' be a basic coalgebra
with a fixed left comodule decomposition

soccC = @ S(1),
i€l
of the left socle where S(i), for i € I, are pairwise non-isomorphic simple
left C-comodules (and simple subcoalgebras).
We recall that the left valued (Gabriel) quiver of C' is the valued quiver
(cQ, cd), where ¢Qo = Ic and, given two vertices i,j € ¢Qo, there exists
a unique valued arrow

; (cd}j.cdl)
_

in ¢Q; if and only if Ext/(S(i), S(j)) # 0 and
odj; = dAimExte(S(i), S()ry  od; = dim g Exté(S(6), S(4)),
where F, = EndcS(a) for any a € I¢ (see [14, Definition 4.3]).

Now we recall from [14, Proposition 4.10] and [32] an equivalent definition
of the left valued Gabriel quiver (¢Q, cd) of a basic coalgebra C' by means
of irreducible morphisms.

Assume that C' is a basic coalgebra with a fixed left comodule decom-
position of soc ¢C' as above. Given a € I, we denote by E(a) the injective
envelope of S(a). Denote by C-inj the full subcategory of C-Comod formed
by socle-finite injective C-comodules, that is, a comodule E lies in C-inj
if and only if F is isomorphic to a finite direct sum of indecomposable
injective C-comodules. Given E’ and E” in C-inj, we define the radical
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of Hom¢ (E', E”) to be the K-subspace rad(E’, E”) = radc-inj(E’, E") of
Hom¢ (E’, E") generated by all non-isomorphisms ¢ : E(i) — E(j) between
indecomposable summands E(i) of E' and E(j) of E”, respectively. The
square rad?(E’, E") is defined to be the K-subspace of rad(E’, E") gener-
ated by all composite homomorphisms of the form
QR T )

where j € I, f; € rad(E', E(j)) and f}' € rad(E(j), E”). For any a,b € Ic,
we set F,, = End¢S(a), Fy, = EndeS(b) and we consider the K-vector space

(3.1) Irrc(E(b), E(a)) = rad(E(b), E(a))/ rad?(E(b), E(a))

as an Fy-Fj-bimodule. We call it the bimodule of irreducible morphisms (see
[14], [30] and [32]).
By [14, Proposition 4.7] and [32, Theorem 2.3|, there exists a unique

dl ,d//
valued arrow ¢ — ) bin (¢@,cd) if and only if the F,-Fp-bimodule
Irr(E(b), E(a)) is non-zero and

(3.2) 'y = dimIrrc (E(b), E(a))F,, " =dim g, Irrc (E(b), E(a)).

The following proposition gives a description of the left valued Gabriel
quiver of a coalgebra C' in terms of the Cy-Cy-bicomodule

(33) o (C1/Co)cy = €D o(C1/Co),

abelc
where the S(a)-S(b)-bicomodule ,(C1/Cp)p = S(a)O(C1/Co)DS(b) is viewed
as a rational Fy,-Fp-bimodule. To see this we note that, in the notation of
the proof of Proposition 3.5 below, there is an F,-Fp-bimodule isomorphism
a(C1/Co)p = ep(C1/Ch)eq (see (3.6”) and cf. [3], [17], and [41]).

To formulate the result, we assume that C' is a basic coalgebra with a
decomposition of soc ¢C as above. Given a € I¢, we denote by E(a) 2 Fi(a)
the injective envelope of S(a) in C-Comod and C;-Comod, respectively.
Now, for a,b € I¢, we define an F,-Fp-bimodule homomorphism
(3.4) Irre(E(b), E(a)) — Trre, (E1(b), E1(a))
by associating to any non-isomorphism f : E(b) — E(a) its restriction
resqp(f) + E1(b) — Ei(a) to E1(b).

Now we complete [3], [14, Proposition 4.10], [17, Theorem 1.7] and [32,
Theorem 2.5] as follows.

PRrROPOSITION 3.5. Let C be a basic K-coalgebra with o left comodule
decomposition soc cC = P S(i) as above, and let C1 = Cy A Cy.

(a) Given a,b € I¢, the Fo-Fy-bimodule homomorphism resgy, in (3.4) is
an isomorphism.

i€l
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(b) For any a,b € I¢, there exist F,-Fy-bimodule isomorphisms

(36)  Homp, (Bxtt(S(a), S(b), Fa) = Tric(B(b), B(a)) = o(C1/Coly.

d ,d”
(c) There exists a unique valued arrow a M b in the left val-
ued Gabriel quiver (cQ,cd) of C' if and only if the Fy-Fy-bimodule
a(C1/Co)p = S(a) O(C1/Cp) O S(b) is non-zero and

(3.7) o = dim(a(C1/Co)p)F,s  dgy = dim £, (a(C1/Co)s)-
(d) The left Gabriel quiver ¢, Q coincides with ¢ Q.

Proof. (a) To show that resy, is bijective, we note that, given a non-
isomorphism f : E(b) — E(a), the restriction res.,(f) : E1(b) — Ei(a) is
obviously a non-isomorphism. Conversely, if g : Ej(b) — Ej(a) is a non-
isomorphism of Cj-comodules then, by the injectivity of E(a), g uniquely
extends to a non-isomorphism f : E(b) — E(a) such that res,,(f) = g. This
shows that (3.4) is bijective.

(b) The left-hand isomorphism in (3.6) is established in [14, Proposition
4.10]. To prove the right-hand one, we keep the notation of the proof of [14,
Proposition 4.10]. Fix a,b € I¢ and denote by eg, € the primitive idempo-
tents in the pseudocompact K-algebra C* = Homg (C, K) that correspond
to the direct summands F(a)* and E(b)* of C*. Let J(C*) be the Jacobson
radical of C*. We recall that the functor M +— M™* defines a K-linear du-
ality C-Comod = C*-PC, where C*-PC is the category of pseudocompact
left C*-modules (see [29, 4.5]). Moreover, by [16, Proposition 5.2.9] there
are isomorphisms J(C*)/J(C*)? = Ci/Cf = (C1/Cp)* of pseudocompact
C*-bimodules.

By [14, p. 480], the equivalence C-Comod = (C*-PC)°P, M +— M*,
induces isomorphisms

(3.6) Trra(Eq1(b), Ei(a)) = (eaJ(C*)/J(C*)?]ey)° = (ea[(C1/Co)*les)°
ep((C1/Co)")%ea = ep(C1/Co)ea = o(C1/Co)p

of F,-Fy-bimodules. The final isomorphism is the inverse of the following
composite one:

~

(3.6")  a(C1/Co)y = S(a) O (C1/Co) T S(b)
= Homg, (S(a)*, (C1/Cy) O S(b))
= Homgo (S(a) HOHICO ,Cl/C()))

= HOIHCO (S(a) ,65(01/00)) = eb(C’l/C’o)ea.

Note also that, since the pseudocompact left C*-modules S(a)* = (Cp)*eq
and S(b)* = (Cp)*ep are finite-dimensional, they are discrete (= rational),
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and therefore they are viewed as left C-comodules. Moreover, there are al-
gebra isomorphisms S(a)* = e,(Co)*e, = Fi*, S(b)* = e,(Co)*ep = F,P,
and Fy-Fp-bimodule isomorphisms

a(C1/Co)p = S(a)T(C1/Cp)TS(b) = Che, O(C1/Ch) OepCo = ep(C1/Ch)eq.

(c) Apply (a), (b) and (3.2).
(d) Apply (a) and (3.4). =

COROLLARY 3.8. Let C be a basic K-coalgebra. Then the left valued and
right valued Gabriel quivers of C are dual to each other.

Proof. 1t is well-known that there is a K-duality D : C-inj — inj-C
between the categories of socle finite injective left C-comodules and so-
cle finite injective right C-comodules (see [5, Proposition 3.1(c)]). Given
an indecomposable E(a) in C-inj, we denote by E’(a) the indecomposable
DE(a) in inj-C. Obviously, the socle S’'(a) of E’(a) is isomorphic to the
right C-comodule S(a)*. Since, for any a,b € I¢, there are division ring
isomorphisms

F! = EndcS'(a) = (EndgS(a))P = FOP,

F} = End¢S'(b) = (EndeS(b))°P = F,P,
the FJ-F,-bimodule Irr(E’(a), E'(b)) is viewed as an Fg-Fj-bimodule in a
standard way. Moreover, the functor D induces an isomorphism
Irr(E(b), E(a)) = Irr(E'(a), E'(b)) of F,-Fy-bimodules. Hence, in view of
Proposition 3.5 and [32, Theorem 2.3], the corollary follows. =

We end this section by a description of the Gabriel quiver of an arbitrary
bipartite coalgebra.

COROLLARY 3.9. Let H' and H" be basic K-coalgebras, Uyr a non-
zero H'-H" -bicomodule, and H the bipartite K -coalgebra (2.1). In the nota-
tion of Theorem 2.16 we have:

(a) H is basic and the Gabriel quiver (gQ, pd) has the form [15]

(3.10) (#Q, ud) = (1 Q, rd) Wy (1 Q, grd),
that is, (g @, gd) is obtained from the disjoint union of (g/Q, grd)
and (g @, grd) by adding, for each s’ € Qo = Iy and each t" €
g Qo = Iyn, the valued arrow

’ (d;’t”’dg’t”) t”
v Ssv

(3.11)
from s" to t", provided that ¢Up # 0, and d,,, = dim(yUp)F,,
dyy = dimp, (¢Up). Here the S'(s")-S"(t")-bicomodule ¢Up =
S' (s oU oS"(t") is viewed as a (rational) Fy-Fyr-bimodule, in
view of the division algebra isomorphisms EndgS” (t") = Fyr and
EndyS'(s") = Fy.
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(b) If H' and H" are semisimple then (g Q, g'd) and (g»Q, grd) have
no arrow, and the only arrows in (gQ, gd) are of the form (3.11),
where s' €Iy and t" € Iyn. If H' and H" are simple and g:Upgn #0,
then H is indecomposable and (@, pd) has the form e 4 for
some natural numbers d' and d”.
Proof. Given b € Iy = Iy U Iyn, we set E(b) = E(b)/S(b). Since E(b)
is an injective H-comodule, there is an isomorphism
Extj;(S(a), S(b)) = Hompu(S(a), E(b))
of right EndgS(a)-modules for each a € Iy = Iy U Ign (see [14, p. 477)).
Since H' and H" are basic, so is H, by Theorem 2.16(a). We recall from
Theorem 2.16 that, given j' € Iy and j” € Ig», we have

() = [S'ff')], a) = V],
S(j") = [S,,fj,,)], B(t') = g,/féif) !

in the notation of Theorem 2.16 and (2.5). Hence, for s’ € Iy and t” € I'yn,

/

Uy E (5/)
—

E' (") 0
It follows that Ext} (S(a), S(b)) = 0if a € Ig» and b € Iy. Moreover, there
are isomorphisms of Endy S(b)-End g S(a)-bimodules
Exty (S(a), S(b))
Homp (5'(a), E (b)) = Exth, (9(a), (b)) ifa,b € Iy,
=~ $ Hompn (5" (a), E" (b)) = ExtL, (8"(a), 8" (b)) if a,b € Iy,
HOHIH/(S,((I),H/UI)) = Up ifaely,be lyn
(see [14, p. 480] and [41, Proposition 4.9]). Hence, (a) follows. Since (b)
easily follows from (a), the proof is complete.
Following a suggestion of the referee we include another proof of (a). Let
H be a bipartite coalgebra as in the corollary. We consider U = p(soc g U)
N (socUgr)gr and we view it as an H'-H"-bicomodule. Note that, for all
a € Iy and b € Igr, there are isomorphisms of S(a)-S(b)-bicomodules

S(a) OgU I:IH//S(b) = S(a) DH(/)U DH(/)/S(Z)) = S(a) DH(/)U DH(/)/S(b) = an.
By a straightforward calculation we show that Hy; = HoAHy = H] U @ HY,
and hence Hy/Hy = H|/H)® U ® H/Hl/. Note also that H* = H* @ U* @

H"* is the upper triangular matrix algebra with the identity element ey =
ZaeIH/ eiz—i_ZbeIHn eg, where e;- [%’ }?/] — eg(h’) and eg. [i(z)’ h%] — eg(h//)'

E(t") = and E(s') =
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We also recall from [16] that
e—~h=eh=(1®e)oAy(h) and h+—e=he=(e®1)o Ag(h).

Hence, for a,a € Iy and b,b € Iyn we get

o o(Hi/Ho)a = eg(H1/Ho)e, = ez (Hi/Hp)e, = o(H]/Hp)as

o o(Hi/Ho), = € (H1/Ho)e, = ey (Hi/Hp)ey = o(Hi/Hp)p,

o »(H1/Ho)a = €;(H1/Ho)ey =0,

o o(H1/Ho)y = e (H1/Ho)ey = ej (H{ /Hp)ey = v(HY /Hp)p.-
Now (a) follows by applying Proposition 3.5. =

4. Loop representations and trivial extensions of coalgebras.
Let D be a K-coalgebra and pUp be a D-D-bicomodule. We recall that the
cotensor D-coalgebra on U is the positively graded K-vector space

41)  T3U)=PUuT =DeveUaUe---aU" ...,
n=0
where U?” = D, U2 = U and U”" = U O---0U (n times) for n > 2,
equipped with the K-coalgebra structure defined as follows (see [10], [19]
and [41] for details).
The counit ¢ : T5(U) — K of TS(U) vanishes on U™" for all n > 1, and
e|lp : D — K is the counit of D. Under the identification

T(U) @ Tp(U) = P U7 @ U™",

n,m>0

for each n > 0 the component A, ;; : U™t — UP @ UY of the comul-
tiplication of TH(U) is zero if i + j # n. If i +j = n and 4,5 > 1, then
Ay i is the inclusion; if either ¢ = 0 or j = 0, then A, ; ; is induced by the
comultiplication on U (or on D if i = j = 0).

Following [10] and [41], we define the category RepS(pUp) of locally
nilpotent loop (co)representations of the D-D-bicomodule pUp to be the
category of all pairs (Y, u), where Y is a left D-comodule and p: Y — UOY
is a homomorphism of left D-comodules such that

(4.2) Y = JKer(u: Y - U¥" @),
n=1

where (™ : Y — U®" ® Y is the composite

43) YUyl ps gy .. Ly gy LB pet gy

and ¢/ 1 Y — U ® Y is the composite Y - U DY — U ® Y. The left
D-comodule structure on U OY is induced from that of U.
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A morphism from (Y, ) to (Z,v) in RepS(pUp) is a homomorphism
f:Y — Z of left D-comodules such that v o f = (idy O f) o p. It is clear
that Rep®(pUp) is a Grothendieck K-category and its full subcategory
rep®(pUp), consisting of all pairs (Y, 1) with Y finite-dimensional, is abelian
and consists of objects of finite length.

THEOREM 4.4. Let D be a K-coalgebra, pUp a D-D-bicomodule, and
Tp(U) the cotensor D-coalgebra.

(a) socTp(U) =socD. As a consequence, T(U) is basic if and only if
D is basic.
(b) There is a K-linear equivalence of categories

(4.4) O : TS(U)-Comod — RepS(pUp),
which restricts to an equivalence O : ThH(U)-comod 5 rep® (pUp).

(c) If D is semisimple, then TR (U) is hereditary and, given i € Ip, the
vector subspace

E@) =S30)® (SG)nU)® (SG)oUuol)a---
of TH(U) is the injective envelope of S(i).

Proof. For the proof of (a) the reader is referred to [41, Lemma 4.4].

(b) The equivalence (4.5) is proved in [41, Lemma 4.3]. Here, for the
convenience of the reader, we recall the definition of . Since the canonical
projection 7 : Tp(U) — D is a coalgebra homomorphism, every left T (U)-
comodule Y is a D-comodule via 7. The functor © is defined by associating
with (Y,dy) in T (U)-Comod the pair

(4.6) oY, dy) = (Y, ),

where Y is the underlying D-comodule and ¢’ : Y — UDY is the composition
of 6y : Y — T (U)OY with the canonical D-comodule projection Tp(U) O
Y -UOY.If f:(Y,0y) — (Z,0z) is a homomorphism in T (U)-Comod,
we take for O(f) : (Y,¢') — (Z,0’) the morphism defined by f : ¥ —
Z in D-Comod. By [41, Lemma 4.3], the functor © is an equivalence of

categories and obviously it restricts to an equivalence @ : T (U)-comod =

reps (pUp).

(c) Assume that D is semisimple. To prove the second part of (c¢), note
that there is a decomposition pU = D 0 pU = ;¢ (S(i) O pU) and, for
any ¢ € Ip, E(i) is a left subcomodule direct summand of TH(U); hence
E(i) is injective. Since obviously soc E(i) = S(i), it follows that E(i) is the
injective envelope of S(i).

To show that Tp(U) is hereditary, it is enough to prove inj.dim 70 (U)S
D

< 1 for each simple ThH(U)-comodule S(i) (see [18]). Consider the exact
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sequence
0— S(i) — E(i) — E(i) — 0

of left T5(U)-comodules, where E(i) = E(i)/S(i). It follows that there are

isomorphisms of left TH(U)-comodules

E(@i) = (S¢H)oU) & (Si)ovuol) & (S@HoualUol) -
~ [S(i) @ (S(E)oU) @ (SGE)oUoU)a (SG)oUoUol)&®---|oU
> FE()oU.

Since E(i) OU is injective (see [8, Proposition 1]), so is E(i). This shows
that TH(U) is hereditary. m

COROLLARY 4.7. Assume that Hi and H" are K -coalgebras and gUgn
is an H'-H"-bicomodule. Let H = [h(; H’UH”] be the bipartite coalgebra (2.1)

H//
and let D= H' & H".

(a) The H'-H"-bicomodule structure on gUgr defines a D-D-bicomod-
ule structure on U such that pU O pUp = 0, TB(U) =D ® pUp,
and [%’ ht,b,] — (R, 1", u) defines an isomorphism H = Tp(U) of
coalgebras.

(b) There are K-linear equivalences of categories
H-Comod % Rep, (Un») — RepS(pUp) % Tp(U)-Comod

J J J J

H-comod % repg (g Ugrr) =, rep®(pUp) % Tp(U)-comod
where @ and @ are the equivalences (2.11) and (4.5), respectively.

Proof. (a) The first part of (a) is obvious. The equality pU O pUp = 0
follows immediately from the definition of the cotensor product, because of
the definition of the right coaction of H' on pUp and the left coaction of
H" on pUp. Now the remaining part of (a) easily follows.

(b) By (a), the coalgebras H and Tp(U) are isomorphic. Hence we get
H-Comod = T (U)-Comod. Since, according to Theorems 2.14 and 4.4, the
functors @ and © are K-linear equivalences of categories, they imply the

equivalence Repg (5 Upr) — RepS(pUp) required in (b). m

Let us now introduce the notion of trivial extension of a coalgebra.

DEFINITION 4.8. Let D be a K-coalgebra and pUp a D-D-bicomodule.
The trivial extension of D by pUp is the coalgebra D x pUp = (D@U, A, ),
where A(d,u) = (Ap(d),d;;(u), 07 (uw),0) and e(d,u) = (ep(d),0) for all
d € D and u € U. Here we make the identification (D ®U) @ (D@ U) =
(DeD)e(DeU)s (U D)a U o U).
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Note that the K-linear map (d,u) — [g 3] defines an isomorphism

DU
d D
DxpUp=| \ | = “.depueulc|P pUp
0 d 0 D
0 D

DU
of vector spaces. However, unless U = 0, { \ ] is not a subcoalgebra of the
0D

bipartite coalgebra [][:)) DgD].

We denote by Rep(E,Q) (pUp) the full subcategory of RepS(pUp) whose
objects are the pairs (Y, u) such that p(2 = 0.

To describe the left valued Gabriel quiver of the trivial extension coal-
gebra D x pUp, we define

(4.9) (p@, pd) #v (pQ, pd)

to be the quiver obtained from the valued quiver (p@, pd) By (p@, pd)
(see (3.10)) of the bipartite coalgebra []3 DgD] by the identification of the
left copy of (p@, pd) in (p@, pd) Wy (pQ, pd) with the right one, via the
identification of the vertex s’ with s” and the arrow s’ — t' with s” — ¢”,
for all s,t € pQo = Ip. This operation is illustrated in Example 4.13 below.

Now we list some of the main properties of the coalgebra C = D x pUp.

ProPOSITION 4.10. Let C = D x pUp be the trivial extension of a
K-coalgebra D by a D-D-bicomodule pUp.

(a) C is isomorphic to the subcoalgebra D & pUp of Tp(U), D = D x 0
is a subcoalgebra of C = Dx pUp, socC =soc D, and C; = D1 Uy,
where Uy = soc pU NsocUp. If D is semisimple then C s coradical
square complete.

(b) If C is basic then the left valued Gabriel quiver (¢Q,cd) has the
form

(cQ,cd) = (pQ, pd) #v (pQ, pd).

(¢) The canonical coalgebra embedding C' — Tp(U) induces an embed-
ding C-Comod C Tp(U)-Comod and the equivalence © of (4.5) re-
stricts to a K-linear equivalence of categories

(4.11) 6 : C-Comod = Rep? (pUp) € RepS(pUp).
(d) The K-linear map 6 : [g DgD] — D xp Up, given by the formula
[%’ dif,] — (d' +d",u), is a coalgebra surjection. If

(4.12) 04 : C-Comod —

D pU,
[ b¥b -Comod
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is the composite K -linear functor

D pUp

C-Comod % Rep(DQ)(DUD) C Repy(pUp) = [0 -Comod

then ©4 s a full, faithful, and exact embedding such that, for each
Y in C-Comod, O, (Y) = (Y,u:Y — UOY) and u? = 0.

Proof. (a) It is easy to see that the canonical inclusion C' = D x pUp —
Tp(U) is a coalgebra embedding and defines a coalgebra isomorphism of
C with the D-subcoalgebra D & pUp of TH(U) consisting of the sums of
elements of degree 0 and 1 (see (4.1)). Hence the first part of (a) easily
follows.

Now we show that C7 = D@ Uy, where Uy = soc pU Nsoc Up. We recall
that 1 = A™}(Cy ® C ® C ® Cp) and Cy = Dy @ 0. Then Definition 4.8
yields

A(d)=Ap(d)e D@ D forde D
A(u) = (6 (u),6f(w) e D UaU @D forueU.
Hence C1 = D1 @ U;. The final part of (a) follows from the previous one.

(b) We apply Proposition 3.5. By (a), C1/Cy = (D1/Dy) @ Uy. Let
H = [ﬁ) DgD] be the bipartite coalgebra and

Hy = [130 =P sihe @ sy,

DD j'elp j'"elp

Note that H; = [%1 gll] and Co = @ ,ep, S(a) = D ep, S(a). It follows
from the definition that

{a;a€lIp}t and {d;d €lIp}u{d’;d’ € Ip}

are the sets of vertices of the left valued Gabriel quivers of C' and H, re-
spectively. To describe the set of arrows of the quiver (¢Q, ¢d), given a pair
a,b € Ip = I, we consider the vector space

a(Cl/CO)b = S(a) O (01/00) O S(b)
> (S(a) 0(D1/Do) D S()) @ (S(a) DU, OS(B)).
By the definition of comultiplication in C' and H, we have
o(D1/Dg)y = S(a) O (D1/Do) 0 S(b) = S(a’) O (D1/Dy) 0 S(V)
=~ S(a”)O(D1/Do)aS") = o (D1/Do)yr,

and
S(a)oU;0S(b) = S(@)oU; oS@®").

Hence, by applying Proposition 3.5, we get (b).
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(c) Note that the canonical coalgebra embedding
D x pUp :D@DUD‘—)TB(U)

induces an embedding D x pUp-Comod C T (U)-Comod. By applying the
definitions, it is easy to check that the equivalence

© : (D x pUp)-Comod - Repg(DUD)

(see (4.5)) restricts to the required K-linear equivalence of categories (4.11).

(d) The first statement follows by a direct calculation, and the second
follows easily from the definitions. =

EXAMPLE 4.13. Let C = K”Q be the hereditary path coalgebra of the
infinite linear quiver

Q:1-2—--->5s5—-1—>s—>s+1—---

and let H = [g Cgc] be the bipartite coalgebra (2.1), where we set H' =
H" = C and ¢Uc = ¢C¢. Here ¢C¢ is viewed as a C-C-bicomodule in
the obvious way. It follows from Corollary 3.9 that the left Gabriel quiver

of H has the form

!9 — 2 — . (s=-1) — & — (s+1) — .-
| | | | |
" — 22— (=1 — ¥ — (s+1) — .

By Proposition 4.10, the left Gabriel quiver of D x pUp has the form

SRR T P

s—1 S s+1

Q

By applying the results in [31] and [33], one can show that there is a
coalgebra isomorphism H = K"Ig, where I is viewed as a poset and K" I
is its incidence coalgebra. Hence, H-comod = K" Ip-comod is equivalent to
the category repg(Ig) of finite-dimensional K-linear representations of the
poset Ig.

Now, following [36] and [13], we define the repetitive coalgebra and its
connection with the trivial extension coalgebra (4.8).

DEFINITION 4.14. Let (D, Ap,ep) be a coalgebra and U= (pUp, d;;, 0(;)
be a D-D-bicomodule.

(a) The repetitive coalgebra of the pair (D, pUp) is the Z-graded K-
vector space
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(4.15) R(D, pUp) = D™ e U™)
meZ

..00..DpUp O O 0 00 ..
..00..0 D pUp O 0 00 ..

..00..0 0 D pUp O 00 ..
..00..0 0 0 D pUp0O ..

with D™ = D and U™ = pUp in the mth row, for all m € Z,
equipped with the coalgebra structure maps

A:R(D, pUp) — R(D, pUp) @ R(D, pUp) and : R(D, pUp) — K

defined by:

e A(d) = Ap(d) € DD @ DO, &(d) = ep(d), for d € DD, and

o A(u) = (6}, (u), 6 (v)) € DD @ UD @ U0 @ DU Z(u) = 0, for
we U@,

(b) The group Z of integers acts on R(D, pUp) as a group of coalgebra
automorphisms by the shift

v:R(D, pUp) — R(D, pUp), D™ @ U™ — pim+h) g ylm+1),
called the Nakayama automorphism of R(D, pUp).
It is easy to check that the K-linear map

(4.16) f:R(D,pUp) — D x pUp

defined by the formula

Fo (dTD DY (@@ @) (@@ M)y,

- ( a3 UU”)) e D x pUp,

mez mez

with (d(m),u(m)) e D™ ¢ U™ is a coalgebra surjection, and induces a
pair of K-linear functors

v

f
(4.17) R(D, pUp)-Comod = (D x pUp)-Comod

feo

defined as follows. We define f, by setting fo(—) = D O (—). Here the
repetitive coalgebra D = R(D, pUp) is viewed as a right D x pUp-comodule
and as a left D x pUp-comodule with comultiplications

6, =(d® f)A: D — D® (D x pUp),
& =(f®id)A: D — (D x pUp) ® D,



CORADICAL SQUARE COMPLETE COALGEBRAS 113

respectively. The functor fY associates to any left D-comodule (X,0x)
the left (D x pUp)-comodule fY(X,dx) = (X,(f ® id)dx). Given h €
Hom(X,Y), we set fY(h) =h: fY(X)— fY(Y).

Now we collect some of the main properties of the functors (4.17). In
particular, f is a Galois Z-covering homomorphism and fY plays the role of
a covering functor for comodule categories (see [11] and [29, (10.7)]).

PROPOSITION 4.18. Let D be a coalgebra, U = pUp a D-D-bicomodule,
D x U the trivial extension coalgebra (4.8), and R(D, pUp) the Z-graded
repetitive coalgebra (4.15) with the Z-action defined above.

(a) The K-linear space R(D, pUp)/Z of Z-orbits has a canonical coal-
gebra structure such that the Z-invariant coalgebra surjection (4.16)
induces a coalgebra isomorphism f : R(D, pUp)/Z = D x U.

(b) The K-linear functor fo in (4.17) is right adjoint to fV.

(c) The K-linear functor fV in (4.17) is exact and faithful.

Proof. For simplicity of notation, we set D= R(D, pUp). The fact that
(4.16) is a coalgebra surjection follows by a direct calculation, and we leave
it to the reader. R

(a) We define a coalgebra structure on D/Z by the linear maps A :
D/Z — DJZ @ D/Z and £ : D/Z — K given by &(Z x c) = e(c) and

A(Zxc) = Yo ZLxcy @ Lk 2); Where ¢ € Dand A(c) =Y c1) ® c(z)- It is
straightforward to check that A and 7 are well-defined and define a coalgebra
structure on D/Z.

A direct check shows that the coalgebra surjection f : D — DxU is
Z-invariant. Hence it easily follows that f induces the required coalgebra
isomorphism f.

(b) It follows from [40, Proposition 1.10] that f, has a left adjoint functor.
Given a left D-comodule X and a left (D x U)-comodule Z, the K-linear

map
: Hom (X, Do Z) — Hompxy(fY(X), 2)

that associates to any h € Homp (X, D0 Z) the homomorphism

6*(h) = ((gD[xU o f) Dldz) oh: f'( ) — 7
of left (D x U)-comodules, is an isomorphism. The inverse F' of €, is defined
by the formula

F(h)=(idy ® W) odR: X > D0Z
for ' € Hompyy(fY(X), Z) (see [7, Theorem 1.5] for a proof). Since &, is
functorial with respect to comodule homomorphisms X — X’ and Z — Z’,

the functor fV is the right adjoint of f,, and (b) follows.
Since (c) follows from the definition of fV, the proof is complete. m
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5. A reduction functor for coradical square complete coalge-
bras. Assume that C' is a coradical square complete K-coalgebra, that is,
C = C1 = Cy A Cp, where Cy = soc C. Following an idea of Gabriel [10], we
associate with C the bipartite coalgebra

Co C _
5.1 Heo = with C = C/C
6.1 =1y o /Co
(see (2.1)) and a K-linear reduction functor
(5.2) H¢ : C-Comod — He-Comod

defined as follows. We view C = C/Cy as a Cy-Cp-bicomodule and we make
the identification Ho-Comod = Repy(c,Cc,) via the functor @ (see (2.8)
and (2.15)). Then each left Ho-comodule X is a triple X = (X', X", px) as
in (2.11), where X', X" are left Cyp-comodules and px : X' — COX" is a
homomorphism of left Cy-comodules. In particular, we make the identifica-
tion

C

:6707.’
Co (C, Co,j)

where j : C — C'OCj is the canonical isomorphism.

Note that, given (X,dx) in C-Comod, Xy = 65" (Co ® X) is the socle
of X. If §p is the restriction of dx to Xp and 7 : X — X = X/X is the
projection on the quotient C-comodule (X,d5), then the diagram of left
C-comodules

™

0 Xo X X 0

(53) J((SO l(SX l&x
Todid
O—>CODX—>CDXC—D>CDX

with exact rows is commutative, where 7¢ is the canonical projection and
dx is induced by dx. It follows that

50(X0) CCoO0XoCCyoX and X = 5;(1((00 & X) + (C ® Xo)),

because C = Cy A Cy. Consequently, _)_( is a semisimple C-comodule and has
a left Cp-comodule structure 65 : X — Cp O X. Hence, we also conclude

that (mc O7)dx =0 and (idOm)dx = 0, because
X =65 ((Co® X)+ (C® X)), (iddOm)dxm=(rcOm)éx =0

and  is surjective. Since the row of the commutative diagram

(5.4) l(sN
o A
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is exact and (id O 7)dx = 0, there is a unique map px : X — COXg of
left C-comodules such that dx = (id Ou)px, where u : Xg — X is the

inclusion. The left C-comodules C' and X are semisimple, so they are left
Cy-comodules and therefore px is a map of left Cy-comodules. Note that
COcXo = 6D00X0 = C'0Xj and there is a K-vector space decomposition
X2 Xo® X of X.

The following lemma is of importance.

LEMMA 5.5. Let C be a coradical square complete coalgebra and (X,0x)
be a left C-comodule. Under the identification X = Xo® X and the notation
above, the C-comodule structure map éx : Xo® X — (C ® Xo) ® (C ® X)

of X has the form
‘= b Px
0 g’

where @y : X — C @ Xy is the composite K -linear map

- = by idDTrXO
X=X X —0C0X —CO0Xy—C® X
and (rc ® id)gx = ¢x. Moreover, Im @5 N (Cy ® X) = (0).
Proof. Consider the K-linear map

e — (0x)11 (0x)1,2
=
(6x)21  (6x)2.2
Since 5)((X0)_g Co ® Xg, we have ((5)()171 = dp and ((5)()271 = 0. By the
definition of X, we have dgm = (id ® m)dx and therefore (dx)22 = dx.
Finally, if 5y = (dx)12: X — C ® Xp and i : X — X is the inclusion, then
the equality Xo = 65 (Co ® X) and the commutativity of the diagrams
(5.3) and (5.4) yield
(e ®id)py = (m¢ ® 1d)(id ® 7x,)d0xi = (id @ 7x,) (7 @ id)dxi
= (id ® 7x,)0x7mi = (Id ® 7x,)(id ® u)px = px. =

]L%@XFNC®XM@@®X)

DEFINITION 5.6. We assume that C = (7 and use the notation intro-
duced above. We define the reduction functor (5.2) by associating with each
left C-comodule (X, dx) the left Hco-comodule
(5.7) He(X) = (X', X", px),
where X" = Xo = 05 (Co ® X) =socX and X' = X = X/X, are viewed
as left Cp-comodules (see (5.3)), and dx = [%) ?){:] is as in Lemma 5.5.

Given f € Homg(X,Y), we define Heo(f) : Ho(X) — He(Y) to be
the pair He(f) = (f', f), where f” : Xo — Y is the restriction of f and
f': X — Y is induced by f.
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We show that Hc(f) is an He-comodule homomorphism, by proving
that the pair (f’, f”) is a morphism in the category Repy(c,Cc,). We make

the identifications X = Xo® X and Y = Yy @Y. Since f : Xg& X — Yo@Y
is a C-comodule homomorphism and f(Xp) C Yy, f has the matrix form

o [f " f1,,2
0 7
and dy f = (id ® f)dx. By Lemma 5.5, we have dof” = (id @ f”)do, oy f' =
(id® f')ox and dofi2+ Py f = (id ® f")px + (1d @ f1,2)d%, and therefore
f" and f” are Cp-comodule homomorphisms. Since Im(dofi12) € Co ® Y,
Im(id@ f1.2)35 C Co@Y, m(@y f)(Co @ Y) = (0), and Im((id & f")7y)
N(Co®Y) = (0), the final equality yields By f' = (id ® f”)px and our
claim is proved.
The main properties of the functor Hg are collected in Theorem 5.11
below. To formulate it, we need the following definition (cf. Gabriel [10]).

DEFINITION 5.8. Let C be a basic coalgebra and let (@, ¢d) be the left
valued Gabriel quiver of C. The left separated valued quiver (CSQ, Csd) of C
is defined as follows. The set ¢Q, of vertices is the disjoint union cQLUcQl
of two copies of ¢Qo, where Q) = {#'; i € Ic} and Q) = {j"; j € Ic}.
Given two vertices a,b € cQy = cQb U cQy, there exists a unique valued
arrow

(cdy,cdly) b
if and only if a = ¢/ with ¢/ € ¢Qf, b = j” with j” € ¢Qf, and there exists
a valued arrow
. (edijedly)
Joee e

. s 4/ s I

in (cQ,cd). We set od,, = Cdfij and ¢od,;, = Cdf/j-

It follows that the valued quiver (¢Q, ¢d) has no loops, no valued arrows
between the vertices in ¢Qf, between the vertices in ¢Qf, and no valued
arrow from a vertex a € ¢Qg to b € ¢Qp.

To formulate the next result, we define the stable categories of C-Comod
and C-comod to be the quotient categories

(5.9) C-Comod = C-Comod/Z and C-comod = C-comod/Z
modulo the ideal Z in C'-Comod and C-comod, respectively, consisting of all
C-comodule homomorphisms f : X — Y having a factorisation through an
injective comodule E in C-Comod. More precisely, the objects of C-Comod
and C-comod are the same as in C-Comod and C-comod, respectively, and
the space of morphisms from X to Y in the quotient category is the quotient
K-vector space

(5.10) Hom¢(X,Y) = Home (X, Y)/Z(X,Y),
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where Z(X,Y) is formed by all f : X — Y that have a factorisation through
an injective in C-Comod (see [2]).

We denote by Hc-Comodg, the full subcategory of Ho-Comod whose ob-
jects are Ho-comodules X such that soc X is projective and has no injective
summands of the form [S (oil) ], where S(i') is a simple Cp-comodule.

THEOREM 5.11. Assume that C is a basic coradical square complete K -
coalgebra. Let

Co C
0 Co

be the associated bipartite coalgebra (5.1), with Cy = socC and C = C/Cy.

(a) Hc is basic, hereditary, coradical square complete, and every simple
C-comodule is projective or injective.

(b) The reduction functor He : C-Comod — He-Comod of (5.2) is K-
linear, full, additive, commutes with arbitrary direct sums and has
the following properties:

C =

(bl) Given a C-comodule homomorphism f : X — Y, we have
He(f) = 0 if and only if f(soc X) = 0. In particular, the kernel
of the algebra surjection Endc X — Endg, Hc(X), f — He(f),
equals Home (X /soc X, X). If X, Y have no injective direct
summands then He(f) = 0 if and only if f € Z(X,Y).

(b2) Hg does not vanish on non-zero comodules, carries ¢C' to the
left coideal | & | of Ho = [0 €| and carries simple comodules
to simple or[ng.] [ ° CO]

(b3) A comodule X = (X', X", ) in Ho-comod lies in Im He if and
only if p: X' — COX" is a monomorphism.

(b4) An indecomposable comodule X in Ho-comod does not belong
to Im He if and only if X is simple injective of the form [S,(()",) ],
where S’(i') is a simple subcomodule of C.

(b5) ImHe = Hc—ComOd;p.

(¢) The functor He defines a representation equivalence (see [27], [38])
He : C-Comod — He-Comodg, € He-Comod

and carries indecomposable C-comodules to indecomposable ones.
(d) A C-comodule E is injective if and only if Ho(E) is an injective
He-comodule. Moreover, the functor Heo induces

e an isomorphism F, = EndcS(a) = Endy, Hc(S(a)) of division
rings for each a € I¢,
e cquivalences of stable categories

C-Comod =2 Hg-Comod  and  C-comod = He-comod.



118 J. KOSAKOWSKA AND D. SIMSON

(e) The left valued Gabriel quiver of the hereditary coalgebra He is the
left separated valued quiver (cQ, cd) of C.

Proof. Throughout the proof, we make the identification Ho-Comod =
Repy(c,Ce,) via the functor @ of (2.8) and (2.15) (see Theorem 2.14).

(a) Apply Theorem 2.16.

(b) That H¢ is additive and commutes with arbitrary direct sums follows
immediately from its definition.

Now we prove that He is full. Let X, Y be C-comodules and H¢(X) =
(X, Xo, px), Ho(Y)=(Y, Yy, py). Given a homomorphism (f’, f) : He(X)
— He(Y) of Ho-comodules, we define a K-linear map

f// 0
0 f

We claim that f is a C-comodule homomorphism such that He (f) = (f7, f7).
Indeed,

f= X2Xge X -Y2Y,aY.

I B 7 1/ — !
5o p |0 B [ 0] Z s @]
0 dy| |0 f 0 opf
On the other hand,
b " 0 _5 — I s I 1"\—
(1@ f)ody = ® f o [%0 Px| _ (I®@ ") (I fox .
0 Tef| |0 o 0 (I® )65

Since (f’, f") is an Ho-comodule homomorphism, dy o f = (I ® f)odx and
our claim follows, because the equality Heo(f) = (f’, f”) is obvious. This
shows that H is full.

(b1) If X is a non-zero C-comodule, then Xy = soc X # 0 and therefore
He (X) # 0.

Let f : X — Y be a non-zero C-homomorphism such that Heo(f) = 0.
By the definition of H¢, we get Xg C Ker f. Conversely, let Xy C Ker f;
then fx, = 0. Since C' = Cy A Cy, the left C-comodule X/ X is semisimple.
Therefore Im f = X/Ker f is semisimple and Im f C Yj. Consequently,
F = 0and Ho(f) = (. fix,) = 0.

To prove the second statement in (bl), assume that X and Y are C-
comodules having no injective direct summands. Let f € Z(X,Y), that
is, f : X — Y is a C~-comodule homomorphism that factorises through
an injective C-comodule E. Let g : X — FE and h: F — Y be C-comodule
homomorphisms such that f = hg. Assume, to the contrary, that He(f) # 0.
By the above considerations, f(Xy) # 0 and therefore hg(Xy) # 0. Since
9(Xo) € Ep, we have 0 # h(Ep) C Y. There exists an indecomposable
direct summand E’ of E such that 0 # h(Ep) C Y. If Kerhjgp # 0 then
the simple C-comodule £ is contained in Ker iz and therefore h(Ej) = 0,
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a contradiction. This proves that g : E' — Y is a monomorphism. Since
E'’ is injective, it is a direct summand of Y, contrary to our assumption.
Consequently, Heo(f) = 0.

Conversely, let f : X — Y be such that Ho(f) =0. Let 7: X — X/ X
be the natural projection. By the first part of (bl) we have f(Xo) = 0.
Therefore f = gm for some homomorphism g : X/Xy — Y. Assume that
j: X — E(X) is the injective envelope of X. Applying standard arguments
we can construct commutative diagram with exact rows

™

0 Xo X X 0
lid lj l
0—Xo— E(X) — E(X)/Xo—0

where h is a monomorphism and the comodules X = X/Xq, E(X)/X, are
semisimple (because C' is coradical square complete). Therefore there exists
a homomorphism hy : E(X)/Xy — X such that hih = idg, and hence
f=gr=ghiht = ghymj € Z(X,Y).

(b2) It was shown in the proof of (bl) that Ho(X) # 0 if X # 0.
By the definition of He, we know that He(C) = [ § ] Moreover, for any

simple C-comodule S, H¢(S) = (0,.5,0) [ ] is a sunple He-comodule,
by Theorem 2.16.

(b3) Take a C-comodule X and consider Ho(X) = (X, Xo, px). Note
that 6x (defined in (5.3)) is a monomorphism. Indeed, assume that &y (z)
= 0 for some x € X. Then there exists y € X such that 7(y) = = and
(mc 0id)dx (y) = dx(y) = 0. It follows that dx(y) € Co O X and y € Xo.
Finally, 0 = 7(y) = x and dx is a monomorphism. Therefore, by the defini-
tion, px is a monomorphism. Conversely, let (X', X", ) be an He-comodule
such that ¢ is a monomorphism. Let X be the K-vector space X = X" @ X'.
Note that there is an isomorphism of vector spaces C = Cy @ C/Cy. It is
easy to see that the K-linear map

x = [5X" ’ ] X"eX = (CoX") e (CoX')
0 5X’

defines a C-comodule structure on X. Since ¢ is a monomorphism, we have

soc X = X" and therefore Ho(X) = (X', X", ) (see Lemma 5.5).

(b4) The proof above shows that the Ho-comodules of the form (X, 0,0),
where X' # 0, are not in ImHg. Conversely, let (X', X", ) be an He-
comodule such that ¢ is not a monomorphism. Then there exists a non-zero
direct summand of (X', X" ) of the form (Y’,0,0), namely (Kerp,0,0).
Hence (b4) follows, because Cj is a semisimple K-coalgebra.

(b5) follows from (b3), (b4), and Theorem 2.16.
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(c) We recall that an additive functor is said to be a representation equiv-
alence (or epivalence, see [12]) if it is full, dense, and respects isomorphisms
(see [27], [28], and [38]). By (b), the functor He : C-comod — Hc-comodg,
is full and dense. To show that H¢ reflects isomorphisms, assume that
f: X — Y is a C-homomorphism in C-Comod such that Heo(f) = (f/, f)
is an isomorphism. It follows that f” : Xg — Yy and f' : X — Y are iso-
morphisms. Hence, in view of the Snake Lemma, f is an isomorphism and
the first part of (c) follows.

To finish the proof of (c), assume that X is an indecomposable C-
comodule but He(X) = Y @ Z decomposes. By (b4), the Hc-comodules
Y and Z lie in the image of H¢. Therefore there exist C-comodules Y and
Z such that Y 2 Hg(Y) and Z = He(Z). Hence He(X) 2 He (Y @ Z), be-
cause H¢ is additive. Since we have shown that Hg reflects isomorphisms,
the C-comodule X 2Y & Z decomposes, a contradiction.

(d) Let E be an indecomposable injective C-comodule. There exists a C-
comodule E’ such that E@E’ = C. Then Ho(C) 2 He(EGE') 2 Ho(E)®
He(E') and He(E) is a direct summand of He(C). By (b2) and (2.5) the
He-comodule He(F) is injective.

Conversely, let Ho(E) be an indecomposable injective He-comodule. By

(b4), there exists an Hco-comodule X such that He(E) @ X & [go] and

there exists a C-comodule X such that Hg(X) = X. Therefore He(C) 22
He(E @ X). Since He reflects isomorphisms, we have C' = E® X, and hence
F is injective.

The first item in the final part of (d) follows from the first one and (b). To
finish the proof of (d), we note that H¢ : C-Comod — Hc-Comod induces
the functors

H¢ : C-Comod — He-Comod  and  He : C-comod — Hc-comod

that are full (by (c)) and dense, because H¢ carries injectives to injectives
and all non-injective comodules in Ho-Comod are in ImHe, by (b4). I
remains to show that H¢ is faithful. Let f : X — Y be a morphism in
C-Comod with f € Homg(X,Y) such that Heo(f) = 0. We can assume that
X and Y have no non-zero injective summands. Then He(f) : Ho(X) —
He(Y) has a factorisation Ho (X) 25 Z 225 He(Y), where Z is an injective
He-comodule. By (c¢) and the first part of (d), Z = H¢(E), where E is an
mJectlve C-comodule, and there exist C-comodule homomorphisms X —-
E ¥ such that Hc(fl) = g1 and He(f2) = go. It follows that He
vanishes on h = f — gog1 : X — Y and, by (bl), h € Z(X,Y). Hence
f =h+gag1 € Z(X,Y) and therefore f is zero in the quotient category
C-Comod. This shows that the functor H¢ is faithful, and consequently, it
is an equivalence of categories.
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(e) We apply Corollary 3.8 to H = H¢. In this case, we have
H=C), H'=Cy, U=0C=C/Cy, Ig=Ic, Igr=Ic.

In the notation of (3.11), given ' = s € Iy = [c and ' = s € Iy = I, we
have Uy = 4(C/Cp)¢. Hence, (e) follows from Corollary 3.8, Proposition 3.5
and the definition of the separated Gabriel valued quiver of C. =

Following [38, Remark XIX.1.13] and the proof of the previous theorem,
we construct a functor

(5.12) Hg : He-comodg, — C-comod

as follows. Given an H¢-comodule (X', X", ¢) in Ho-comodg, = Im He, we

set

and given a homomorphism (f/, f") : (X', X", 0) = (Y',Y",¢) in the cat-
egory Hc-comods,, we set Hg,(f, f") = [fo ]9,]. It is clear that we have
defined a covariant K-linear functor Hg,. Now we collect its main proper-
ties.

oxr ¢

HE (X, X", ¢) = (X” ® X',
Sx

COROLLARY 5.13. Assume that C is a basic coradical square complete K -
coalgebra. Under the notation and assumptions of Theorem 5.11, the functor
HZ, : Hc-comod;p — (C-Comod has the following properties.

(a) He o HE is isomorphic to the identity functor on Hg-comodg,.
(b) HY, is faithful, exact, carries indecomposables to indecomposables,
and non-isomorphic comodules to non-isomorphic ones.

Proof. (a) This follows from the proof of Theorem 5.11(b).

(b) Obviously, H, is faithful and exact. Let (X', X", ¢) be an object in
He-comod§, = ImH¢ and assume that X = Hg (X', X", ¢)) =Y @ Z for
some non-zero C-comodules Y and Z. By (a), we have

(X', X", ) 2 He o HG (X', X", ¢)) 2 Ho(Y @ Z) = Ho(Y) © He(2).

It follows that (X', X", ¢) is decomposable, because by Theorem 5.11(b2)
the functor H¢ does not vanish on non-zero objects. Since the final part of
(b) is a consequence of (a), the proof is complete. =

6. Applications. We recall from [20], [29] and [30] that a K-coalgebra
C is said to be left pure semisimple if every left C-comodule is a direct sum
of finite-dimensional C-comodules (see also [23], [24], and [25]).

The following characterisation of left pure semisimple coalgebras is of
importance.
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THEOREM 6.1. Assume that C is a K-coalgebra. The following condi-
tions are equivalent.

(a) C is left pure semisimple.

(b) For every infinite sequence Ny ELi\ Ny LS of non-zero monomor-
phisms between indecomposables in C-comod there exists mg > 1
such that f; is an isomorphism for all j > mq.

(c) For every infinite sequence Ny £ Ny ELO of mon-zero non-iso-
morphisms between indecomposables in C-comod there exists mg > 1
such that f; ... f1 =0 for all j > my.

Proof. Apply [21, Theorem 3.1] and [22, Theorem 6.3] to A = C-Comod
(see also [29, Theorem 7.2]). =

The following result shows that the reduction functor H¢ respects pure
semisimplicity.

PROPOSITION 6.2. Assume that C' is a basic coradical square complete

K -coalgebra and let Ho = [%0 qu] be the associated bipartite hereditary

coalgebra, with Cy = soc C' and C = C/soc C. The following conditions are
equivalent.

(a) C is left pure semisimple.

(b) He is left pure semisimple.

(¢) Hc is a direct sum of finite-dimensional coalgebras of finite comodule
type.

(d) The left separated valued quiver (¢Q,cd) is a disjoint union of
Dynkin valued quivers, that is, finite valued quivers whose under-
lying graphs are Dynkin diagrams of one of the types A, (n > 1),
B, (n>2),C, (n>3), D, (n>4), Eg, Er, Eg, Fy or Ga (see [14,
Table 2]).

Proof. We prove that (a) implies (b) by applying Theorem 6.1. Assume
that C is a basic left pure semisimple coalgebra and

nivf..

is a sequence of non-zero non-isomorphisms between finite-dimensional in-
decomposable left Hg-comodules. We may assume that no Y; is simple in-
jective, because otherwise some f; is zero or an isomorphism, contrary to
assumption.

By Theorem 5.11(b), this sequence lies in Hc-comodg, = ImHc. By
Theorem 5.11(c), for each ¢ > 1, there exists an indecomposable C-comodule
X; in C-comod and a non-zero non-isomorphism f; € Home (X;, X;41) such
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that He(X;) = Y; and He(f;) = fi. Thus we have a sequence
xDx, B

of non-zero non-isomorphisms between finite-dimensional indecomposable
C-comodules. Since C is left pure semisimple, there exists mg > 1 such that
fj--.fi=0forall j > mg; hence fj ... f1 =0 for all j > mg. Then, in view
of Theorem 6.1, H¢ is left pure semisimple.

To prove that (b) implies (a), assume that H¢ is left pure-semisimple.
Let

be a sequence of non-zero monomorphisms between finite-dimensional in-
decomposable C-comodules. It follows that f,, ... fi(soc X1) # 0 for each
m>1, and, according to Theorem 5.10, Ho(frm - - - f1) = Ho(fim) - - - He(f1) -
He(X71) — He(X,y) is non-zero. By Theorem 5.10, the sequence

vhy .

with V; = He(X;), fi = Ho(f;) in Hg-comodg,, consists of indecomposable
comodules connected by non-zero homomorphisms. The observation made
above yields f,...f1 # 0 for each n > 1. Since H¢ is pure semisimple,
there exists iy such that f, is an isomorphism for any n > iy. Hence, f,
is an isomorphism for any n > iy, because H¢ reflects isomorphisms by
Theorem 5.10(c). Consequently, C' is left pure semisimple by Theorem 6.1,
and therefore (a) and (b) are equivalent.

To prove (b)<(c), it is sufficient to show that the left pure semisimplicity
of He implies (c), because the converse follows from [29, Theorem 7.5].

Assume that H¢ is left pure semisimple and decompose it into a direct

sum
He = @ Hy

of indecomposable coalgebras Hg. It follows that, for each 8 € T, the left
valued Gabriel quiver (g,Q, n,d) is a connected component of (1,Q, g d)
(see [29, Corollary 8.7] and [32, Corollary 2.8]). Since H¢ is hereditary and
left pure semisimple, so is Hg for each § € T. Then, according to [14,
Theorem 4.14] (see also [20] and [29]), either the quiver (y,Q, ,d) is one of

the infinite pure semisimple locally Dynkin valued quivers A(()So), OOA((;), IB%&Z),
(Cgi) or ]D)g)), with s > 0, presented in [14, Table 1], or (g,Q, g,d) is finite
and its underlying valued graph is one of the Dynkin valued diagrams A,
(n>1),B, (n>2),C, (n>3),D, (n >4), Eg, E7, Eg, F4 or G2 presented
in [14, Table 2].
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Since every infinite pure semisimple locally Dynkin valued quiver con-
tains an infinite chain of the form e—e—e—...—e—e—-.. it follows
that (#,Q, nyd) is not infinite, because (y,Q, n,d) is the separated val-
ued quiver (¢Q,cd) of C, by Theorem 5.11(d), the quiver (H;Q myd) is
a connected subquiver of (y.Q, g.d) = (¢Q, cd), and it follows from the
definition of separated valued quiver that it does not contain infinite chains
of the above form. Consequently, (1,Q, n,d) is finite and the underlying
valued graph of (y,Q, n,d) is one of the Dynkin valued diagrams. It follows
that dimg Hp is finite and, by [29, Theorem 7.5], the coalgebra Hg is of fi-
nite comodule type for each § € T. This finishes the proof of (b)<(c). Since
this also shows that (c¢) and (d) are equivalent, the proposition is proved. =

COROLLARY 6.3. Let C = D x pUp be the trivial extension of a basic
semisimple coalgebra D by a D-D-bicomodule pUp.

(a) C is coradical square complete, the associated bipartite coalgebra Hc
s the hereditary coalgebra [g DgD] and the reduction functor He :
C'-comod — Hc—comod;p s a representation equivalence.

(b) The left valued Gabriel quiver of C has the form (pQ,pd) $u
(pQ, pd) (see (4.9)), that is, it is obtained from the valued quiver
(pQ, pd)my (pQ, pd) (see (3.10)) of the bipartite coalgebra [1[:)) DgD]
by the identification of the vertex s’ with the vertex s” and the arrow
s — t" with the arrow s" — t" in (pQ, pd) Wy (pQ, pd), for all
s,t € pQop = Ip.

(c) C is left pure semisimple if and only if [6) DgD] 1s left pure semi-
simple, and if and only if the left separated valued quiver of C is a
disjoint union of Dynkin valued quivers.

Proof. Apply Proposition 4.10, Theorem 5.11, and Proposition 6.2. m
EXAMPLE 6.4. Let N be the set of positive integers and let

neN meN
be a K-vector space with a countable basis {en, m }nmen equipped with
the comultiplication A : C — C ® C and the counit ¢ : C' — K, defined by
the formulae:

o Afen) = en ® en and A(nm) = €m @ Mm + N @ €m1,
e c(e,) =1 and e(n,,) =0 for n,m € N.

It is straightforward to check that C = (C, A,¢) is a basic K-coalgebra,
Co = socC = @,y S(n), where S(n) = Ke, is a simple subcoalgebra
of C, and C = Cy = Cy A Cy, that is, C is coradical square complete.

It is easy to check that, for each i € N, we have Ext},(S(i), S(i+1)) = K
and Ext(S(i), S(j)) = 0 for j # i + 1. It follows that the separated valued
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quiver (¢@, cd) has the form
it 2/ 3 oy 5 6 -
1//\2/1\3//\4//\5//\6//\,, .

and, by Proposition 6.2, C' is left pure semisimple.

Note also that C' is isomorphic to the trivial extension coalgebra D x
pUp, where D = soc C' is a basic semisimple subcoalgebra of C' and pUp =
@meN Kny, C C is viewed as a D-D-bicomodule in the obvious way.

It follows from Theorem 5.11 and Corollary 6.3 that the left Gabriel
quiver of the bipartite coalgebra

D pU
He = pUp
0 D

is the quiver presented above, whereas the left Gabriel quiver of C = D x
pUp is the infinite linear quiver

Qi1 lhy B P P B

obtained from the above by the identification n = n’ = n” for each n € N.

Let K”Q be the path coalgebra of the quiver Q. One can show that there
is a coalgebra isomorphism C' = (K”Q); = KQo @ KQ; given by e, — €,
(the stationary path at the vertex n € Qo) and 7, — (5, € KQ1. Hence, by
applying the results in [29], [31] and [33], one can show that C is isomorphic
to the path coalgebra K”(Q,2) = C(Q, 2) with the ideal 2 C K@ of
relations generated by all compositions (3,3,+1 with n € N. Consequently,
the category C-comod = K"(Q, 2)-comod is equivalent to the category
rep (Q, £2) of finite-dimensional representations of @) satisfying the relation
OnfPn+1 =0 for each n € N. u

We finish the paper by a discussion of tame and wild comodule type
of any basic coalgebra C by means of its separated valued quiver. For the
definition of tame and wild comodule type the reader is referred to [29,
Definition 6.6], [30], and [31]. In particular, the tame-wild dichotomy for
coalgebras over an algebraically closed field is discussed in [31].

PROPOSITION 6.5. Assume that K is an algebraically closed field. Let C
be a basic K -coalgebra, Cy the first term of the coradical filtration of C, and
H = H¢, the associated hereditary bipartite coalgebra.

(a) The quiver gQ coincides with the left separated quiver cQ.

(b) If Hey is of wild comodule type, then so is C.

(¢) If C is of tame comodule type, then so is H = H¢,, and the under-
lying non-oriented graph of each of the connected components of gQ

(= Q) is of one of the types:
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e the Dynkin diagrams Ay, Dy, Eg, E7, Es,
e the Euclidean diagrams A, D, Eg, E7, Eg,
o the infinite locally Dynkin diagrams (see [14], [29]-[31]),

AOO : 0 O——O———— e e
oo : o o o o O—— oo
o
Doo |
O O O O o o ......

Proof. We recall from Theorem 5.11 that H¢, is hereditary.

(a) By Proposition 3.5, the left Gabriel quiver ¢, @ coincides with Q.
Then (a) follows from Theorem 5.11(d).

(b) Assume that H¢, is of wild comodule type. Then there exists a
K-linear representation embedding functor 7" : mod I'3(K) — H¢,-comod,
where I'3(K) = [Io( f[(;] is the path K-algebra of the wild quiver o=—=o.
By [38, Corollary XVIII.4.2], there exists a full, faithful, exact K-linear
endofunctor

F :mod I'3(K) — mod I'3(K)

such that Im F' is contained in the category add R(I3(K)) of all regular
I';(K)-modules. It follows that the image of

T o F :modI3(K)— He,-comod

does not contain simple comodules. Indeed, given a non-zero module X in
mod [3(K), the module F'(X) is regular, and hence not simple. It follows
that there exists a non-split exact sequence 0 - Y’ — F(X) - Y” — 0 in
mod I'3(K), where Y/ and Y are non-zero. Since T is exact, we derive the
exact sequence 0 — T(Y') - T(F(X)) - T(Y") — 0 in H¢,-comod, where
T(Y'") and T(Y") are non-zero. This shows that dimg T'(F(X)) > 2, and
consequently T'(F'(X)) lies in H,-comodg,,.

It follows that T'o F' : mod I'3(K) — Hc,-comod defines a representation
embedding (T o F')" : mod I';(K) — Hc,-comodg,. Since, by Corollary 5.13,
Hg, : He,-comodg, — Cj-comod is a representation embedding, so is

Hg, o (T o F)": mod I'3(K) — Cj-comod — C-comod.

This shows that C' is of wild comodule type.

(c) Assume that C is of tame comodule type. By [29, Theorem 6.11(a)]
and its proof, the subcoalgebra C7 of C' is also of tame comodule type.
Suppose that Hc, is not tame. Since, by [31, Theorem 5.12], the tame-wild
dichotomy holds for hereditary basic coalgebras, H¢, is of wild comodule
type. Hence, by (b), C is of wild comodule type and, according to [31,
Corollary 5.6] (a weak version of tame-wild dichotomy for coalgebras), we
get a contradiction.
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We recall that H¢, is hereditary. Since it is of tame comodule type,

every indecomposable coalgebra direct summand H' of H¢, is also of tame
comodule type and, obviously, the left Gabriel quiver Q" of H’ is a connected
component of Q. Then, by [29, Theorem 9.4] and [31, Theorem 5.12], the
underlying unoriented graph of @’ is of one of the types listed in (c). =
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