A NOTE ON NAKAI'S CONJECTURE FOR THE RING $K\left[X_{1}, \ldots, X_{n}\right] /\left(a_{1} X_{1}^{m}+\cdots+a_{n} X_{n}^{m}\right)$
 By
 PAULO ROBERTO BRUMATTI (Campinas) and MARCELO OLIVEIRA VELOSO (Ouro Branco)

Abstract

Let k be a field of characteristic zero, $k\left[X_{1}, \ldots, X_{n}\right]$ the polynomial ring, and B the ring $k\left[X_{1}, \ldots, X_{n}\right] /\left(a_{1} X_{1}^{m}+\cdots+a_{m} X_{n}^{m}\right), 0 \neq a_{i} \in k$ for all i and $m, n \in \mathbb{N}$ with $n \geq 2$ and $m \geq 1$. Let $\operatorname{Der}_{k}^{2}(B)$ be the B-module of all second order k-derivations of B and $\operatorname{der}_{k}^{2}(B)=\operatorname{Der}_{k}^{1}(B)+\operatorname{Der}_{k}^{1}(B) \operatorname{Der}_{k}^{1}(B)$ where $\operatorname{Der}_{k}^{1}(B)$ is the B-module of k derivations of B. If $m \geq 2$ we exhibit explicitly a second order derivation $D \in \operatorname{Der}_{k}^{2}(B)$ such that $D \notin \operatorname{der}_{k}^{2}(B)$ and thus we prove that Nakai's conjecture is true for the k-algebra B.

Introduction. Throughout this paper k denotes a field of characteristic zero.

Let $S=k\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial ring in n variables over a field k and let $A=S / J$ be an affine k-algebra. Let $\operatorname{Der}_{k}^{n}(A)$ be the A-module of k-derivations of order $\leq n$ where $1 \leq n \in \mathbb{N}$. Let $\operatorname{Der}_{k}(A)$ be the k algebra $\bigcup_{n} \operatorname{Der}_{k}^{n}(A)$ and $\operatorname{der}_{k}(A)$ the subalgebra generated by $\operatorname{Der}_{k}^{1}(A)$. The set $\operatorname{der}_{k}(A) \cap \operatorname{Der}_{k}^{n}(A)$ will be denoted by $\operatorname{der}_{k}^{n}(A)$. In [1], Grothendieck has shown that $\operatorname{Der}_{k}(A)=\operatorname{der}_{k}(A)$ if A is regular. The Nakai conjecture states the converse. In 1986 Singh [5] presented the following conjecture, which is stronger than Nakai's conjecture: If $A=S /(F)$ and $\operatorname{Der}_{k}^{2}(A)=\operatorname{der}_{k}^{2}(A)$ then A is regular.

Singh's conjecture for a generic affine k-algebra A is not valid. A counterexample can be found in [4].

In this work we prove that Singh's conjecture is true in the following cases:
(1) $B=S /(F)$, where $F=a_{1} X_{1}^{m}+\cdots+a_{m} X_{n}^{m}$ with $0 \neq a_{i} \in k$ for all i (Theorem 6).
(2) $C=S /(H)$ where $H \in S$ is homogeneous of degree ≤ 2 (Corollary 7).

1. A set of generators for $\operatorname{Der}_{k}^{1}(B)$. Let B be a ring $S /(F)$, where $F=a_{1} X_{1}^{m}+\cdots+a_{m} X_{n}^{m}$ with $0 \neq a_{i} \in k$. In this section we give a set of generators for the B-module $\operatorname{Der}_{k}^{1}(B)$.

Key words and phrases: Nakai's conjecture, derivations, commutative algebra.

Let $A=S / I$ be a finitely generated k-algebra. Consider the S-submodule $\mathcal{D}_{I}=\left\{D \in \operatorname{Der}_{k}^{1}(S) ; D(I) \subseteq I\right\}$ of $\operatorname{Der}_{k}^{1}(S)$. It is well known that the S homomorphism $\varphi: \mathcal{D}_{I} \rightarrow \operatorname{Der}_{k}^{1}(A)$ given by $\varphi(D)(g+I)=D(g)+I$ induces an A-isomorphism of $\mathcal{D}_{I} / I \operatorname{Der}_{k}^{1}(S)$ in $\operatorname{Der}_{k}^{1}(A)$. From this fact we deduce a version for n variables of a result in three variables, due to O. Zariski, presented by J. Lipman in 1965 in [2].

Before presenting this version let us establish some notation. Given $H \in$ $S=k\left[X_{1}, \ldots, X_{n}\right]$ and $1 \leq i \leq n$, the partial derivative $\partial H / \partial X_{i}$ is denoted by $H_{X_{i}}$. For all pairs $i, j \in\{1, \ldots, n\}$ with $i \neq j$, we define the derivation

$$
D_{i j}^{H}=H_{X_{i}} \frac{\partial}{\partial X_{j}}-H_{X_{j}} \frac{\partial}{\partial X_{i}}
$$

on S. Note that $D_{i j}^{H}(H)=0$.
Proposition 1. Let k be a field and let $F \in S=k\left[X_{1}, \ldots, X_{n}\right](n \geq 2)$ be such that $\left\{F_{X_{1}}, \ldots, F_{X_{n}}\right\}$ is a regular sequence in S. If there is a derivation ∂ on S such that $\partial(F)=\alpha F$ for some α in k^{*}, then the S-module

$$
\mathcal{D}_{F}:=\left\{D \in \operatorname{Der}_{k}^{1}(S) ; D(F) \in F \cdot S\right\}
$$

is generated by the derivation ∂ and the derivations $D_{i j}=D_{i j}^{F}$ for $i<j$.
Proof. Let $D \in \operatorname{Der}_{k}^{1}(S)$ be such that $D(F)=H F$, with $H \in S$. Because $\partial(F)=\alpha F$, we have $(D-(H / \alpha) \partial)(F)=0$. Thus, it is sufficient to show that the submodule $\mathcal{D}_{0}:=\left\{D \in \mathcal{D}_{F} ; D(F)=0\right\}$ is generated by $\left\{D_{i j} ; i<j\right\}$. Let $\tilde{\mathcal{D}}_{0}$ be the submodule of \mathcal{D}_{0} generated by $\left\{D_{i j} ; i<j\right\}$. By induction on r, we first prove the following:

Claim. If $D \in \mathcal{D}_{0}$ and $0 \leq r \leq n-2$ then there exists $D^{\prime} \in \tilde{\mathcal{D}}_{0}$ such that

$$
D-D^{\prime}=\sum_{j=1}^{n-(r+1)} H_{j} \frac{\partial}{\partial X_{j}} \quad \text { with } H_{j} \in S
$$

For $r=0$, we know that $D=H_{n}^{\prime} \frac{\partial}{\partial X_{n}}+\sum_{j=1}^{n-1} H_{j}^{\prime} \frac{\partial}{\partial X_{j}}$ with $H_{j}^{\prime} \in S$. Since $D(F)=0$ we have $H_{n}^{\prime} F_{X_{n}} \in\left(F_{X_{1}}, \ldots, F_{X_{n-1}}\right)$. Because $\left\{F_{X_{1}}, \ldots, F_{X_{n}}\right\}$ is a regular sequence, we have $H_{n}^{\prime}=\sum_{j=1}^{n-1} G_{j} F_{X_{j}}$ with $G_{j} \in S$. It then follows that

$$
\begin{aligned}
D & =\left(\sum_{j=1}^{n-1} G_{j} F_{X_{j}}\right) \frac{\partial}{\partial X_{n}}+\sum_{j=1}^{n-1}\left(G_{j} F_{X_{n}}-G_{j} F_{X_{n}}\right) \frac{\partial}{\partial X_{j}}+\sum_{j=1}^{n-1} H_{j}^{\prime} \frac{\partial}{\partial X_{j}} \\
& =\sum_{j=1}^{n-1} G_{j}\left(F_{X_{j}} \frac{\partial}{\partial X_{n}}-F_{X_{n}} \frac{\partial}{\partial X_{j}}\right)+\sum_{j=1}^{n-1}\left(H_{j}^{\prime}+G_{j} F_{X_{n}}\right) \frac{\partial}{\partial X_{j}}=D^{\prime}+\sum_{j=1}^{n-1} H_{j} \frac{\partial}{\partial X_{j}}
\end{aligned}
$$

with $D^{\prime} \in \tilde{\mathcal{D}}_{0}$.

Now suppose that $0 \leq r<n-2$ and $D-D^{\prime}=\sum_{j=1}^{n-(r+1)} H_{j}^{\prime} \frac{\partial}{\partial X_{j}}$ with $D^{\prime} \in \tilde{\mathcal{D}}_{0}$. Since $D(F)=D^{\prime}(F)=0$, we have

$$
H_{n-(r+1)}^{\prime} F_{X_{n-(r+1)}} \in\left(F_{X_{1}}, \ldots, F_{X_{n-(r+2)}}\right)
$$

and so $H_{n-(r+1)}^{\prime}=\sum_{j=1}^{n-(r+2)} G_{j} F_{X_{j}}$. By repeating the same process as used in the proof of $D=D^{\prime}+\sum_{j=1}^{n-1} H_{j} \frac{\partial}{\partial X_{j}}$, we obtain

$$
D-D^{\prime}=D^{\prime \prime}+\sum_{j=1}^{n-(r+2)} H_{j} \frac{\partial}{\partial X_{j}}
$$

with $D^{\prime \prime} \in \tilde{\mathcal{D}}_{0}$. This completes the proof of the Claim.
Now take $D \in \mathcal{D}_{0}$ and $r=n-2$. By the Claim there exists $D^{\prime} \in \tilde{\mathcal{D}}_{0}$ and $H_{1} \in K^{[n]}$ such that $D-D^{\prime}=H_{1} \frac{\partial}{\partial X_{1}}$. Since $\left(D-D^{\prime}\right)(F)=0$ we have $H_{1}=0$ and so $D=D^{\prime} \in \tilde{\mathcal{D}}_{0}$.

Let us return to the case of the ring B. From now on the derivations $D_{i j}^{F}$ where $F=a_{1} X_{1}^{m}+\cdots+a_{n} X_{n}^{m}$ will be denoted by $D_{i j}$. Note that

$$
D_{i j}\left(X_{k}\right)= \begin{cases}-m a_{j} X_{j}^{m-1} & \text { if } k=i, \\ m a_{i} X_{i}^{m-1} & \text { if } k=j, \\ 0 & \text { if } k \notin\{i, j\} .\end{cases}
$$

Observe that $D_{i j} / m \in \operatorname{Der}_{k}^{1}(S)$ induces $d_{i j}=a_{j} x_{j}^{m-1} \frac{\partial}{\partial x_{i}}-a_{i} x_{i}^{m-1} \frac{\partial}{\partial x_{j}} \in$ $\operatorname{Der}_{k}^{1}(B)$. The derivation

$$
E=X_{1} \frac{\partial}{\partial X_{1}}+\cdots+X_{n} \frac{\partial}{\partial X_{n}}
$$

is called the Euler derivation of S. As F is homogeneous of degree m we have $E(F)=m F$. Thus $E \in \operatorname{Der}_{k}^{1}(S)$ induces $\varepsilon=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}} \in \operatorname{Der}_{k}^{1}(B)$.

As a consequence of Proposition 1 we obtain the following result:
Proposition 2. If $F=a_{1} X_{1}^{m}+\cdots+a_{n} X_{n}^{m}$ then

$$
\mathcal{D}_{F}:=\left\{D \in \operatorname{Der}_{k}^{1}(S) ; D(F) \in F \cdot S\right\}
$$

is generated by the Euler derivation E and the derivations $D_{i j}, i<j$. In particular the B-module $\operatorname{Der}_{k}^{1}(B)$ is generated by the derivation ε and by the derivations $d_{i j}$ for $i<j$.

Proof. Given Proposition 1 it is sufficient to observe that $\left\{X_{1}^{m-1}\right.$, $\left.\ldots, X_{n}^{m-1}\right\}$ is a regular sequence and $E(F)=m F$.
2. Nakai's conjecture for the ring B. In this section, if $m \geq 2$, we exhibit explicitly a derivation $D \in \operatorname{Der}_{k}^{2}(B)$ such that $D \notin \operatorname{der}_{k}^{2}(B)$. From this, we will be able to verify that Singh's conjecture is true for the cases (1) and (2) as mentioned in the introduction.

The main result of this section will be a consequence of several auxiliary results.

Lemma 3. Let k be a field, $S=k\left[X_{1}, \ldots, X_{n}\right]$, and $F=a_{1} X_{1}^{m}+a_{2} X_{2}^{m}+$ $\cdots+a_{n} X_{n}^{m} \in S$ with $m \geq 2$ and $a_{i} \in k \backslash\{0\}$. Let $d, d^{\prime} \in \operatorname{Der}_{k}^{1}(S)$ and $D \in \operatorname{Der}_{k}^{2}(S)$.
(a) If $d(F) \in(F)$ then, for every i,
$d\left(X_{i}\right) \in J_{i}=\left(X_{1}^{m-1}, \ldots, X_{i-1}^{m-1}, X_{i}, X_{i+1}^{m-1}, \ldots, X_{n}^{m-1}\right)$ and $d\left(J_{i}\right) \subseteq J_{i}$.
(b) If $d(F), d^{\prime}(F) \in(F)$ then $\left(d^{\prime} \circ d\right)\left(X_{1}\right) \in J_{1}=\left(X_{1}, X_{2}^{m-1}, \ldots, X_{n}^{m-1}\right)$.
(c) If $d(F), d^{\prime}(F) \in(F)$ then $d\left(X_{1} F\right)=H F$ and $\left(d^{\prime} \circ d\right)\left(X_{1} F\right)=G F$, with $H, G \in J_{1}$.
(d) If $2 \leq l \in \mathbb{N}$ then, for every $j \in\{1, \ldots, n\}, D\left(X_{1} X_{j}^{l}\right) \in\left(X_{1}, X_{j}^{l-1}\right)$ and $D\left(X_{1} F\right) \in J_{1}$.
Proof. (a) By Proposition 2 we have $d=\sum_{i<j} H_{i j} D_{i j}+G E$, where $H_{i j} \in S$,

$$
D_{i j}=a_{i} X_{i}^{m-1} \frac{\partial}{\partial X_{j}}-a_{j} X_{j}^{m-1} \frac{\partial}{\partial X_{i}} \quad \text { and } \quad E=X_{1} \frac{\partial}{\partial X_{1}}+\cdots+X_{n} \frac{\partial}{\partial X_{n}} .
$$

Observe that given i we have $E\left(X_{i}\right)=X_{i}, D_{l j}\left(X_{i}\right)=0$ if $i \notin\{l, j\}$, $D_{i j}\left(X_{i}\right)=-a_{j} X_{j}^{m-1}$ if $i<j$, and $D_{j i}\left(X_{i}\right)=a_{j} X_{j}^{m-1}$ if $j<i$. Thus $d\left(X_{i}\right)$ $\in J_{i}$. Now because for every $j \neq i$ we have $d\left(X_{j}^{m-1}\right)=(m-1) X_{j}^{m-2} d\left(X_{j}\right)$ and $d\left(X_{j}\right) \in J_{j}$, we conclude that $d\left(J_{i}\right) \subseteq J_{i}$.
(b) and (c) are direct consequences of (a).
(d) Induction on $l \geq 2$. By Nakai's definition of higher order derivations [3, we have, for $l=2$,
$D\left(X_{1} X_{j}^{2}\right)=X_{1} D\left(X_{j}^{2}\right)+2 X_{j} D\left(X_{1}\right)-2 X_{1} X_{j} D\left(X_{j}\right)-X_{j}^{2} D\left(X_{1}\right) \in\left(X_{1}, X_{j}\right)$, and for $l \geq 3$,

$$
\begin{aligned}
D\left(X_{1} X_{j}^{l}\right)= & D\left(X_{1} X_{j} X_{j}^{l-1}\right) \\
= & X_{1} D\left(X_{j}^{l}\right)+X_{j} D\left(X_{1} X_{j}^{l-1}\right)+X_{j}^{l-1} D\left(X_{1} X_{j}\right) \\
& -X_{1} X_{j} D\left(X_{j}^{l-1}\right)-X_{1} X_{j}^{l-1} D\left(X_{j}\right)-X_{j}^{l} D\left(X_{1}\right) .
\end{aligned}
$$

Since $D\left(X_{1} X_{j}^{l-1}\right) \in\left(X_{1}, X_{j}^{l-2}\right)$, we have $D\left(X_{1} X_{j}^{l}\right) \in\left(X_{1}, X_{j}^{l-1}\right)$. Therefore for $l=m \geq 2$ we obtain $D\left(X_{1} F\right) \in J_{1}$.

Lemma 4. In the notation of Lemma 3, let

$$
D=d+\sum_{i=1}^{s} d_{i}^{\prime} \circ d_{i}+F D^{\prime}
$$

where $\left\{d, d_{i}^{\prime}, d_{i} ; 1 \leq i \leq s\right\} \subset \operatorname{Der}_{k}^{1}(S)$ and $D^{\prime} \in \operatorname{Der}_{k}^{2}(S)$. If $d(F) \in(F)$ and
$\left\{d_{i}(F), d_{i}^{\prime}(F)\right\} \subset(F)$ for every i then

$$
D\left(X_{1} F\right)=H F \quad \text { with } H \in J_{1}=\left(X_{1}, X_{2}^{m-1}, \ldots, X_{n}^{m-1}\right)
$$

Proof. By Lemma 3(c), we have

$$
d\left(X_{1} F\right)+\sum_{i=1}^{s}\left(d_{i}^{\prime} \circ d_{i}\right)\left(X_{1} F\right)=H_{1} F \quad \text { with } H_{1} \in J_{1}
$$

By Lemma $3(\mathrm{~d}), D^{\prime}\left(X_{1} F\right) \in J_{1}$. Thus

$$
D\left(X_{1} F\right)=d\left(X_{1} F\right)+\sum_{i=1}^{s} d_{i}^{\prime} \circ d_{i}\left(X_{1} F\right)+F D^{\prime}\left(X_{1} F\right)=H F
$$

where $H=H_{1}+D^{\prime}\left(X_{1} F\right) \in J_{1}$.
Since $B=S /(F)=S /(G)$ where $S=k\left[X_{1}, \ldots, X_{n}\right], F=a_{1} X_{1}^{m}+$ $a_{2} X_{2}^{m}+\cdots+a_{n} X_{n}^{m}$ and $G=X_{1}^{m}+\left(a_{2} / a_{1}\right) X_{2}^{m}+\cdots+\left(a_{n} / a_{1}\right) X_{n}^{m}$, henceforth we will assume that

$$
F=X_{1}^{m}+a_{2} X_{2}^{m}+\cdots+a_{n} X_{n}^{m} \quad \text { with } a_{j} \neq 0
$$

Lemma 5. Assume that $m \geq 2$ and let D be the second order k-derivation of S given by

$$
\begin{aligned}
D= & -(m-1)(n-2) G \frac{\partial}{\partial X_{1}}-X_{1} G \frac{\partial^{2}}{\partial X_{1}^{2}}-2 G \sum_{j=2}^{n} X_{j} \frac{\partial^{2}}{\partial X_{1} \partial X_{j}} \\
& +X_{1}^{m-1} \sum_{j=2}^{n} \frac{G}{a_{j} X_{j}^{m-2}} \frac{\partial^{2}}{\partial X_{j}^{2}}
\end{aligned}
$$

where

$$
G=\prod_{j \geq 2} \frac{1}{m(m-1)} \frac{\partial^{2} F}{\partial X_{j}^{2}}=a_{2} \cdots a_{n} X_{2}^{m-2} \cdots X_{n}^{m-2}
$$

Then
$D(F)=0, \quad D\left(X_{1} F\right)=-(2 m+(m+1)(n-1)) G F, \quad D\left(X_{j} F\right)=0, j \geq 2$.
Proof. Since $\frac{\partial^{2}(F)}{\partial X_{1} \partial X_{j}}=0$ and $\frac{\partial^{2}(F)}{\partial X_{j}^{2}}=m(m-1) a_{j} X_{j}^{m-2}$ for $j \geq 2$, we have

$$
\begin{aligned}
D(F)= & -m(m-1)(n-2) G X_{1}^{m-1}-m(m-1) G X_{1}^{m-1} \\
& +X_{1}^{m-1} \sum_{j=2}^{n} \frac{G}{a_{j} X_{j}^{m-2}} \frac{\partial^{2} F}{\partial X_{j}^{2}} .
\end{aligned}
$$

Thus

$$
D(F)=-m(m-1)(n-1) G X_{1}^{m-1}+X_{1}^{m-1} \sum_{j=2}^{n} m(m-1) G=0
$$

Now we calculate

$$
\begin{aligned}
D\left(X_{1} F\right)= & D\left(X_{1}^{m+1}\right)+D\left(X_{1}\left(\sum_{j=2}^{n} a_{j} X_{j}^{m}\right)\right) \\
= & -(m-1)(n-2) G\left((m+1) X_{1}^{m}-m(m+1) X_{1}^{m} G+\sum_{j=2}^{n} a_{j} X_{j}^{m}\right. \\
& -2 m G \sum_{j=2}^{n} a_{j} X_{j}^{m}+X_{1}^{m} \sum_{j=2}^{n} m(m-1) G \\
= & -(2 m+(m+1)(n-2)) G X_{1}^{m} \\
& -(2 m+(m+1)(n-2)) G\left(\sum_{j=2}^{n} a_{j} X_{j}^{m}\right)
\end{aligned}
$$

thus $D\left(X_{1} F\right)=-(2 m+(m+1)(n-2)) G F$.
Analogously one can prove that $D\left(X_{j} F\right)=0$ for $j \geq 2$.
The main result of this paper is
Theorem 6. Let $B=S /(F)$ where $S=k\left[X_{1}, \ldots, X_{n}\right], n \geq 2$ and $F=X_{1}^{m}+a_{2} X_{2}^{m}+\cdots+a_{n} X_{n}^{m}$ with $0 \neq a_{j} \in k$ and $m \geq 1$. Then

$$
\operatorname{Der}_{k}^{2}(B)=\operatorname{der}_{k}^{2}(B) \quad \text { if and only if } \quad m=1
$$

Proof. The sufficiency is a direct consequence of the fact that for $m=1$, the ring $B=k\left[X_{2}, \ldots, X_{n}\right]$ is a polynomial ring over k.

For the proof of the necessity suppose $m \geq 2$ and take the derivation $D \in \operatorname{Der}_{k}^{2}(S)$ defined in Lemma 5. Thus by Lemma 5, we have $D(F)=0$ and $\left[D, X_{i}\right](F) \in(F)$ for every i. Then by [5, Prop. 2.10] we get $D((F)) \subseteq(F)$. Therefore D induces a derivation $\bar{D} \in \operatorname{Der}_{k}^{2}(B)$ defined by

$$
\bar{D}(G+(F))=D(G)+(F)
$$

We claim that $\bar{D} \notin \operatorname{der}_{k}^{2}(B)$. Suppose that $\bar{D} \in \operatorname{der}_{k}^{2}(B)$. Then

$$
D=d+\sum_{i=1}^{s} d_{i}^{\prime} \circ d_{i}+F D^{\prime}
$$

with $D^{\prime} \in \operatorname{Der}_{k}^{2}(S)$ and $\left\{d, d_{i}^{\prime}, d_{i} ; 1 \leq i \leq s\right\} \subset \operatorname{Der}_{k}^{1}(S)$ with $d(F) \in(F)$ and $\left\{d_{i}(F), d_{i}^{\prime}(F)\right\} \subset(F)$ for every i. Thus by Lemma 4 ,

$$
D\left(X_{1} F\right)=H F \quad \text { with } H \in J_{1}=\left(X_{1}, X_{2}^{m-1}, \ldots, X_{n}^{m-1}\right)
$$

But, by Lemma 5, $D\left(X_{1} F\right)=-(2 m+(m+1)(n-2)) G F$, where

$$
G=a_{2} \cdots a_{n} X_{2}^{m-2} \cdots X_{n}^{m-2} \notin J_{1}
$$

This contradiction proves our claim, and this proves the theorem.

Corollary 7. If $H \in S=k\left[X_{1}, \ldots, X_{n}\right]$ is a homogeneous polynomial of degree m with $1 \leq m \leq 2$ and $C=S /(H)$ then

$$
\operatorname{Der}_{k}^{2}(C)=\operatorname{der}_{k}^{2}(C) \quad \text { if and only if } \quad m=1
$$

Proof. This is a consequence of Theorem6 and of the fact that if $m=2$ then there exists a linear change of variables $X_{i}=\sum_{j} b_{i j} Y_{j}, b_{i j} \in k, 1 \leq$ $i \leq n$, such that $H=Y_{1}^{2}+a_{2} Y_{2}^{2}+\cdots+a_{s} Y_{s}^{2}, s \leq n$.

REFERENCES

[1] A. Grothendieck, Éléments de Géométrie Algébrique, Publ. Math. IHES 32 (1967).
[2] J. Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874-898.
[3] Y. Nakai, High order derivations I, Osaka J. Math. 7 (1970), 1-27.
[4] A. Schreiner, On a conjecture of Nakai, Arch. Math. (Basel) 62 (1994), 506-512.
[5] B. Singh, Differential operators on a hypersurface, Nagoya Math. J. 103 (1986), 67-84.
Paulo Roberto Brumatti
Marcelo Oliveira Veloso
IMECC-UNICAMP
13083-970, Campinas, SP, Brazil
E-mail: brumatti@ime.unicamp.br

CAP-UFSJ
36420-000, Ouro Branco, MG, Brazil
E-mail: veloso@ufsj.edu.br

