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MINIMAL GENERICS FROM SUBVARIETIES
OF THE CLONE EXTENSION
OF THE VARIETY OF BOOLEAN ALGEBRAS

BY

JERZY PLONKA (Wroctaw)

Abstract. Let 7 be a type of algebras without nullary fundamental operation sym-
bols. We call an identity ¢ = v of type 7 clone compatible if ¢ and 1) are the same variable
or the sets of fundamental operation symbols in ¢ and v are nonempty and identical. For
a variety V of type 7 we denote by V¢ the variety of type 7 defined by all clone compati-
ble identities from Id(V). We call V¢ the clone extension of V. In this paper we describe
algebras and minimal generics of all subvarieties of B¢, where B is the variety of Boolean
algebras.

1. Preliminaries. Let 7: F' — N be a type of algebras, where F' is the
set of fundamental operation symbols and N is the set of positive integers.
For a term ¢ of type 7, we denote by Var(y) the set of variables occurring
in ¢ and by F(p) the set of fundamental operation symbols occurring in .
For a variety V of type 7 we denote by Id(V) the set of all identities of type
7 satisfied in every algebra from V. If Y is a set of identities of type 7 we
denote by Mod(X') the class of all algebras of type 7 satisfying every identity
from X'. We shall use variables x,y, z,u,v,x1,...,Zg, ..., where k < w. An
identity ¢ = ¢ of type 7 is called clone compatible if p and 1) are the same
variable or F(p) = F(1)) # (0. For a variety V of type 7 we denote by V¢
the variety of type 7 defined by all clone compatible identities from Id(V).
We call V¢ the clone extension of V (see [2]-[9]). In [2], [4] and [6] some
representation theorems for algebras from V¢ were presented.

Let 2 = (A; F) be an algebra of type 7. If f% is a fundamental operation
from F? we shall often omit the upper index 2 in f* when it is clear that
we consider an operation in 2. An endomorphism r : A — A of 2 is called
a splitting retraction of 2 if it is idempotent (r or = r) and for all f € F,
at,..-,a-(py € Aand k=1,...,7(f), we have

r(fas,. .., ar(f))) = aa, ... ap_1,7(ar), apr1s - - -, ar(f))-
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An algebra 2 is called a generic of a variety V if HSP(A) = V (see [1,
Appendix 4]). We call a generic 2 = (A; F?) of V a minimal generic of V
if for every generic B = (B; F®) of V we have |B| > |A|. Let 2 = (A; )
be a minimal generic of V. We put g(V) = |A|. In the following we restrict
our considerations to the type 7, : {+,-,/ } — N where 7,(4+) = 7(-) = 2 and
(") = 1. We denote by B the variety of Boolean algebras of type 7.

Let us consider the following six algebras:

o 2y = ({a1,b1};+,-,”) where for z,y € {a1,b1} we have

n xz if z =y, xz ifz=uy,
€T = X - =
Y b1 otherwise, Y a1 otherwise,

/ /
alzbl, bl = aj;

e 2y = ({ag,ba};+,-,’) where

n xz if z =y,
xT =
Y by otherwise,

x-y=2a =by forevery z,y € {ag, ba};

e As = ({as,bs}; +,-,) where
xz ifx=y,

e { bs otherwise,

r+y=2a =0b3 foreveryz,yc {as,b3};
o Ay = ({aa,ba}; +,-) where

r+y=x-y=2a =by forevery z,y € {a4,bs};
e As = ({as,bs}; +, -, ) where

¥=x, x+y=x-y=>b; forevery x,y € {as,bs};
e As = ({as, be, c6}; +,-," ) where

o = as by b

r+y=x-y="bs forevery x,y € {as,bs, s}

We see that no two of these algebras are isomorphic and 2 is a 2-element
Boolean algebra.
It follows from [3, Theorem 2.10 and remarks on p. 190] that

(1i)  An algebra 2 of type 7, belongs to B¢ and is subdirectly irreducible
iff 2 is isomorphic to one of the algebras 2, ..., As.

Define Ir(B€) = {1,...,Us}. If V is a subvariety of B¢ and an algebra
B belongs to V and is subdirectly irreducible then by (1.i) it has to be
isomorphic to some algebra from Ir(B¢). Since by Birkhoff’s theorem (see



MINIMAL GENERICS 133

[1, Theorem 20.3]) every variety is uniquely determined by its subdirectly
irreducible algebras, by (1.1) we have

(Lii)  Every subvariety V of B¢ is uniquely determined by the set Ir(V) =
VY N Ir(B¢), namely V = HSP(Ir(V)).

If V is a subvariety of B¢ and S = VNIr(B¢) we shall write V = V(S). So one
wishes to determine which subsets of Ir(B¢) are of the form Ir(V) for some
V € L(B¢), where L(B°) is the lattice of subvarieties of B¢.

It was shown in [5] that

(1.iii)  The family S of all sets Ir(V) with V € L(B¢) consists of the follow-
ing 29 sets: {52[1, . ,Qlﬁ}, {ng, e ,QLG}, {QLQ, R ,52[5}, {52[3, R ,Ql(;},
{201, A3, s, A5, A}, {As, Aa, A5}, {2, As, A5, As}, {A1, Ao, As,
As, As }, {A2, Ag, As }, {A, As, A}, {Ar, Ao, A3, As}, {Aa}, {Ar, As},
{QlQ}a {911,%2}, {912,9[4}7 {Qllagl2am4}a {Ql?)}a {911,9[3}7 {Ql379l4}7
{Rr, As, Aa}, {UAs, As }, {Ar, As, Ast, {As, As, Ao}, {Ar, A, As, As
{As}, {Aa,As}, 0, {A1}. Moreover, the lattice L(B) is isomorphic
to (S; Q).

Also in [5, p. 164] we showed that

(Liv) A5 € HSP({s})-

(lv) Ifs,5€{2,3,5,6},i+# jand {3,j} # {5,6},
then 204 € HSP({QIZ,QlJ})

(l.Vi) Ag € HSP({QH,Q%}).

By (1.i) we have

(Lvil) B=V({2Ay,...,A}).

For an arbitrary variety V let CL()) denote the set of all clone compatible
identities from Id(V). The set CL(V) need not be an equational theory. It is
if V is the variety of distributive lattices (see [8]). This is also the case for
every variety V of groupoids. However, CL(B) is not an equational theory. In
fact, the identity x + x -y ~ x + x - 2z is clone compatible but its consequence
x+z-y ~ xv+x-y is not; here we adopt the convention that - binds stronger
than + and we omit suitable parentheses.

In [9] we described forms of identities and we constructed equational
bases of all subvarieties of B°.

2. Representations and minimal generics. By Birkhoff’s subdirect
irreducibility theorem and (1.i)-(1.iii) we already have:

If an algebra A belongs to V(S5), where S € S, then 2 is isomorphic
to a subdirect product of some algebras from S.

To get a more illustrative representation of algebras from subvarieties of B¢
we need Theorem 1 below, which is in fact an application of more general
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theorems (see [2, Section 3|, [4, Section 2|, [6, Section 3|) to the variety B€.
However, in Theorem 1 we give more details specifically for the variety B¢.
We put

4 (z) =z +,
qy(z) =z -z,
qey(z) = o',
geny(z) = (2)
@ (%) = q(1) (g (g (2)))

THEOREM 1. If an algebra A = (A;+,-,") belongs to B¢, then the follow-
ing conditions hold.

(2.1) Each of the mappings qa_), q%), q(%l/), qf‘ s a splitting retraction of A
and any two of them commute.

Then q(m) 18 the ’Ldentzty on A( ) (.) is the identity on A, q(g,[,) 18
the identity on Ay and qb 1s the identity on Ap.

(2iil) Ifa€A, then ¢ (¢2(..(¢2 (a))...)) =g (a) for every ay, ..., an
n {(+)7 ()7 (H)} with ’{alv EERE) Oén}| > 1.

(2.1V) A("‘) N A() = A(+) N A(//) = A() N A(//) = A,.

(2.v)  The algebra A1y = (Aq); +A)) is a +-semilattice, the algebra
Ay =(Awy;-|Aw) is a --semilattice, the algebra Ay = (Apny; | Apry)
is an algebra with involution, i.e. it satisfies (x') = x, and the algebra
A, = (Ap; {+, - }Ap) belongs to B.

(2.vi) Ifa,be A, thena+b= q?}r)(a) + q?ﬁr)(b), a-b= q?‘)(a) . q%)(b) and
@ = (g3 (a).

The construction used in Theorem 1 was called a clone extension of an
algebra A in [2| and [4], and a clone network over a network of splitting

retractions in [6].

ExXAMPLE 1. Let a € A,y and b € A(y. Then by (2.vi), (2.ii), (2.ii),
(2.1) we have:

a+b= g2, (@) + g%, () = g%, (@) + ¢, (g3 ()
= (Q[)( a) + ¢ (b) = ¢}'(a) + g (b).
We also have o’ = (¢} (a))’ = (qfhy (a7 (@) = (g'(a))".
(2.vil) g¢(B°) = 6. Moreover, the subdirect product
2(1,2,3,5) = ({(a1, ag, b3, b5), (a1, b2, as, bs), (a1, ba, b3, bs),
(b1,ba, b3, bs), (a1, b2, b3, as), (b1, ba, b3, az) }; +, )
of the direct product 2y x s x A3 x A5 is a minimal generic of B€.
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Proof. The first statement of (2.vii) holds by Theorem 4 from [4]. By (1.v)
and (1.vi) we have {2,...,2} C HSP((1,2,3,5)), so by (1.vii) we have
B¢ C HSP((1,2,3,5)). But 2(1,2,3,5) € B¢ by (1.i), so HSP(2((1,2,3,5))
=B°n

To find minimal generics of proper subvarieties of B¢ we need some lem-
mas.

From now on we assume that A = (A;+,-,") belongs to B¢ so it is of
the form described tn Theorem 1.

Let us record the following obvious observation. If e is an identity of type
7p and 2 is a generic of V(5), S € S, then e € Id() iff e € Id(V(9)) iff
for every 20, € S we have e € Id(g). So e ¢ Id(2) iff there is A, € S
with e & Id(2(x). This observation will be useful in the proofs of some of the
corollaries below.

LEMMA 1. |Ap| =1 iff A satisfies

(1) @ () = qv(y)-

Proof. = Follows from the fact that for every a,b € A we have
a2 (a), g2 (b) € Ap by (2.ii).

< If a,b € Ay, then by (2.ii) and (1) we have a = ql?[(a) = q?‘(b) =b. m

LEMMA 2. A(+) \ Ay =10, i.e A(+) = Ay, iff A satisfies
(2) 4+ (@) = gp().

Proof. = By (2.iv) we have Ay, C Ay, so Ay \ Ay = 0 iff Ay = Ay
So if A4y = Ay, then for a € A we have g(;y(a) € Ap. Then by (2.ii) and
(2.iii) we have qa)(a) = qf‘(q?ﬁr)(a)) = ¢2(a).

<« Obvious. =

The proofs of the next two lemmas are analogous to that of Lemma 2. It
is enough to replace (+) by (-) and (+) by (”), respectively.

LEMMA 3. Ay = Ap iff A satisfies

(3) 4y (%) =~ qp().
LEMMA 4. Awy = Ay iff 2A satisfies

COROLLARY 1. If S € S, A€ V(S) and A1 € S, then |Ap| = 1.

Proof. If k # 1 and 2, € Ir(B¢), then 2}, satisfies (1). By (1.ii) we have
V(S) = HSP(S5), so V(S) satisfies (1) and consequently 2 satisfies (1). Now
by Lemma 1, A from 2 is 1-element. =

COROLLARY 1'. If S € S and U is a generic of V(S), then |Ap| = 1 iff
A1 €5,
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Proof. <= Follows from Corollary 1.
= If 2; € S, then V(S) does not satisfy (1) since 2(; does not. So 2
does not satisfy (1). Now by Lemma 1 we get [Ap| > 1. =

COROLLARY 2. If S € 8, A€ V(S) and Az ¢ S, then Ay = Ayp.

Proof. If k # 2 and Ay € Ir(B€), then Ay, satisfies (2). By (1.ii) we have
V(S) = HSP(S), so V(S5) satisfies (2) and consequently 2 does. Now by
Lemma 2 we have Ay = Ap. m

COROLLARY 2. If S € S and 2 is a generic of V(S), then Ay =4
iff A2 & S.

Proof. <= Follows from Corollary 2.

= If Ay € S then V(5) does not satisfy (2) since 25 does not. So 2 does
not satisfy (2) and by Lemma 2 we get Ay # Ap. =

COROLLARY 3. If S € 8, A€ V(S) and A3 ¢ S, then Ay = Ap.

The proof is analogous to that of Corollary 2. It is enough to replace (2)
by (3) and (+) by (-).

CoROLLARY 3'. If S € § and 2 is a generic of V(S), then Ay = Ay
iff AUs ¢ S.

The proof is analogous to that of Corollary 2’. It is enough to replace (2)
by (3) and (+) by (-).

COROLLARY 4. If S € 8, €V(S) and A5 ¢ S, then Ay = Ay,

Proof. If A5 ¢ S then by (1.iv), A € S. If k£ & {5,6} and A, € Ir(B°),
then 2; satisfies (4). So V(S) satisfies (4) and 2 satisfies (4). Now by
Lemma 4 we get Ay = Ap. =

CoroLLARY 4'. If S € § and 2 is a generic of V(S), then Awmy = Ay
iff As € S.
Proof. <= Follows from Corollary 4.

= If A5 € S then V(5) does not satisfy (4) since 25 does not. So A does
not satisfy (4) and by Lemma 4 we get Ay # Ap. m

LEMMA 5. 2 satisfies
(5) qeny(z) = q(y ()
iff for every a € Ay we have a = a.

Proof. = Let a € A(y. Then by (2.ii) and (5) we have a = q(Q,[,)(a) =
Q(Q/()(a)-

< Let a € A. Then q(g,[,)(a) € Ay by (2.ii). So by (2.vi) and the assump-
tion we have q(a,[)(a) = (q(%[,)(a))’ = q(a,[,)(a). .
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LEMMA 6. If 2 does not satisfy (5) and |Ap| = 1, then |Apn \ Ap| > 2.

Proof. If 2 does not satisfy (5) then by Lemma 5 there exists a € A
with a # @. It cannot be the case that a € A since by assumption 2l is a 1-
element algebra. Consequently, a € A\ Ap. By (2.v) we have a e Agry. We
cannot have a’ € Ay since then, by (2.v), a = (a’) € A, which contradicts
the assumption that |Ay| = 1. Thus @’ € Ay \ Ap. =

LEmmA 7. If ’Ab’ >2anda € A(//) \141,7 then a’ # a and a € A(//) \Ab
So ‘A(//) \Ab‘ Z 2.

Proof. By (2.vi) and (2.v) we have a’ € A(». Since 2 is a nontrivial
Boolean algebra (see (2.v)), for b € A, we must have b’ # b. Therefore since
¢ is an endomorphism of 2 onto 2, we have a’ # a. Moreover, a’ ¢ A, since
otherwise a = (a')’ € Ay contrary to the assumptions. Thus a’ € Ay \ 4. =

LEMMA 8. If U5 € S, S € § and A is a generic of V(S), then |Aw\ Ayl
> 2.

Proof. 2 does not satisfy (5) since 2g does not. So if |Ay| = 1 we get the
statement by Lemma 6. Since 2 € S and g does not satisfy (4), it follows
that 2 does not satisfy (4) and by Lemma 4 we get Ay \ Ay # 0. Hence, if
|Ap| > 1, we get the statement by Lemma 7. u

If a set S belongs to S (see (1.iii)), then we shall write V(i1,...,ix)
instead of V(S), where i1,...,i; is the sequence of different indices of all
algebras from S written in increasing order. For example V(2,4) stands for

V({a,As}).
THEOREM 2. We have
(2.1) If Ae€V(2,...,6), then |Ap| = 1.
(2.2)  If A is a generic of V(2,...,6), then Ay \ Ay # 0 # Ay \ Ay and
|Apy \ Ap| > 2.
(2.3)  The subdirect product

Ql(Qa 3, 6) = ({<a2’ bs, b6>7 <b27 as, b6>7

<a2, bs, a6>, <bQ, bs, CG>, <bg, b3, b6>}§ +, ',/ )
of the direct product Ay xA3xAg is a minimal generic of V(2,...,6),
ie. g(V(2,...,6)) = 5.

Proof. (2.1) holds by Corollary 1; (2.2) holds by Corollaries 2', 3’ and
Lemma 8. It remains to prove (2.3). By (1.v) and (1.iv) we get a,...,2s €
HSP(2((2,3,6)). Therefore V(2,...,6) € HSP(2(2,3,6)) by (1.ii). Since
2A(2,3,6) € V(2,...,6), it follows that V(2,...,6) = HSP((2,3,6)). Thus
2(2,3,6) is a generic of V(2,...,6) and by (2.2) and (2.iv) it is a minimal
generic of V(2,...,6) since it contains five elements. m
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THEOREM 3. We have

(3.1) IfAeV(2,...,5), then |Ap| = 1.

(3.2)  If % is a generic of V(2,...,5), then Ay \ Ap # 0 # Ay \ Ap and
Ay \ Ap # 0.

(3.3)  The subdirect product

2A(2,3,5) = ({{az, b3, bs), (b2, as, bs), (b, b, as), (ba, b3, b5) }; +, )

of AoxAsxAs is a minimal generic of V(2,...,5), and consequently,
g(V(2,...,5)) =4.

Proof. (3.1) holds by Corollary 1; (3.2) holds by Corollaries 2', 3" and 4’;
(3.3) holds by (1.v) for {i,7} = {3,5}. Thus V(2,...,5) = HSP((2,3,5))
and we use the statement of (3.2). m

THEOREM 4. We have
(4.1) IleEV(3,...,6), then ‘Ab‘ =1 and A(+) = Ap.
(4.2)  If A is a generic of V(3,...,6), then Ay \ Ay # 0 and [Apy \ Ay
> 2.
(4.3)  The subdirect product
A(3,6) = ({{as, bg), (b3, ae), (b3, c6), (b3s be) }5 +, ")
of Az x Wg is a minimal generic of V(3,...,6), and consequently,
g(V(3,...,6)) =4.
Proof. (4.1) holds by Corollaries 1 and 2; (4.2) holds by Corollary 3" and
Lemma 8; (4.3) holds by (1.iv) and (1.v). =
THEOREM 5. We have

(5.1) If A e V(l, 3,4,5, 6), then A(+) \ Ap = 0.

(5.2)  If A is a generic of V(1,3,4,5,6), then |Ay] > 2, Ay \ Ay # 0 and
|Apny \ Ap| > 2.

(5.3)  The subdirect product
2A(1,3,5)
= ({(a1,b3,b5), (b1, b3, b5), (a1, a3, bs), (a1, b3, as), (b1, b3, as) }; +,-,")
of Ay x A3 xAs is a minimal generic of V(1,3,4,5,6). Consequently,
9(V(1,3,4,5,6)) = 5.

Proof. (5.1) holds by Corollary 2; (5.2) holds by Corollaries 1’, 3’ and
Lemma 8; (5.3) holds by (1.v) and (1.vi). m

THEOREM 6. We have

(6.1) If A€ V(3,4,5), then |Ap| =1 and Ay \ Ap = 0.
(6.2)  If A is a generic of V(3,4,5), then Aoy \ Ay # 0 # Apry \ Ap.
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(6.3)  The subdirect product
Q[(B’ 5) = ({<CL3, b5>7 <b37 b5>7 <b37 CL5>}; +, ’7/ )
of A3 x Ay is a minimal generic of V(3,4,5). So g(V(3,4,5)) = 3.

Proof. (6.1) holds by Corollaries 1 and 2; (6.2) holds by Corollaries 3’
and 4’; (6.3) holds by (1.v). m

The proofs of the next three theorems are analogous to those of Theo-
rems 4-06.

THEOREM 7. We have

(7.1) If A e V(2,4,5,6), then ’Ab‘ =1 and A() = Ap.

(7.2)  If A is a generic of V(2,4,5,6), then Ay \ Ap # 0 and [Apy \ Ay
> 2.

(7.3)  The subdirect product

Ql(27 6) - ({(CLQ, b6>a <b2a CL6>, <b27 66>a <b2a b6>}7 +) ')/ )
of Ao x WUg is a minimal generic of V(2,4,5,6). Consequently,
9(V(2,4,5,6)) =4
THEOREM 8. We have
(81) If A€ V(1,2,4,5,6), then A, \ Ay =
(8.2)  If A is a generic of V(l 2,4 ,6) then |Ab| >2, Ay \ Ay # 0 and
| Ay \ Ap| > 2.
(8.3) The subdirect product
A(1,2,5)
= ({<CL1, b25 b5>7 <b17 b27 b5>7 <al) az, b5>) <ala b?) a5>7 <bl7 b27 CL5>}; +) ')/ )
of A1 xAy xAs is a minimal generic of V(1,2,4,5,6). Consequently,
g(V(1,2,4,5,6)) = 5.
THEOREM 9. We have
(9.1)  If A€V(2,4,5), then |Ap| =1 and Ay \ Ay =
(9.2)  If A is a generic of V(2,4,5), then A )\ Ap # (Z) # Apny \ Ap.
(9.3)  The subdirect product
Q[(Qa 5) = ({<CL2, b5>7 <b27 b5>7 <b27 CL5>}; +7 '7/ )
of Uz x Us is a minimal generic of V(2,4,5). So g(V(2,4,5)) = 3.
THEOREM 10. We have

(10.1) If A€ V(2,3,4), then ]Ab] =1 and Aoy \ Ap =
(10.2)  If A is a generic of V(2,3,4), then A y\ A 75 # Aoy \ Ap.
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(10.3)  The subdirect product
Ql(27 3) = ({<CL2, b3>7 <b27 CL3>, <b27 b3>}7 =+, '7/)
of Uy x As is a minimal generic of V(2,3,4). So g(V(2,3,4)) = 3.

Proof. (10.1) holds by Corollaries 1 and 4; (10.2) holds by Corollaries 2/
and 3’; (10.3) holds by (1.v) and (10.2). =

THEOREM 11. We have
(11.1) If A e V(1,2,3,4), then A(//)\Ab:®
(11.2)  If A is a generic of V(1,2,3,4), then |Ap] > 2 and Ay \ Ap # 0 #
Ay \ Ap.
(11.3)  The subdirect product
Ql(lv 2, 3) = ({<a17 b25 b3>a <b15 b27 b3>’ <CL1, az, b3>7 <(11, b27 CL3>}; +, '7,)
of Ay xAaxWUAs is a minimal generic of V(1,2,3,4). Consequently,
9(vV(1,2,3,4)) = 4.
Proof. (11.1) holds by Corollary 4; (11.2) holds by Corollaries 1/, 2’
and 3'; (11.3) holds by (1.v). =
LEMMA 9. IfS € S, A is a generic of V(S) and Ay € V(S), then 2 satis-
fies none of the identities q(4)(v) = z, q.\(x) = z, qu(z) = z, qp)(z) = =,
a(z) ~ .
In fact, 24 satisfies none of these identities, so neither does 2.
LEMMA 10. A = Ay iff U satisfies
(6) @(z) ~ .
Proof. = If a € A, then a € Ay, so gp(a) = a by (2.ii).

< If (6) holds, then for every a € A we have a € Ay by (2.ii), so A C A4,
and A=Ay =

Similarly, we prove that

LEMMA 11. A = A(yy iff & satisfies

7) ain (@) ~ o
LEMMA 12. A = A, iff 2 satisfies
(8) q()(z) = .
LEMMA 13. A = Ay off A satisfies
(9) qery(z) = .
LEMMA 14. If U satisfies (5), then A = Ay iff 2 satisfies
(10) qry(z) ~ .

This follows at once from Lemma 13.
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THEOREM 12. We have

(121) If A e V(4), then |Ab’ =1 and A(+) = A() = A(//) = Ab-

(12.2)  If A is a generic of V(4), then A\ Ay # 0.

(12.3)  The algebra Ay is a minimal generic of V(4). So g(V(4)) = 2.
Proof. (12.1) holds by Corollaries 1-4; (12.2) holds by Lemmas 10 and 9.

In fact, 2 does not satisfy (6) since 4 does not. (12.3) holds by (1.ii). =
THEOREM 13. We have

(131) If A e V(1,4), then A(+) = A() = A(//) = Ab-
(13.2)  If A is a generic of V(1,4), then |Ap| > 2 and A\ Ay # 0.
(13.3)  The subdirect product
A(L,4) = ({{a1, ba), (b1, aa), (b1, ba) }35+,-)
of Ay x Ay is a minimal generic of V(1,4). So g(V(1,4)) = 3.
Proof. (13.1) holds by Corollaries 2-4; (13.2) holds by Corollary 1/, Lem-
mas 10 and 9; (13.3) holds by (1.ii). =

THEOREM 14. We have

(14.1)  If A€ V(2), then |Ap| =1 and Ay = Ay = Ay and A = Ay,
(14.2)  If A is a generic of V(2), then Ay \ Ap # 0.
(14.3)  The algebra Ay is a minimal generic of V(2). So g(V(2)) = 2.

Proof. (14.1) holds by Corollaries 1, 3, 4 and Lemma 11. In fact, V(2)
satisfies (7) since g does. (14.2) holds by Corollary 2/, and (14.3) is obvi-
ous. =

THEOREM 15. We have
(15.1) If A e V(l, 2), then A() = A(u) = Ay and A = A(Jr)
(15.2)  If ™A is a generic of V(1,2), then [Ap] > 2 and A4\ Ay # 0.
(15.3)  The subdirect product
A(1,2) = ({(a1, az), (a1, b2), (b1, b2) };+,-)
of Uy x AUz is a minimal generic of V(1,2). So g(V(1,2)) = 3.
Proof. (15.1) holds by Corollaries 3, 4 and Lemma 11; (15.2) holds by
Corollaries 1" and 2'; (15.3) is obvious. =
THEOREM 16. We have
(161) If A e V(2,4), then ’Ab’ =1 and A() = A(//) = Ab-
(16.2)  If & is a generic of V(2,4), then A1)\ Ay # 0 # A\ A4.
(16.3)  The subdirect product
91(27 4) = ({<a27 b4>’ <b2’ a’4>7 <b27 b4>}; +, '7/)
of Uz x Ay is a minimal generic of V(2,4). So g(V(2,4)) = 3.
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Proof. (16.1) holds by Corollaries 1, 3 and 4; (16.2) holds by Corollary 2’

and Lemmas 11 and 9; (16.3) holds by (1.ii). m

THEOREM 17. We have

(17.1)
(17.2)

(17.3)

Proof. (17.1) holds by Corollaries 3 and 4; (17.2) holds by Corollar-

If A€ V(1,2,4), then A() = A(//) = Ap.

If A is a generic of V(1,2,4), then |Ap| > 2 and A\ Ay # 0 #

The subdirect product

A(1,2,4) = ({{a1, az,bs), (a1, ba, ba), (a1, ba, as), (b1, ba, ba) }; +,-,")
of Ay x Az x Ay is a minimal generic of V(1,2,4). Consequently,

g(V(1,2,4)) = 4.

ies 1/, 2/, Lemmas 11 and 9; (17.3) is obvious. =

The proofs of Theorems 18-21 are analogous to those of Theorems 14-17,

respectively. However, we must replace Lemma 11 by Lemma 12.

THEOREM 18. We have

(18.1)
(18.2)
(18.3)

If A e V(?)), then ’Ab’ =1 and A(+) = A(//) =Ap and A = A()
If A is a generic of V(3), then Ay \ Ap # 0.
The algebra As is a minimal generic of V(3). So g(V(3)) = 2.

THEOREM 19. We have

(19.1)
(19.2)
(19.3)

If A € V(l, 3), then A(+) = A(//) =Ap and A = A()
If A is a generic of V(1,3), then |Ay] > 2 and (Ary\ Ap) # 0.
The subdirect product
Ql(lv 3) = ({<a17 CL3>, <(11, b3>a <b15 b3>}; =+, '7,)
of Ay x AUz is a minimal generic of V(1,3). So g(V(1,3)) = 3.

THEOREM 20. We have

(20.1)
(20.2)
(20.3)

If A€ V(3,4), then |Ap| =1 and Ay = Awy = Ap.
If A is a generic of V(3,4), then Ay \ Ay # 0 # A\ Agy.
The subdirect product
Ql(37 4) - ({<a37 b4>7 <b37 a4>7 <b37 b4>}7 =+, '7,)
of A3 x Ay is a minimal generic of V(3,4). So g(V(3,4)) = 3.

THEOREM 21. We have

(21.1)
(21.2)

If A€ V(1,3,4), then A(+) = A(//) = Ap.

If A is a generic of V(1,3,4), then |Ay| > 2 and Ay \ Ap # 0 #

A\ A,
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(21.3)  The subdirect product

91(17 37 4) = ({<al7 as, b4>7 <ala b37 b4>) <ala b3) a4>7 <b17 b3) b4>}a +, 'a,)
of Ay x Az x Ay is a minimal generic of V(1,3,4). Consequently,
g(V(1,3,4)) = 4.
THEOREM 22. We have
(22.1)  If A€ V(5,6), then |[Ap| =1 and Ay = Ay = Ay and A = Ay.
(22.2)  If A is a generic of V(5,6), then [Awy \ Ay > 2.
(22.3)  The algebra Ug is a minimal generic of V(5,6). So g(V(5,6)) = 3.
Proof. (22.1) holds by Corollaries 1-3 and Lemma 13; (22.2) holds by
Lemma 8; (22.3) is obvious by (1.iv). =
THEOREM 23. We have
(231) If A e V(l, 5, 6), then A(+) = A() = Ab and A = A(//).
(23.2)  If ™A is a generic of V(1,5,6), then |Ap| > 2 and |Apny \ Ap| > 2.
(23.3)  The algebra Ay x A5 is a minimal generic of V(1,5,6). Conse-
quently, g(V(1,5,6)) = 4.
Proof. (23.1) holds by Corollaries 2-3 and Lemma 13; (23.2) holds by
Corollary 1’ and Lemma 8; (23.3) is obvious, by (1.vi). =
THEOREM 24. We have
(24.1) If A e V(4,5,6), then ’Ab’ =1 and A(+) = A() = Ap.
(24.2)  If Ais a generic of V(4,5,6), then |Auy\ Ap| > 2 and A\ Apry # 0.
(24.3)  The subdirect product
91(47 6) = ({<CL4, b6>7 <b4) b6>) <b4) a6>7 <b47 06>7 }, +, '7/)
of A4 x U is a minimal generic of V(4,5,6). So g(V(4,5,6)) = 4.
Proof. (24.1) holds by Corollaries 1-3; (24.2) holds by Lemmas 8, 13
and 9; (24.3) is obvious, by (1.iv). m
THEOREM 25. We have
(25.1) IfA€V(1,4,5,6), then A(Jr) = A(.) = A,.
(25.2)  If ™A is a generic of V(1,4,5,6), then |Ay| > 2 and |A@y \ Ap| > 2
and A \ A(//) 7& @
(25.3)  The subdirect product
A(1,4,5) = ({{a1, b4, 5), (b1, ba, bs),
<al) a4, b5>) <CL1, b4) a5>7 <b17 b47 CL5>}; +) ')/ )
of A1 x Ay x AUz is a minimal generic of V(1,4,5,6). Consequently,
9(V(1,4,5,6)) = 5.

Proof. (25.1) holds by Corollaries 2 and 3; (25.2) holds by Corollary 1’
Lemmas 8, 13 and 9; (25.3) is obvious, by (1.vi). =
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THEOREM 26. We have
(26.1) If A € V(5), then |Ab| =1 and A(+) = A() = Ay and A = A(//) =
{reA: 2 =z}
(26.2)  If & is a generic of V(5), then Ay \ Ay # 0.
(26.3)  The algebra As is a minimal generic of V(5). So g(V(5)) = 2.
Proof. (26.1) holds by Corollaries 1-3 and Lemma 14; (26.2) holds by
Corollary 4'; (26.3) is obvious. m
THEOREM 27. We have
(27.1)  If A€ V(4,5), then [Ap| =1 and Ay = Ay = Ap.
(27.2)  If Ais a generic of V(4,5), then Ao\ Ay # 0 # A\ Ay,
(27.3)  The subdirect product
Ql(4’ 5) = ({<(14, b5>a <b4a b5>a <b47 CL5>}; +, 'a/)
of Ay x AUs is a minimal generic of V(4,5). So g(V(4,5)) = 3.
Proof. (27.1) holds by Corollaries 1-3; (27.2) holds by Corollary 4', Lem-
mas 14 and 9; (27.3) is obvious. m
Obviously we have:
(2.viii) A 1-element algebra of type 7, is a minimal generic of the trivial
variety V() (satisfying x =~ y).
It is known that
(2.x) The algebra 2; is a minimal generic of the variety V(1) = B.

In (2.vii) we noticed that g(B¢) = 6, which was proved in [4]. Now having
Corollaries 1'-3' and Lemma 8 of the present paper the reader can easily
see that g(B¢) > 6, which together with the algebra 2A(1,2,3,5) gives the
statement of (2.vii).

We hope that the observations and methods of our paper will also be
useful in other cases of finding minimal generics of varieties.

Some results contained in this paper were presented at the algebraic
seminar in the Institute of Mathematics of Wroctaw University.
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