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MINIMAL GENERICS FROM SUBVARIETIESOF THE CLONE EXTENSIONOF THE VARIETY OF BOOLEAN ALGEBRASBYJERZY P�ONKA (Wro
ªaw)Abstra
t. Let τ be a type of algebras without nullary fundamental operation sym-bols. We 
all an identity ϕ ≈ ψ of type τ 
lone 
ompatible if ϕ and ψ are the same variableor the sets of fundamental operation symbols in ϕ and ψ are nonempty and identi
al. Fora variety V of type τ we denote by V
c the variety of type τ de�ned by all 
lone 
ompati-ble identities from Id(V). We 
all Vc the 
lone extension of V. In this paper we des
ribealgebras and minimal generi
s of all subvarieties of Bc, where B is the variety of Booleanalgebras.1. Preliminaries. Let τ : F → N be a type of algebras, where F is theset of fundamental operation symbols and N is the set of positive integers.For a term ϕ of type τ , we denote by Var(ϕ) the set of variables o

urringin ϕ and by F (ϕ) the set of fundamental operation symbols o

urring in ϕ.For a variety V of type τ we denote by Id(V) the set of all identities of type

τ satis�ed in every algebra from V. If Σ is a set of identities of type τ wedenote by Mod(Σ) the 
lass of all algebras of type τ satisfying every identityfrom Σ. We shall use variables x, y, z, u, v, x1, . . . , xk, . . . , where k < ω. Anidentity ϕ ≈ ψ of type τ is 
alled 
lone 
ompatible if ϕ and ψ are the samevariable or F (ϕ) = F (ψ) 6= ∅. For a variety V of type τ we denote by Vcthe variety of type τ de�ned by all 
lone 
ompatible identities from Id(V).We 
all Vc the 
lone extension of V (see [2℄�[9℄). In [2℄, [4℄ and [6℄ somerepresentation theorems for algebras from Vc were presented.Let A = (A;FA) be an algebra of type τ . If fA is a fundamental operationfrom FA we shall often omit the upper index A in fA when it is 
lear thatwe 
onsider an operation in A. An endomorphism r : A → A of A is 
alleda splitting retra
tion of A if it is idempotent (r ◦ r = r) and for all f ∈ F ,
a1, . . . , aτ(f) ∈ A and k = 1, . . . , τ(f), we have

r(fA(a1, . . . , aτ(f))) = fA(a1, . . . , ak−1, r(ak), ak+1, . . . , aτ(f)).2000 Mathemati
s Subje
t Classi�
ation: 08A05, 08A35, 08B15, 08B26.Key words and phrases: varieties, subvarieties, 
lone 
ompatible identities, minimalgeneri
s. [131℄ 
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An algebra A is 
alled a generi
 of a variety V if HSP(A) = V (see [1,Appendix 4℄). We 
all a generi
 A = (A;FA) of V a minimal generi
 of Vif for every generi
 B = (B;FB) of V we have |B| ≥ |A|. Let A = (A;FA)be a minimal generi
 of V. We put g(V) = |A|. In the following we restri
tour 
onsiderations to the type τb : {+, ·,′ } → N where τb(+) = τb(·) = 2 and
τb(

′) = 1. We denote by B the variety of Boolean algebras of type τb.Let us 
onsider the following six algebras:
• A1 = ({a1, b1}; +, ·,

′ ) where for x, y ∈ {a1, b1} we have
x+ y =

{

x if x = y,
b1 otherwise, x · y =

{

x if x = y,
a1 otherwise,

a′1 = b1, b′1 = a1;

• A2 = ({a2, b2}; +, ·,
′ ) where

x+ y =

{

x if x = y,

b2 otherwise,
x · y = x′ = b2 for every x, y ∈ {a2, b2};

• A3 = ({a3, b3}; +, ·,
′ ) where

x · y =

{

x if x = y,

b3 otherwise,
x+ y = x′ = b3 for every x, y ∈ {a3, b3};

• A4 = ({a4, b4}; +, ·,
′ ) where

x+ y = x · y = x′ = b4 for every x, y ∈ {a4, b4};
• A5 = ({a5, b5}; +, ·,

′ ) where
x′ = x, x+ y = x · y = b5 for every x, y ∈ {a5, b5};

• A6 = ({a6, b6, c6}; +, ·,
′ ) where

a′6 = c6, c′6 = a6, b′6 = b6,

x+ y = x · y = b6 for every x, y ∈ {a6, b6, c6}.We see that no two of these algebras are isomorphi
 and A1 is a 2-elementBoolean algebra.It follows from [3, Theorem 2.10 and remarks on p. 190℄ that(1.i) An algebra A of type τb belongs to Bc and is subdire
tly irredu
iblei� A is isomorphi
 to one of the algebras A1, . . . ,A6.De�ne Ir(Bc) = {A1, . . . ,A6}. If V is a subvariety of Bc and an algebra
B belongs to V and is subdire
tly irredu
ible then by (1.i) it has to beisomorphi
 to some algebra from Ir(Bc). Sin
e by Birkho�'s theorem (see
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[1, Theorem 20.3℄) every variety is uniquely determined by its subdire
tlyirredu
ible algebras, by (1.i) we have(1.ii) Every subvariety V of Bc is uniquely determined by the set Ir(V) =
V ∩ Ir(Bc), namely V = HSP(Ir(V)).If V is a subvariety of Bc and S = V ∩ Ir(Bc) we shall write V = V(S). So onewishes to determine whi
h subsets of Ir(Bc) are of the form Ir(V) for some

V ∈ L(Bc), where L(Bc) is the latti
e of subvarieties of Bc.It was shown in [5℄ that(1.iii) The family S of all sets Ir(V) with V ∈ L(Bc) 
onsists of the follow-ing 29 sets: {A1, . . . ,A6}, {A2, . . . ,A6}, {A2, . . . ,A5}, {A3, . . . ,A6},
{A1,A3,A4,A5,A6}, {A3,A4,A5}, {A2,A4,A5,A6}, {A1,A2,A4,

A5,A6}, {A2,A4,A5}, {A2,A3,A4}, {A1,A2,A3,A4}, {A4}, {A1,A4},
{A2}, {A1,A2}, {A2,A4}, {A1,A2,A4}, {A3}, {A1,A3}, {A3,A4},
{A1,A3,A4}, {A5,A6}, {A1,A5,A6}, {A4,A5,A6}, {A1,A4,A5,A6},
{A5}, {A4,A5}, ∅, {A1}. Moreover, the latti
e L(Bc) is isomorphi
to (S;⊆).Also in [5, p. 164℄ we showed that(1.iv) A5 ∈ HSP({A6}).(1.v) If i, j ∈ {2, 3, 5, 6}, i 6= j and {i, j} 6= {5, 6},then A4 ∈ HSP({Ai,Aj}).(1.vi) A6 ∈ HSP({A1,A5}).By (1.i) we have(1.vii) Bc = V({A1, . . . ,A6}).For an arbitrary variety V let CL(V) denote the set of all 
lone 
ompatibleidentities from Id(V). The set CL(V) need not be an equational theory. It isif V is the variety of distributive latti
es (see [8℄). This is also the 
ase forevery variety V of groupoids. However, CL(B) is not an equational theory. Infa
t, the identity x+x · y ≈ x+x · z is 
lone 
ompatible but its 
onsequen
e

x+x ·y ≈ x+x ·y′ is not; here we adopt the 
onvention that · binds strongerthan + and we omit suitable parentheses.In [9℄ we des
ribed forms of identities and we 
onstru
ted equationalbases of all subvarieties of Bc.2. Representations and minimal generi
s. By Birkho�'s subdire
tirredu
ibility theorem and (1.i)�(1.iii) we already have:If an algebra A belongs to V(S), where S ∈ S, then A is isomorphi
to a subdire
t produ
t of some algebras from S.To get a more illustrative representation of algebras from subvarieties of Bcwe need Theorem 1 below, whi
h is in fa
t an appli
ation of more general
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theorems (see [2, Se
tion 3℄, [4, Se
tion 2℄, [6, Se
tion 3℄) to the variety Bc.However, in Theorem 1 we give more details spe
i�
ally for the variety Bc.We put

q(+)(x) = x+ x,

q(·)(x) = x · x,

q(′)(x) = x′,

q(′′)(x) = (x′)′,

qb(x) = q(+)(q(·)(q(′′)(x))).Theorem 1. If an algebra A = (A; +, ·,′ ) belongs to Bc, then the follow-ing 
onditions hold.(2.i) Ea
h of the mappings qA

(+), qA

(·), qA

(′′), qA

b is a splitting retra
tion of Aand any two of them 
ommute.(2.ii) Put A(+) = qA

(+)(A), A(·) = qA

(·)(A), A(′′) = qA

(′′)(A), Ab = qA

b (A).Then qA

(+) is the identity on A(+), qA

(·) is the identity on A(·), qA

(′′) isthe identity on A(′′) and qA

b is the identity on Ab.(2.iii) If a∈A, then qA
α1

(qA
α2

(. . . (qA
αn

(a)) . . .))=qA

b (a) for every α1, . . . , αnin {(+), (·), (′′)} with |{α1, . . . , αn}| > 1.(2.iv) A(+) ∩A(·) = A(+) ∩A(′′) = A(·) ∩A(′′) = Ab.(2.v) The algebra A(+) = (A(+); +|A(+)) is a +-semilatti
e, the algebra
A(·) =(A(·); ·|A(·)) is a ·-semilatti
e, the algebra A(′′) =(A(′′);

′|A(′′))is an algebra with involution, i.e. it satis�es (x′)′ = x, and the algebra
Ab = (Ab; {+, ·,

′ }|Ab) belongs to B.(2.vi) If a, b ∈ A, then a+ b = qA

(+)(a) + qA

(+)(b), a · b = qA

(·)(a) · q
A

(·)(b) and
a′ = (qA

(′′)(a))
′.The 
onstru
tion used in Theorem 1 was 
alled a 
lone extension of analgebra A in [2℄ and [4℄, and a 
lone network over a network of splittingretra
tions in [6℄.Example 1. Let a ∈ A(+) and b ∈ A(·). Then by (2.vi), (2.ii), (2.iii),(2.i) we have:

a+ b = qA

(+)(a) + qA

(+)(b) = qA

(+)(a) + qA

(+)(q
A

(·)(b))

= qA

(+)(a) + qA

b (b) = qA

b (a) + qA

b (b).We also have a′ = (qA

(′′)(a))
′ = (qA

(′′)(q
A

(+)(a)))
′ = (qA

b (a))′.(2.vii) g(Bc) = 6. Moreover, the subdire
t produ
t
A(1, 2, 3, 5) = ({〈a1, a2, b3, b5〉, 〈a1, b2, a3, b5〉, 〈a1, b2, b3, b5〉,

〈b1, b2, b3, b5〉, 〈a1, b2, b3, a5〉, 〈b1, b2, b3, a5〉}; +, ·,
′ )of the dire
t produ
t A1 × A2 × A3 × A5 is a minimal generi
 of Bc.
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Proof. The �rst statement of (2.vii) holds by Theorem 4 from [4℄. By (1.v)and (1.vi) we have {A1, . . . ,A6} ⊆ HSP(A(1, 2, 3, 5)), so by (1.vii) we have
Bc ⊆ HSP(A(1, 2, 3, 5)). But A(1, 2, 3, 5) ∈ Bc by (1.i), so HSP(A(1, 2, 3, 5))
= Bc.To �nd minimal generi
s of proper subvarieties of Bc we need some lem-mas.From now on we assume that A = (A; +, ·,′ ) belongs to Bc so it is ofthe form des
ribed in Theorem 1.Let us re
ord the following obvious observation. If e is an identity of type
τ b and A is a generi
 of V(S), S ∈ S, then e ∈ Id(A) i� e ∈ Id(V(S)) i�for every Ak ∈ S we have e ∈ Id(Ak). So e 6∈ Id(A) i� there is Ak ∈ Swith e 6∈ Id(Ak). This observation will be useful in the proofs of some of the
orollaries below.Lemma 1. |Ab| = 1 i� A satis�es(1) qb(x) ≈ qb(y).Proof. ⇒ Follows from the fa
t that for every a, b ∈ A we have
qA

b (a), qA

b (b) ∈ Ab by (2.ii).
⇐ If a, b ∈ Ab, then by (2.ii) and (1) we have a = qA

b (a) = qA

b (b) = b.Lemma 2. A(+) \Ab = ∅, i.e. A(+) = Ab, i� A satis�es(2) q(+)(x) ≈ qb(x).Proof. ⇒ By (2.iv) we have Ab ⊆ A(+), so A(+) \ Ab = ∅ i� A(+) = Ab.So if A(+) = Ab, then for a ∈ A we have q(+)(a) ∈ Ab. Then by (2.ii) and(2.iii) we have qA

(+)(a) = qA

b (qA

(+)(a)) = qA

b (a).
⇐ Obvious.The proofs of the next two lemmas are analogous to that of Lemma 2. Itis enough to repla
e (+) by (·) and (+) by (′′), respe
tively.Lemma 3. A(·) = Ab i� A satis�es(3) q(·)(x) ≈ qb(x).Lemma 4. A(′′) = Ab i� A satis�es(4) q(′′)(x) ≈ qb(x).Corollary 1. If S ∈ S, A ∈ V(S) and A1 6∈ S, then |Ab| = 1.Proof. If k 6= 1 and Ak ∈ Ir(Bc), then Ak satis�es (1). By (1.ii) we have

V(S) = HSP(S), so V(S) satis�es (1) and 
onsequently A satis�es (1). Nowby Lemma 1, Ab from A is 1-element.Corollary 1′. If S ∈ S and A is a generi
 of V(S), then |Ab| = 1 i�
A1 6∈ S.
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Proof. ⇐ Follows from Corollary 1.
⇒ If A1 ∈ S, then V(S) does not satisfy (1) sin
e A1 does not. So Adoes not satisfy (1). Now by Lemma 1 we get |Ab| > 1.Corollary 2. If S ∈ S, A ∈ V(S) and A2 6∈ S, then A(+) = Ab.Proof. If k 6= 2 and Ak ∈ Ir(Bc), then Ak satis�es (2). By (1.ii) we have

V(S) = HSP(S), so V(S) satis�es (2) and 
onsequently A does. Now byLemma 2 we have A(+) = Ab.Corollary 2′. If S ∈ S and A is a generi
 of V(S), then A(+) = Abi� A2 6∈ S.Proof. ⇐ Follows from Corollary 2.
⇒ If A2 ∈ S then V(S) does not satisfy (2) sin
e A2 does not. So A doesnot satisfy (2) and by Lemma 2 we get A(+) 6= Ab.Corollary 3. If S ∈ S, A ∈ V(S) and A3 6∈ S, then A(·) = Ab.The proof is analogous to that of Corollary 2. It is enough to repla
e (2)by (3) and (+) by (·).Corollary 3′. If S ∈ S and A is a generi
 of V(S), then A(·) = Abi� A3 6∈ S.The proof is analogous to that of Corollary 2′. It is enough to repla
e (2)by (3) and (+) by (·).Corollary 4. If S ∈ S, A ∈ V(S) and A5 6∈ S, then A(′′) = Ab.Proof. If A5 6∈ S then by (1.iv), A6 6∈ S. If k 6∈ {5, 6} and Ak ∈ Ir(Bc),then Ak satis�es (4). So V(S) satis�es (4) and A satis�es (4). Now byLemma 4 we get A(′′) = Ab.Corollary 4′. If S ∈ S and A is a generi
 of V(S), then A(′′) = Abi� A5 6∈ S.Proof. ⇐ Follows from Corollary 4.
⇒ If A5 ∈ S then V(S) does not satisfy (4) sin
e A5 does not. So A doesnot satisfy (4) and by Lemma 4 we get A(′′) 6= Ab.Lemma 5. A satis�es(5) q(′′)(x) ≈ q(′)(x)i� for every a ∈ A(′′) we have a′ = a.Proof. ⇒ Let a ∈ A(′′). Then by (2.ii) and (5) we have a = qA

(′′)(a) =

qA

(′)(a).
⇐ Let a ∈ A. Then qA

(′′)(a) ∈ A(′′) by (2.ii). So by (2.vi) and the assump-tion we have qA

(′)(a) = (qA

(′′)(a))
′ = qA

(′′)(a).
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Lemma 6. If A does not satisfy (5) and |Ab| = 1, then |A(′′) \Ab| ≥ 2.Proof. If A does not satisfy (5) then by Lemma 5 there exists a ∈ A(′′)with a 6= a′. It 
annot be the 
ase that a ∈ Ab sin
e by assumption Ab is a 1-element algebra. Consequently, a ∈ A(′′)\Ab. By (2.v) we have a′ ∈ A(′′). We
annot have a′ ∈ Ab sin
e then, by (2.v), a = (a′)′ ∈ Ab, whi
h 
ontradi
tsthe assumption that |Ab| = 1. Thus a′ ∈ A(′′) \ Ab.Lemma 7. If |Ab| ≥ 2 and a ∈ A(′′) \Ab, then a′ 6= a and a′ ∈ A(′′) \Ab.So |A(′′) \Ab| ≥ 2.Proof. By (2.vi) and (2.v) we have a′ ∈ A(′′). Sin
e Ab is a nontrivialBoolean algebra (see (2.v)), for b ∈ Ab we must have b′ 6= b. Therefore sin
e
qA

b is an endomorphism of A onto Ab, we have a′ 6= a. Moreover, a′ 6∈ Ab sin
eotherwise a = (a′)′ ∈ Ab 
ontrary to the assumptions. Thus a′ ∈ A(′′) \Ab.Lemma 8. If A6 ∈ S, S ∈ S and A is a generi
 of V(S), then |A(′′)\Ab|
≥ 2.Proof. A does not satisfy (5) sin
e A6 does not. So if |Ab| = 1 we get thestatement by Lemma 6. Sin
e A6 ∈ S and A6 does not satisfy (4), it followsthat A does not satisfy (4) and by Lemma 4 we get A(′′) \Ab 6= ∅. Hen
e, if
|Ab| > 1, we get the statement by Lemma 7.If a set S belongs to S (see (1.iii)), then we shall write V(i1, . . . , ik)instead of V(S), where i1, . . . , ik is the sequen
e of di�erent indi
es of allalgebras from S written in in
reasing order. For example V(2, 4) stands for
V({A2,A4}).Theorem 2. We have(2.1) If A ∈ V(2, . . . , 6), then |Ab| = 1.(2.2) If A is a generi
 of V(2, . . . , 6), then A(+) \Ab 6= ∅ 6= A(·) \Ab and

|A(′′) \Ab| ≥ 2.(2.3) The subdire
t produ
t
A(2, 3, 6) = ({〈a2, b3, b6〉, 〈b2, a3, b6〉,

〈a2, b3, a6〉, 〈b2, b3, c6〉, 〈b2, b3, b6〉}; +, ·,
′ )of the dire
t produ
t A2×A3×A6 is a minimal generi
 of V(2, . . . , 6),i.e. g(V(2, . . . , 6)) = 5.Proof. (2.1) holds by Corollary 1; (2.2) holds by Corollaries 2′, 3′ andLemma 8. It remains to prove (2.3). By (1.v) and (1.iv) we get A2, . . . ,A6 ∈

HSP(A(2, 3, 6)). Therefore V(2, . . . , 6) ⊆ HSP(A(2, 3, 6)) by (1.ii). Sin
e
A(2, 3, 6) ∈ V(2, . . . , 6), it follows that V(2, . . . , 6) = HSP(A(2, 3, 6)). Thus
A(2, 3, 6) is a generi
 of V(2, . . . , 6) and by (2.2) and (2.iv) it is a minimalgeneri
 of V(2, . . . , 6) sin
e it 
ontains �ve elements.
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Theorem 3. We have(3.1) If A ∈ V(2, . . . , 5), then |Ab| = 1.(3.2) If A is a generi
 of V(2, . . . , 5), then A(+) \Ab 6= ∅ 6= A(·) \Ab and

A(′′) \ Ab 6= ∅.(3.3) The subdire
t produ
t
A(2, 3, 5) = ({〈a2, b3, b5〉, 〈b2, a3, b5〉, 〈b2, b3, a5〉, 〈b2, b3, b5〉}; +, ·,

′ )of A2×A3×A5 is a minimal generi
 of V(2, . . . , 5), and 
onsequently ,
g(V(2, . . . , 5)) = 4.Proof. (3.1) holds by Corollary 1; (3.2) holds by Corollaries 2′, 3′ and 4′;(3.3) holds by (1.v) for {i, j} = {3, 5}. Thus V(2, . . . , 5) = HSP(A(2, 3, 5))and we use the statement of (3.2).Theorem 4. We have(4.1) If A ∈ V(3, . . . , 6), then |Ab| = 1 and A(+) = Ab.(4.2) If A is a generi
 of V(3, . . . , 6), then A(·) \ Ab 6= ∅ and |A(′′) \ Ab|
≥ 2.(4.3) The subdire
t produ
t

A(3, 6) = ({〈a3, b6〉, 〈b3, a6〉, 〈b3, c6〉, 〈b3, b6〉}; +, ·,
′ )of A3 × A6 is a minimal generi
 of V(3, . . . , 6), and 
onsequently ,

g(V(3, . . . , 6)) = 4.Proof. (4.1) holds by Corollaries 1 and 2; (4.2) holds by Corollary 3′ andLemma 8; (4.3) holds by (1.iv) and (1.v).Theorem 5. We have(5.1) If A ∈ V(1, 3, 4, 5, 6), then A(+) \Ab = ∅.(5.2) If A is a generi
 of V(1, 3, 4, 5, 6), then |Ab| ≥ 2, A(·) \ Ab 6= ∅ and
|A(′′) \Ab| ≥ 2.(5.3) The subdire
t produ
t
A(1, 3, 5)

= ({〈a1, b3, b5〉, 〈b1, b3, b5〉, 〈a1, a3, b5〉, 〈a1, b3, a5〉, 〈b1, b3, a5〉}; +, ·,
′ )of A1×A3×A5 is a minimal generi
 of V(1, 3, 4, 5, 6). Consequently ,

g(V(1, 3, 4, 5, 6)) = 5.Proof. (5.1) holds by Corollary 2; (5.2) holds by Corollaries 1′, 3′ andLemma 8; (5.3) holds by (1.v) and (1.vi).Theorem 6. We have(6.1) If A ∈ V(3, 4, 5), then |Ab| = 1 and A(+) \Ab = ∅.(6.2) If A is a generi
 of V(3, 4, 5), then A(·) \Ab 6= ∅ 6= A(′′) \Ab.
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(6.3) The subdire
t produ
t
A(3, 5) = ({〈a3, b5〉, 〈b3, b5〉, 〈b3, a5〉}; +, ·,

′ )of A3 × A5 is a minimal generi
 of V(3, 4, 5). So g(V(3, 4, 5)) = 3.Proof. (6.1) holds by Corollaries 1 and 2; (6.2) holds by Corollaries 3′and 4′; (6.3) holds by (1.v).The proofs of the next three theorems are analogous to those of Theo-rems 4�6.Theorem 7. We have(7.1) If A ∈ V(2, 4, 5, 6), then |Ab| = 1 and A(·) = Ab.(7.2) If A is a generi
 of V(2, 4, 5, 6), then A(+) \Ab 6= ∅ and |A(′′) \Ab|
≥ 2.(7.3) The subdire
t produ
t

A(2, 6) = ({〈a2, b6〉, 〈b2, a6〉, 〈b2, c6〉, 〈b2, b6〉}; +, ·,
′ )of A2 × A6 is a minimal generi
 of V(2, 4, 5, 6). Consequently ,

g(V(2, 4, 5, 6)) = 4.Theorem 8. We have(8.1) If A ∈ V(1, 2, 4, 5, 6), then A(·) \ Ab = ∅.(8.2) If A is a generi
 of V(1, 2, 4, 5, 6), then |Ab| ≥ 2, A(+) \Ab 6= ∅ and
|A(′′) \Ab| ≥ 2.(8.3) The subdire
t produ
t
A(1, 2, 5)

= ({〈a1, b2, b5〉, 〈b1, b2, b5〉, 〈a1, a2, b5〉, 〈a1, b2, a5〉, 〈b1, b2, a5〉}; +, ·,
′ )of A1×A2×A5 is a minimal generi
 of V(1, 2, 4, 5, 6). Consequently ,

g(V(1, 2, 4, 5, 6)) = 5.Theorem 9. We have(9.1) If A ∈ V(2, 4, 5), then |Ab| = 1 and A(·) \Ab = ∅.(9.2) If A is a generi
 of V(2, 4, 5), then A(+) \ Ab 6= ∅ 6= A(′′) \ Ab.(9.3) The subdire
t produ
t
A(2, 5) = ({〈a2, b5〉, 〈b2, b5〉, 〈b2, a5〉}; +, ·,

′ )of A2 × A5 is a minimal generi
 of V(2, 4, 5). So g(V(2, 4, 5)) = 3.Theorem 10. We have(10.1) If A ∈ V(2, 3, 4), then |Ab| = 1 and A(′′) \ Ab = ∅.(10.2) If A is a generi
 of V(2, 3, 4), then A(+) \ Ab 6= ∅ 6= A(·) \Ab.
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(10.3) The subdire
t produ
t

A(2, 3) = ({〈a2, b3〉, 〈b2, a3〉, 〈b2, b3〉}; +, ·,
′ )of A2 ×A3 is a minimal generi
 of V(2, 3, 4). So g(V(2, 3, 4)) = 3.Proof. (10.1) holds by Corollaries 1 and 4; (10.2) holds by Corollaries 2′and 3′; (10.3) holds by (1.v) and (10.2).Theorem 11. We have(11.1) If A ∈ V(1, 2, 3, 4), then A(′′) \Ab = ∅.(11.2) If A is a generi
 of V(1, 2, 3, 4), then |Ab| ≥ 2 and A(+) \Ab 6= ∅ 6=

A(·) \Ab.(11.3) The subdire
t produ
t
A(1, 2, 3) = ({〈a1, b2, b3〉, 〈b1, b2, b3〉, 〈a1, a2, b3〉, 〈a1, b2, a3〉}; +, ·,

′ )of A1×A2×A3 is a minimal generi
 of V(1, 2, 3, 4). Consequently ,
g(V(1, 2, 3, 4)) = 4.Proof. (11.1) holds by Corollary 4; (11.2) holds by Corollaries 1′, 2′and 3′; (11.3) holds by (1.v).Lemma 9. If S ∈ S, A is a generi
 of V(S) and A4 ∈ V(S), then A satis-�es none of the identities q(+)(x) ≈ x, q(·)(x) ≈ x, q(′′)(x) ≈ x, q(′)(x) ≈ x,

qb(x) ≈ x.In fa
t, A4 satis�es none of these identities, so neither does A.Lemma 10. A = Ab i� A satis�es(6) qb(x) ≈ x.Proof. ⇒ If a ∈ A, then a ∈ Ab, so qb(a) = a by (2.ii).
⇐ If (6) holds, then for every a ∈ A we have a ∈ Ab by (2.ii), so A ⊆ Aband A = Ab.Similarly, we prove thatLemma 11. A = A(+) i� A satis�es(7) q(+)(x) ≈ x.Lemma 12. A = A(·) i� A satis�es(8) q(·)(x) ≈ x.Lemma 13. A = A(′′) i� A satis�es(9) q(′′)(x) ≈ x.Lemma 14. If A satis�es (5), then A = A(′′) i� A satis�es(10) q(′)(x) ≈ x.This follows at on
e from Lemma 13.
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Theorem 12. We have(12.1) If A ∈ V(4), then |Ab| = 1 and A(+) = A(·) = A(′′) = Ab.(12.2) If A is a generi
 of V(4), then A \Ab 6= ∅.(12.3) The algebra A4 is a minimal generi
 of V(4). So g(V(4)) = 2.Proof. (12.1) holds by Corollaries 1�4; (12.2) holds by Lemmas 10 and 9.In fa
t, A does not satisfy (6) sin
e A4 does not. (12.3) holds by (1.ii).Theorem 13. We have(13.1) If A ∈ V(1, 4), then A(+) = A(·) = A(′′) = Ab.(13.2) If A is a generi
 of V(1, 4), then |Ab| ≥ 2 and A \ Ab 6= ∅.(13.3) The subdire
t produ
t
A(1, 4) = ({〈a1, b4〉, 〈b1, a4〉, 〈b1, b4〉}; ; +, ·,

′ )of A1 × A4 is a minimal generi
 of V(1, 4). So g(V(1, 4)) = 3.Proof. (13.1) holds by Corollaries 2�4; (13.2) holds by Corollary 1′, Lem-mas 10 and 9; (13.3) holds by (1.ii).Theorem 14. We have(14.1) If A ∈ V(2), then |Ab| = 1 and A(·) = A(′′) = Ab and A = A(+).(14.2) If A is a generi
 of V(2), then A(+) \Ab 6= ∅.(14.3) The algebra A2 is a minimal generi
 of V(2). So g(V(2)) = 2.Proof. (14.1) holds by Corollaries 1, 3, 4 and Lemma 11. In fa
t, V(2)satis�es (7) sin
e A2 does. (14.2) holds by Corollary 2′, and (14.3) is obvi-ous.Theorem 15. We have(15.1) If A ∈ V(1, 2), then A(·) = A(′′) = Ab and A = A(+).(15.2) If A is a generi
 of V(1, 2), then |Ab| ≥ 2 and A(+) \Ab 6= ∅.(15.3) The subdire
t produ
t
A(1, 2) = ({〈a1, a2〉, 〈a1, b2〉, 〈b1, b2〉}; +, ·,

′ )of A1 × A2 is a minimal generi
 of V(1, 2). So g(V(1, 2)) = 3.Proof. (15.1) holds by Corollaries 3, 4 and Lemma 11; (15.2) holds byCorollaries 1′ and 2′; (15.3) is obvious.Theorem 16. We have(16.1) If A ∈ V(2, 4), then |Ab| = 1 and A(·) = A(′′) = Ab.(16.2) If A is a generi
 of V(2, 4), then A(+) \Ab 6= ∅ 6= A \A(+).(16.3) The subdire
t produ
t
A(2, 4) = ({〈a2, b4〉, 〈b2, a4〉, 〈b2, b4〉}; +, ·,

′ )of A2 × A4 is a minimal generi
 of V(2, 4). So g(V(2, 4)) = 3.
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Proof. (16.1) holds by Corollaries 1, 3 and 4; (16.2) holds by Corollary 2′and Lemmas 11 and 9; (16.3) holds by (1.ii).Theorem 17. We have(17.1) If A ∈ V(1, 2, 4), then A(·) = A(′′) = Ab.(17.2) If A is a generi
 of V(1, 2, 4), then |Ab| ≥ 2 and A(+) \ Ab 6= ∅ 6=

A \ A(+).(17.3) The subdire
t produ
t
A(1, 2, 4) = ({〈a1, a2, b4〉, 〈a1, b2, b4〉, 〈a1, b2, a4〉, 〈b1, b2, b4〉}; +, ·,

′ )of A1 × A2 × A4 is a minimal generi
 of V(1, 2, 4). Consequently ,
g(V(1, 2, 4)) = 4.Proof. (17.1) holds by Corollaries 3 and 4; (17.2) holds by Corollar-ies 1′, 2′, Lemmas 11 and 9; (17.3) is obvious.The proofs of Theorems 18�21 are analogous to those of Theorems 14�17,respe
tively. However, we must repla
e Lemma 11 by Lemma 12.Theorem 18. We have(18.1) If A ∈ V(3), then |Ab| = 1 and A(+) = A(′′) = Ab and A = A(·).(18.2) If A is a generi
 of V(3), then A(·) \ Ab 6= ∅.(18.3) The algebra A3 is a minimal generi
 of V(3). So g(V(3)) = 2.Theorem 19. We have(19.1) If A ∈ V(1, 3), then A(+) = A(′′) = Ab and A = A(·).(19.2) If A is a generi
 of V(1, 3), then |Ab| ≥ 2 and (A(·) \Ab) 6= ∅.(19.3) The subdire
t produ
t

A(1, 3) = ({〈a1, a3〉, 〈a1, b3〉, 〈b1, b3〉}; +, ·,
′ )of A1 × A3 is a minimal generi
 of V(1, 3). So g(V(1, 3)) = 3.Theorem 20. We have(20.1) If A ∈ V(3, 4), then |Ab| = 1 and A(+) = A(′′) = Ab.(20.2) If A is a generi
 of V(3, 4), then A(·) \Ab 6= ∅ 6= A \A(·).(20.3) The subdire
t produ
t

A(3, 4) = ({〈a3, b4〉, 〈b3, a4〉, 〈b3, b4〉}; +, ·,
′ )of A3 × A4 is a minimal generi
 of V(3, 4). So g(V(3, 4)) = 3.Theorem 21. We have(21.1) If A ∈ V(1, 3, 4), then A(+) = A(′′) = Ab.(21.2) If A is a generi
 of V(1, 3, 4), then |Ab| ≥ 2 and A(·) \ Ab 6= ∅ 6=

A \ A(·).
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(21.3) The subdire
t produ
t
A(1, 3, 4) = ({〈a1, a3, b4〉, 〈a1, b3, b4〉, 〈a1, b3, a4〉, 〈b1, b3, b4〉}; +, ·,

′ )of A1 × A3 × A4 is a minimal generi
 of V(1, 3, 4). Consequently ,
g(V(1, 3, 4)) = 4.Theorem 22. We have(22.1) If A ∈ V(5, 6), then |Ab| = 1 and A(+) = A(·) = Ab and A = A(′′).(22.2) If A is a generi
 of V(5, 6), then |A(′′) \Ab| ≥ 2.(22.3) The algebra A6 is a minimal generi
 of V(5, 6). So g(V(5, 6)) = 3.Proof. (22.1) holds by Corollaries 1�3 and Lemma 13; (22.2) holds byLemma 8; (22.3) is obvious by (1.iv).Theorem 23. We have(23.1) If A ∈ V(1, 5, 6), then A(+) = A(·) = Ab and A = A(′′).(23.2) If A is a generi
 of V(1, 5, 6), then |Ab| ≥ 2 and |A(′′) \Ab| ≥ 2.(23.3) The algebra A1 × A5 is a minimal generi
 of V(1, 5, 6). Conse-quently , g(V(1, 5, 6)) = 4.Proof. (23.1) holds by Corollaries 2�3 and Lemma 13; (23.2) holds byCorollary 1′ and Lemma 8; (23.3) is obvious, by (1.vi).Theorem 24. We have(24.1) If A ∈ V(4, 5, 6), then |Ab| = 1 and A(+) = A(·) = Ab.(24.2) If A is a generi
 of V(4, 5, 6), then |A(′′)\Ab| ≥ 2 and A\A(′′) 6= ∅.(24.3) The subdire
t produ
t

A(4, 6) = ({〈a4, b6〉, 〈b4, b6〉, 〈b4, a6〉, 〈b4, c6〉, }; +, ·,
′ )of A4 ×A6 is a minimal generi
 of V(4, 5, 6). So g(V(4, 5, 6)) = 4.Proof. (24.1) holds by Corollaries 1�3; (24.2) holds by Lemmas 8, 13and 9; (24.3) is obvious, by (1.iv).Theorem 25. We have(25.1) If A ∈ V(1, 4, 5, 6), then A(+) = A(·) = Ab.(25.2) If A is a generi
 of V(1, 4, 5, 6), then |Ab| ≥ 2 and |A(′′) \ Ab| ≥ 2and A \A(′′) 6= ∅.(25.3) The subdire
t produ
t

A(1, 4, 5) = ({〈a1, b4, b5〉, 〈b1, b4, b5〉,

〈a1, a4, b5〉, 〈a1, b4, a5〉, 〈b1, b4, a5〉}; +, ·,
′ )of A1×A4×A5 is a minimal generi
 of V(1, 4, 5, 6). Consequently ,

g(V(1, 4, 5, 6)) = 5.Proof. (25.1) holds by Corollaries 2 and 3; (25.2) holds by Corollary 1′,Lemmas 8, 13 and 9; (25.3) is obvious, by (1.vi).
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Theorem 26. We have(26.1) If A ∈ V(5), then |Ab| = 1 and A(+) = A(·) = Ab and A = A(′′) =

{x ∈ A : x′ = x}.(26.2) If A is a generi
 of V(5), then A(′′) \ Ab 6= ∅.(26.3) The algebra A5 is a minimal generi
 of V(5). So g(V(5)) = 2.Proof. (26.1) holds by Corollaries 1�3 and Lemma 14; (26.2) holds byCorollary 4′; (26.3) is obvious.Theorem 27. We have(27.1) If A ∈ V(4, 5), then |Ab| = 1 and A(+) = A(·) = Ab.(27.2) If A is a generi
 of V(4, 5), then A(′′) \Ab 6= ∅ 6= A \A(′′).(27.3) The subdire
t produ
t
A(4, 5) = ({〈a4, b5〉, 〈b4, b5〉, 〈b4, a5〉}; +, ·,

′ )of A4 × A5 is a minimal generi
 of V(4, 5). So g(V(4, 5)) = 3.Proof. (27.1) holds by Corollaries 1�3; (27.2) holds by Corollary 4′, Lem-mas 14 and 9; (27.3) is obvious.Obviously we have:(2.viii) A 1-element algebra of type τb is a minimal generi
 of the trivialvariety V(∅) (satisfying x ≈ y).It is known that(2.ix) The algebra A1 is a minimal generi
 of the variety V(1) = B.In (2.vii) we noti
ed that g(Bc) = 6, whi
h was proved in [4℄. Now havingCorollaries 1′�3′ and Lemma 8 of the present paper the reader 
an easilysee that g(Bc) ≥ 6, whi
h together with the algebra A(1, 2, 3, 5) gives thestatement of (2.vii).We hope that the observations and methods of our paper will also beuseful in other 
ases of �nding minimal generi
s of varieties.Some results 
ontained in this paper were presented at the algebrai
seminar in the Institute of Mathemati
s of Wro
ªaw University.
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