Abstract. Let G be a finite group of even order. We give some bounds for the probability $p(G)$ that a randomly chosen element in G has a square root. In particular, we prove that $p(G) \leq 1 - \lfloor \sqrt{|G|} \rfloor / |G|$. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then $p(G) \leq 1 - 1 / \sqrt{|G|}$. Both of these bounds are best possible upper bounds for $p(G)$, depending only on the order of G.

1. Introduction. Let G be a finite group and let $g \in G$. If there exists an element $h \in G$ for which $g = h^2$, then we say that g has a square root. Clearly, g may have one or more square roots, or it may have none. Let G^2 be the set of all elements of G which have at least one square root, i.e.,

$$G^2 = \{ g \in G \mid \text{there exists } h \in G \text{ such that } g = h^2 \},$$

or simply $G^2 = \{ g^2 \mid g \in G \}$. Then

$$p(G) = \frac{|G^2|}{|G|}$$

is the probability that a randomly chosen element in G has a square root.

The properties of $p(S_n)$, where S_n denotes the symmetric group on n letters, have been studied by some authors. Asymptotic properties of $p(S_n)$ were studied in [1], [2], [8] and in [3], which is devoted to the proof of a conjecture of Wilf [9] that $p(S_n)$ is non-increasing in n. Recently, the basic properties of $p(G)$ for an arbitrary finite group G have been studied by the authors of this paper (see [7]). Moreover, they calculated $p(G)$ when G is a simple group of Lie type of rank 1 or when G is an alternating group. A table of $p(G)$ for the sporadic finite simple groups was also given.

In this paper we give some bounds for the probability that a randomly chosen element in a given finite group has a square root. In particular, we
give the following best possible upper bounds for \(p(G) \), depending only on \(|G|\) (see Theorems 2.11 and 2.13).

Main Theorem. Let \(G \) be a finite group of even order. Then
\[
p(G) \leq 1 - \left\lfloor \sqrt{|G|} \right\rfloor /|G|.
\]
Moreover, if the Sylow 2-subgroup of \(G \) is not a proper normal elementary abelian subgroup of \(G \), then \(p(G) \leq 1 - 1 / \sqrt{|G|} \), and both bounds are the best possible.

2. The best possible bounds. By [7, Proposition 2.1(ii)], \(p(G) = 1 \) if and only if \(|G|\) is odd. Therefore we deal with even order groups. The following theorem presents an upper bound for \(p(G) \) when \(G \) has even order, improving the bound \(p(G) < 1 \).

Theorem 2.1. Let \(G \) be a finite group of even order, and \(P \) be a Sylow 2-subgroup of \(G \). Then \(p(G) \leq 1 - 1 / |P| \).

Let \(P \) be the additive group of the field \(\text{GF}(2^n) \) and let \(H = \text{GF}(2^n) \times \) be its multiplicative group. Let \(G = PH \) be the semidirect product of these groups, with \(H \) acting on \(P \) by multiplication. Then \(p(G) = 1 - 1 / |P| \), which shows that the bound in Theorem 2.1 is sharp.

The following corollary is just a combination of Theorem 2.1 and Proposition 2.3 of [7].

Corollary 2.2. Let \(G \) be a finite group of even order, and \(P \) be a Sylow 2-subgroup of \(G \). If \(G \) is solvable, then \(1 / |P| \leq p(G) \leq 1 - 1 / |P| \).

We recall that if a Sylow 2-subgroup of a finite group is cyclic, then the group has a normal 2-complement (see for example [6, 7.2.2]), and it is therefore solvable. We thus get the following corollary.

Corollary 2.3. Let \(G \) be a finite group such that \(|G| = 2m\), where \(m \) is odd. Then \(p(G) = 1 / 2 \).

In order to prove Theorem 2.1, we must first explain a few things about decomposition of an element in a finite group. So let \(G \) be a finite group. We can uniquely decompose each element \(x \in G \) into \(x = x_2x_2' = x_2'x_2 \), where \(x_2 \) is a 2-element of \(G \) and \(x_2' \) is an element of \(G \) of odd order. Moreover, if \(x \) has a square root then so also does \(x_2 \). In the following, when we speak about \(x_2 \) and \(x_2' \), we always mean this unique decomposition of \(x \). We also need the following result originally proved by Frobenius (see [5] and also Corollary 41.11 of [4] as a more accessible reference).

Remark 2.4. Let \(G \) be a finite group, \(a \in G \), and \(n \) be a positive integer. Then the number of solutions of the equation \(x^n = a \) in \(G \) is a multiple of \(\gcd(n, |C_G(a)|) \). In particular, the number of solutions of the equation \(x^n = 1 \) in \(G \) is a multiple of \(\gcd(n, |G|) \).
Proof of Theorem 2.1. Choose \(a \in G \) such that \(a \) is a 2-element of maximal order in \(G \). We claim that if \(x \in G \) and \(x = x_2 x_2' \) with \(x_2 \) a conjugate of \(a \), then \(x \) does not have a square root. To prove the claim, suppose that \(a = h^2 \) for some \(h \in G \). Then by [7, Remark 2.2] we have \(|h| = 2|a| \), which contradicts the definition of \(a \). Therefore \(a \) does not have a square root and the same is true for its conjugates. Hence, \(x_2 \) does not have a square root, which in turn implies that \(x \) does not have a square root. Therefore the claim holds and we have

\[
\{ x \in G \mid x_2 \text{ is conjugate to } a \} \subseteq G \setminus G^2.
\]

Observe also that the number of \(x \in G \) for which \(x_2 \) is conjugate to \(a \) is equal to \(|G : C_G(a)|t \), where \(t \) is the number of elements of odd order of \(C_G(a) \). Therefore

\[
|G : C_G(a)|t \leq |G| - |G^2|.
\]

We now write \(|G| = 2^k m \) where \(k \geq 1 \) and \(m \) is odd. Then it is clear that \(|C_G(a)| = 2^{k'} m' \) for some positive integers \(k' \) and \(m' \) such that \(k' \leq k \) and \(m' \mid m \). On the other hand, it is easy to see that an element \(x \) in \(C_G(a) \) has odd order if and only if \(x^{m'} = 1 \). Therefore, \(t \) is equal to the number of solutions of the equation \(x^{m'} = 1 \) in \(C_G(a) \). By Remark 2.4, this is a multiple of \(\gcd(2^{k'}, |C_G(a)|) = m' \). Hence, \(m' \leq t \) and thus \(|G : C_G(a)|m' \leq |G : C_G(a)|t \leq |G| - |G^2| \). By dividing both sides by \(|G| \) we obtain

\[
\frac{m'}{|C_G(a)|} \leq 1 - p(G),
\]

which in turn implies that

\[
p(G) \leq 1 - \frac{m'}{2^{k'} m'} = 1 - \frac{1}{2^{k'}} \leq 1 - \frac{1}{2^k} = 1 - \frac{1}{|P|},
\]

as required. \(\blacksquare \)

The following theorem gives another upper bound for \(p(G) \) when \(G \) has even order, depending only on the order of \(G \) and the number of 2-elements of \(G \).

Theorem 2.5. Let \(G \) be a finite group of even order, and denote by \(Q \) the set of 2-elements of \(G \). Then \(p(G) \leq 1 - \frac{|Q|}{2|G|} \).

Proof. Suppose \(a \in Q \). By Remark 2.4, the number of solutions of the equation \(x^2 = a \) in \(G \) is a multiple of \(\gcd(2, |C_G(a)|) \). Hence, this number is either 0 or \(\geq 2 \). But by [7, Remark 2.2] all solutions of this equation lie in \(Q \). Therefore, \(|G| - |G^2| \geq |Q|/2 \), or \(p(G) \leq 1 - \frac{|Q|}{2|G|} \) as required. \(\blacksquare \)

We now prove an easy but useful lemma.

Lemma 2.6. Let \(G \) be a finite group, and \(N \) be a normal subgroup of \(G \). Then \(p(G) \leq p(G/N) \).
Proof. Note that \(gN \in G/N \) has a square root if and only if there is \(xN \in G/N \) for which \(gN = (xN)^2 \) if and only if \(x^2 \in gN \). Therefore, \(gN \in G/N \) does not have a square root if and only if there is no element \(x \in G \) with \(x^2 \in gN \). Hence, if a coset in \(G/N \) does not have a square root, then no element of this coset has a square root in \(G \), and therefore \(|G| - |G|^2 \geq |N|(|G/N| - |(G/N)^2|) \). By dividing both sides by \(|G| \) we obtain \(1 - p(G) \geq 1 - p(G/N) \), or \(p(G) \leq p(G/N) \) as required.

As corollaries of Lemma 2.6, we give an upper bound for \(p(G) \) when \(G \) is a finite 2-group, depending only on the order of \(|G| \), and then an upper bound for \(p(G) \) when \(G \) is a finite nilpotent group.

Corollary 2.7. Let \(G \) be a finite 2-group such that \(|G| \geq 4 \). Then \(p(G) \leq 1 - 1/\sqrt{|G|} \).

Proof. Suppose that \(\Phi(G) \) is the Frattini subgroup of \(G \). By Lemma 2.6 and Theorem 2.4(i) of [7], we have

\[
p(G) \leq p \left(\frac{G}{\Phi(G)} \right) = \frac{1}{|G/\Phi(G)|} \leq \frac{1}{2}.
\]

Since \(|G| \geq 4 \), we obtain \(1/2 \leq 1 - 1/\sqrt{|G|} \), and so the above inequality implies that \(p(G) \leq 1 - 1/\sqrt{|G|} \) as required.

Corollary 2.8. Let \(G \) be a finite nilpotent group of even order, and \(P \) be a Sylow 2-subgroup of \(G \). If \(|P| = 2 \), then \(p(G) = 1/2 \). If \(|P| > 2 \), then \(1/|P| \leq p(G) \leq 1 - 1/\sqrt{|P|} \leq 1 - 1/\sqrt{|G|} \).

Proof. The first statement is Corollary 2.3. The second statement comes from Corollary 2.7 and Proposition 2.3 of [7], which states that if \(G \) is nilpotent, then \(p(G) = p(P) \).

The following two propositions give upper bounds for \(p(G) \), depending on the order of \(G \), but only for special classes of even order groups.

Proposition 2.9. Let \(G \) be a finite group of even order. If \(G \) contains more than one Sylow 2-subgroup, then \(p(G) \leq 1 - 1/\sqrt{|G|} \).

Proof. Let \(P \) be a Sylow 2-subgroup of \(G \). Since \(G \) has at least two distinct Sylow 2-subgroups, \(P \) is not normal in \(G \). By Remark 2.4, the number of solutions of the equation \(x^{|P|} = 1 \) in \(G \) is a multiple of \(\gcd(|P|, |G|) = |P| \). Therefore, \(|P| \) divides the number of solutions of \(x^{|P|} = 1 \) in \(G \). But if we let \(Q \) be the set of 2-elements of \(G \), then the set of solutions of the equation \(x^{|P|} = 1 \) in \(G \) is just \(Q \), and this means \(|P| \) divides \(|Q| \). Hence, either \(|P| = |Q| \) or \(|P| \leq |Q|/2 \). In the first case \(P = Q \) is normal in \(G \), contrary to hypothesis. Hence, \(|P| \leq |Q|/2 \). On the other hand, by Theorem 2.5, we have \(p(G) \leq 1 - |Q|/2|G| \), and so \(p(G) \leq 1 - |P|/|G| \). This inequality together
with Theorem 2.1 now implies that \((1 - p(G))^2 \geq (|P|/|G|)(1/|P|) = 1/|G|\), and so \(p(G) \leq 1 - 1/\sqrt{|G|}\) as required. \(\blacksquare\)

Proposition 2.10. Let \(G\) be a finite group of even order with elementary abelian Sylow 2-subgroups. Then \(p(G) \leq 1 - \lfloor \sqrt{|G|} \rfloor /|G|\).

Proof. Suppose \(P\) is an elementary abelian Sylow 2-subgroup of \(G\). Consider \(x \neq 1\) as an element of \(P\). If there is \(y \in G\) such that \(x = y^2\), then by [7, Remark 2.2] we have \(|y| = 4\), which is a contradiction. Therefore, \(x \in G \setminus G^2\), and so \(P \setminus \{1\} \subseteq G \setminus G^2\). Hence, \(|P| - 1 \leq |G| - |G^2|\). On the other hand, by Theorem 2.1, \(p(G) \leq 1 - 1/|P|\) and so \(|G^2| \leq |G| - |G^2|/|P|\), which implies \(|G|/|P| \leq |G| - |G^2|\). Therefore, \(|G| - |G|/|P| \leq (|G| - |G^2|)^2\), or \(|G| \leq (|G| - |G^2|)^2 + |G|/|P| \leq (|G| - |G^2|)(|G| - |G^2| + 1) < (|G| - |G^2| + 1)^2\).

This implies that \(\sqrt{|G|} < |G| - |G^2| + 1\), so \(\lfloor \sqrt{|G|} \rfloor \leq |G| - |G^2|\), and hence \(p(G) \leq 1 - \lfloor \sqrt{|G|} \rfloor /|G|\) as required. \(\blacksquare\)

The bound of Proposition 2.10 is the best possible. In fact, if \(G\) is the group described just after the statement of Theorem 2.1, then \(p(G) = 1 - \lfloor \sqrt{|G|} \rfloor /|G|\).

We can now state the following theorem which gives lower and upper bounds for \(p(G)\), depending only on the order of \(G\).

Theorem 2.11. Let \(G\) be a finite group of even order. Then

\[
1/|G| \leq p(G) \leq 1 - \lfloor \sqrt{|G|} \rfloor /|G|.
\]

Proof. It is clear that \(1/|G| \leq p(G)\) (see also Proposition 2.1 of [7]). Therefore we prove the second inequality. We first consider groups \(G\) with \(|G| < 26\). Among these, by Corollary 2.3, we only need to deal with groups whose order is divisible by 4. Moreover, if \(G\) is nilpotent, then by Proposition 2.3 of [7] and by Corollary 2.7, we have

\[
p(G) = p(P) \leq 1 - \frac{1}{\sqrt{|P|}} \leq 1 - \frac{1}{\sqrt{|G|}} \leq 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|},
\]

and we are done. Therefore we should prove the second inequality only for groups of order 12, 20 and 24. In these cases, if the Sylow 2-subgroup is normal, we are done, and otherwise we can use Proposition 2.9. Hence, the second inequality holds for groups \(G\) with \(|G| < 26\).

We now suppose that \(|G| \geq 26\). Let \(N \neq 1\) be a minimal normal subgroup of \(G\).

Suppose that \(G/N\) has odd order. In this case \(|N|\) is even. Since \(N\) is minimal normal, it is isomorphic to a direct product of isomorphic simple groups. There are two possibilities. If \(N \cong \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2\) is an elementary abelian 2-group, then \(N\) is the unique Sylow 2-subgroup of \(G\). Hence,
Proposition 2.10 implies that \(p(G) \leq 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|} \), which gives the second inequality. If \(N \cong S \times \cdots \times S \), where \(S \) is a non-abelian simple group, then \(G \) has at least two distinct Sylow 2-subgroups and so, by Proposition 2.9, we obtain \(p(G) \leq 1 - 1/\sqrt{|G|} \leq 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|} \), which gives the second inequality.

Next we assume that \(G/N \) has even order. In this case, we apply induction on \(|G| \). Since \(|G/N| < |G| \), the inductive hypothesis implies that

\[p(G/N) \leq 1 - \frac{\lfloor \sqrt{|G/N|} \rfloor}{|G/N|}, \]

and therefore, by Lemma 2.6, we have

\[p(G) \leq 1 - \frac{\lfloor \sqrt{|G/N|} \rfloor}{|G/N|}. \]

We claim that if \(|N| \geq 12 \), then

\[1 - \frac{\lfloor \sqrt{|G/N|} \rfloor}{|G/N|} \leq 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|}. \]

To prove the claim, observe that (3) is equivalent to \(\sqrt{|G|} \leq \lfloor \sqrt{|G/N|} \rfloor |N| \).

Therefore it is enough to prove that \(\sqrt{|G|} \leq (\sqrt{|G/N|} - 1)|N| \), that is, \(\sqrt{|G|} \geq |N|/\sqrt{|G/N|} - 1 \). Since \(|G| \geq 2|N| \), it is sufficient to show that \(\sqrt{2} \geq \sqrt{|N|/\sqrt{|G/N|} - 1} \), which is true for \(|N| \geq 12 \). Therefore the claim holds and so for \(|N| \geq 12 \) we get, using (2), the inequality \(p(G) \leq 1 - \frac{\lfloor \sqrt{|G|} \rfloor}{|G|} \), which is the second inequality.

We now suppose that \(|N| \leq 11 \). We observe that (1) is equivalent to

\[|G/N| - \lfloor (G/N)^2 \rfloor \geq \lfloor \sqrt{|G/N|} \rfloor. \]

Therefore there are at least \(\lfloor \sqrt{|G/N|} \rfloor \) cosets \(g_1N, \ldots, g_lN \) such that there is no \(x \in G \) with \(x^2 \in g_iN, i = 1, \ldots, l \). Consequently,

\[|G| - |G| \geq |N| \lfloor \sqrt{|G/N|} \rfloor. \]

For any \(N \) such that \(1 < |N| \leq 11 \), it is easy to prove that

\[\frac{|N|}{\sqrt{|N|} - 1} < 5. \]

Since \(|G| \geq 26 \), we have \(\sqrt{|G|} > 5 \), therefore

\[\frac{|N|}{\sqrt{|N|} - 1} < 5 < \sqrt{|G|}. \]

This implies that \(|N| < \sqrt{|G|}(\sqrt{|N|} - 1) \), which can be rewritten as

\[0 < \sqrt{|G|\sqrt{|N|} - \sqrt{|G|} - |N|}, \]
or
\[0 < \sqrt{|N|}(\sqrt{|G|} - \sqrt{|N|}) - \sqrt{|G|}. \]

So we have
\[\sqrt{|G|} < |N|(\sqrt{|G/N|} - 1) < |N|\sqrt{|G/N|}. \]

Since \(\sqrt{|G|} \leq |G| \), using (4) we get \(\lfloor \sqrt{|G|} \rfloor \leq |G| - |G|^2 \), which gives \(p(G) \leq 1 - \lfloor \sqrt{|G|} \rfloor /|G|. \)

The cyclic group of order 4 shows that the bound in Theorem 2.11 is the best possible. In fact,
\[p(\mathbb{Z}_4) = \frac{1}{2} = 1 - \frac{1}{\sqrt{4}}. \]

A natural question arises: Does the slightly stronger bound of Proposition 2.9 hold if \(P \) is normal but \(\Phi(P) > 1 \), so that only elementary abelian normal Sylow 2-subgroups are responsible for the weaker bound of Theorem 2.11?

The answer is yes, as we prove in the following theorem.

Theorem 2.12. Let \(G \) be a finite group of even order, and \(P \) be a Sylow 2-subgroup of \(G \). If \(p(G) > 1 - 1/\sqrt{|G|} \), then \(P \) is a proper normal elementary abelian subgroup of \(G \).

Proof. By Proposition 2.9, \(P \) is normal, and by Corollary 2.8, \(G \) is not nilpotent and therefore \(P \neq G \). Let \(\Phi = \Phi(P) \) be the Frattini subgroup of \(P \). We first suppose that \(\sqrt{|G|} \leq |P|/2 \). Then \(1/\sqrt{|G|} \leq |P|/2|G| \), which implies, by Theorem 2.5,
\[p(G) \leq 1 - \frac{|P|}{2|G|} \leq 1 - \frac{1}{\sqrt{|G|}}, \]
contrary to hypothesis.

Therefore we can suppose that \(|\Phi|^2 \leq |P|^2/4 \leq |G| \). Then, by Lemma 2.6 and Theorem 2.11, we have
\[p(G) \leq p(G/\Phi) \leq 1 - \frac{\lfloor \sqrt{|G/\Phi|} \rfloor}{|G/\Phi|} \leq 1 - \frac{|\Phi|(\sqrt{|G/\Phi|} - 1)}{|G|}. \]

We want to prove that
\[\frac{|\Phi|(\sqrt{|G/\Phi|} - 1)}{|G|} \geq \frac{1}{\sqrt{|G|}}. \]

This is equivalent to showing that
\[(5) \quad \sqrt{|G|} \geq \frac{|\Phi|}{\sqrt{|\Phi|} - 1}. \]

We first suppose that \(|\Phi| \geq 4 \); then \(\sqrt{|\Phi|} - 1 \geq 1 \) and the inequality (5) is equivalent to \(|\Phi|^2 \leq |G| \), which we are assuming is true.
We then suppose $|\Phi| = 2$. If P is cyclic, then by the remark preceding Corollary 2.3, P has a normal 2-complement Q. Hence $G = P \times Q$ and by Corollary 2.7,
\[
p(G) = p(P \times Q) = p(P)p(Q) = p(P) \\
\leq 1 - \frac{1}{\sqrt{|P|}} \\
\leq 1 - \frac{1}{\sqrt{|G|}},
\]
contrary to hypothesis. Thus P is not cyclic, and this implies $|P| \geq 8$ and $|G| \geq 24$, so again
\[
\sqrt{G} \geq \sqrt{24} > \frac{2}{\sqrt{2} - 1} = \frac{|\Phi|}{\sqrt{|\Phi|} - 1},
\]
which is (5).

Thus (5) holds in both cases, and this implies $p(G) \leq 1 - 1/\sqrt{G}$, contrary to hypothesis. This last contradiction proves that $\Phi = \{1\}$.

We close this section by observing that Theorems 2.11 and 2.12 together prove the following theorem. Moreover, the group G described just after the statement of Theorem 2.1 shows that the bound $p(G) \leq 1 - \lfloor \sqrt{|G|} \rfloor / |G|$ in Theorem 2.11 is the best possible and the cyclic group of order 4 shows that the better bound $p(G) \leq 1 - 1/\sqrt{G}$ is again the best possible.

Theorem 2.13. Let G be a finite group of even order. If the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then
\[
p(G) \leq 1 - 1/\sqrt{G}.
\]

REFERENCES

Dipartimento di Matematica e Informatica
Università di Udine
Via delle Scienze 208
I-33100 Udine, Italy
E-mail: mslucido@dimi.uniud.it

Department of Mathematical Sciences
Sharif University of Technology
P.O. Box 11155-9415
Tehran, Iran

and
School of Mathematics
Institute for Studies in Theoretical Physics and Mathematics
P.O. Box 19395-5746
Tehran, Iran
E-mail: pournaki@ipm.ir

Received 22 February 2007;
revised 26 August 2007