Congruent numbers over real number fields

BY
TOMASZ JĘDRZEJAK (Szczecin)

Abstract

It is classical that a natural number n is congruent iff the rank of \mathbb{Q} points on $E_{n}: y^{2}=x^{3}-n^{2} x$ is positive. In this paper, following Tada (2001), we consider generalised congruent numbers. We extend the above classical criterion to several infinite families of real number fields.

1. Introduction. A positive integer n is called a congruent number if it is the area of a right triangle all of whose sides have rational lengths, i.e. if there are positive rationals a, b, c with

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \quad \text { and } \quad a b=2 n \tag{1}
\end{equation*}
$$

Without loss of generality we may (and will) assume that n is squarefree. The problem of determining whether or not a given positive integer is a congruent number is very old. Thanks to Euclid's characterization of the Pythagorean triples it is easy to decide whether there exists a right triangle of given area and integer sides. However, the case of rational sides, called the congruent number problem, is not completely understood. Immediately we can see that 6 is a congruent number. Fibonacci showed that also 5 is a congruent number (one may take $a=3 / 2, b=20 / 3, c=41 / 6$). Fermat found that 1, 2 and 3 are not congruent numbers.

In the spirit of Euclid's proof of the infinitude of prime numbers, one can also show that there are infinitely many (squarefree) congruent numbers. Chahal [Ch] established that the residue classes of $1,2,3,5,6,7$ modulo 8 contain infinitely many congruent numbers. Bennett [Be] extended this result by showing that if k and m are positive integers such that $\operatorname{gcd}(k, m)$ is squarefree then the residue class of a modulo m contains infinitely many congruent numbers. Next Rajan and Ramaroson [RR] proved that if k and m are positive, squarefree, coprime integers then there exist infinitely many squarefree integers n such that both $n k$ and $n m$ are congruent numbers.

There is a fruitful translation of the congruent number problem into the language of elliptic curves (see Koblitz [K] for details). If n is a congruent

[^0]number then it follows from (1) that there exist three rational squares in arithmetic progression of common difference n, namely $x-n, x, x+n$ where $x=c^{2} / 4$. Therefore we obtain the rational point $\left(c^{2} / 4, c\left(a^{2}-b^{2}\right) / 8\right)$ on the elliptic curve
\[

$$
\begin{equation*}
E_{n}: y^{2}=x^{3}-n^{2} x . \tag{2}
\end{equation*}
$$

\]

Conversely, given a rational point (x, y) on E_{n} with $y \neq 0$, one may take

$$
\begin{equation*}
a=\left|\frac{y}{x}\right|, \quad b=2 n\left|\frac{x}{y}\right|, \quad c=\frac{x^{2}+n^{2}}{|y|} \tag{3}
\end{equation*}
$$

to obtain a right triangle with rational sides a, b, c and area n.
The rational points (x, y) with $y \neq 0$ have infinite order in the MordellWeil group $E_{n}(\mathbb{Q})$, since it is well known that its torsion subgroup consists only of points of order 2 , namely $(0,0),(\pm n, 0)$, and the point at infinity ∞. This is the key point in the proof of the following criterion.

Criterion 0. A positive integer n is a congruent number if and only if $E_{n}(\mathbb{Q})$ has a point of infinite order.

From this one can deduce the fact (already known to Fermat) that for a given congruent number n there are infinitely many right triangles with rational sides a, b, c satisfying (1), since scalar multiplication of that point in the Mordell-Weil group $E_{n}(\mathbb{Q})$ yields new right triangles of area n.

Note that the correspondence between rational points on E_{n} and right triangles with rational sides is not bijective. Solving (3) for x and y with given a, b and c gives the two points

$$
\begin{equation*}
x=\frac{1}{2} a(a \pm c), \quad y=a x . \tag{4}
\end{equation*}
$$

The congruent number problem has been solved almost completely by Tunnell [Tu] who gave a simple equivalence criterion, which however, depends on the truth of a weak form of the Birch and Swinnerton-Dyer conjecture for the family of elliptic curves $E_{n}: y^{2}=x^{3}-n^{2} x$ (the conjecture has been checked by Nemenzo [Ne] for $n<42553$). More precisely, Tunnell showed that if n is an odd congruent number then
$\#\left\{x, y, z \in \mathbb{Z}: 2 x^{2}+y^{2}+8 z^{2}=n\right\}=2 \#\left\{x, y, z \in \mathbb{Z}: 2 x^{2}+y^{2}+32 z^{2}=n\right\}$, and the converse is also true provided the Birch and Swinnerton-Dyer conjecture for the family E_{n} holds (i.e. the rank of the elliptic curve E_{n} is positive if and only if the associated L-function vanishes at the central point 1). He gave a similar criterion when n is even.

If n is not a congruent number, one can ask if n is the area of a right triangle with three sides in some number field. This leads to the following natural generalization:

Definition 1. We say that a positive integer n is a congruent number over a number field K (or for short, a K-congruent number) if there exist $a, b, c \in K$ such that (1) holds.

The idea to study the congruent number problem over algebraic extensions dates back at least to Tada Ta] who considered real quadratic fields. Note that when K is a subfield of \mathbb{R} the geometric interpretation still holds. Also other generalizations are possible. For example Fujiwara [Fu extended the concept of congruent numbers by considering not necessarily right triangles with rational sides and an angle θ (so called θ-congruent numbers). However this generalization is not a topic of our paper.

It is easy to see that, for instance, 1 is a congruent number over $\mathbb{Q}(\sqrt{2})$ (one may take $a=b=\sqrt{2}, c=2$). But equations (4) lead to the points $(1 \pm \sqrt{2}, 2 \pm \sqrt{2})$ which are all torsion points in $E_{1}(\mathbb{Q}(\sqrt{2}))$. Therefore we do not get infinitely many different right triangles from these points. This example motivates the following definition:

Definition 2. We say that a positive integer n is a properly K-congruent number if (1) has infinitely many solutions $a, b, c \in K$.

In this paper we give infinite families of real number fields K for which all K-congruent numbers are properly K-congruent. Of course all \mathbb{Q}-congruent numbers are properly \mathbb{Q}-congruent. Note that n is properly K-congruent if and only if $E_{n}(K)$ has a point of infinite order. Hence we also obtain a variant of Criterion 0 for such fields.
2. Congruent numbers over number fields of type $(2, \ldots, 2)$. For a number field K let $T_{n}(K)$ denote the group of K-rational torsion points of E_{n} defined in (2), with $n \in \mathbb{N}$ squarefree. It is well known that $T_{n}(\mathbb{Q})=$ $E_{n}[2]=\{\infty,(0,0),(\pm n, 0)\}$.

Let $K_{2, d}$ denote the real number field of type $(2, \ldots, 2)$, i.e. $K_{2, d}=$ $\mathbb{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{d}}\right), m_{i}$ positive integers. Without loss of generality we may assume that $\left[K_{2, d}: \mathbb{Q}\right]=2^{d}, m_{i}$ are squarefree $(1 \leq i \leq d)$ and no m_{i}, divides any other. Tada $[T a$, Theorem 1] showed that n is $\mathbb{Q}(\sqrt{m})$-congruent (where $m \neq 2$) if and only if $E_{n}(\mathbb{Q}(\sqrt{m})$) has a point of infinite order. We have the following generalizations of this (and of Criterion 0).

Theorem 1. Assume that $\sqrt{2} \notin K_{2, d}$. Then n is a congruent number over $K_{2, d}$ if and only if $E_{n}\left(K_{2, d}\right)$ has a point of infinite order.

Remark 2. It is easy to see that the above assumption is satisfied if all m_{i} are odd. Moreover it is easy to check that $\sqrt{2} \notin K_{2,2}$ if and only if $m_{1} \neq 2$ and $m_{2} \neq 2$.

The proof of Theorem 1 is divided into a few lemmas.

Lemma 3. For every subfield K of \mathbb{R} a positive integer n is a congruent number over K if and only if $E_{n}(K) \backslash E_{n}[2] \neq \emptyset$.

Proof. This is a well known result. See, for instance, the beginning of the proof of Theorem 1 in [Ta].

Lemma 4. Assume that $T_{n}(K)=E_{n}[2]$. Then n is a congruent number over K if and only if $E_{n}(K)$ has a point of infinite order.

Proof. This follows easily from Lemma 3.
Therefore, it is important to know $T_{n}(K)$ for fields mentioned in Theorem 1. For example, the assumptions of Lemma 4 are satisfied for $K=$ $\mathbb{Q}(\sqrt{m})$ for squarefree integers $m>2$ (see [Ta]). The next lemma generalizes this result.

Lemma 5. If $\sqrt{2} \notin K_{2, d}$ then $T_{n}\left(K_{2, d}\right)=E_{n}[2]$.
Proof. Observe that the quadratic twist $E_{n}^{m}: y^{2}=x^{3}-m^{2} n^{2} x$ of the curve E_{n} is isomorphic (over $\left.\mathbb{Q}\right)$ to $E_{m n}$. Therefore $E_{n}^{m}(\mathbb{Q})_{\text {tors }}=T_{m n}(\mathbb{Q}) \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Then from QZ, remark after Theorem 2 and Lemma 3] we know that $T_{n}\left(K_{2, d}\right)$ is a 2-group, i.e. has no point of an odd order. Hence to finish the proof we must show that $T_{n}\left(K_{2, d}\right)$ has no point of order 4. It is clear that $P \in E_{n}\left(K_{2, d}\right)$ is of order 4 if and only if $2 P=(0,0),(n, 0)$ or $(-n, 0)$. By [Kn, Theorem 4.2, p. 85] we have the following cases to consider:
(a) $2 P=(0,0) \Leftrightarrow-n$ and n are perfect squares in $K_{2, d}$,
(b) $2 P=(n, 0) \Leftrightarrow n$ and $2 n$ are perfect squares in $K_{2, d}$,
(c) $2 P=(-n, 0) \Leftrightarrow-n$ and $-2 n$ are perfect squares in $K_{2, d}$.

In cases (a) and (c) we have $\sqrt{-n} \in K_{2, d}$ for some positive integer n, which is impossible because $K_{2, d} \subset \mathbb{R}$. In case (b) we conclude that $\sqrt{2}$ belongs to $K_{2, d}$, and the assertion follows.

Proof of Theorem 1. This follows immediately from Lemmas 4 and 5.
Corollary 6. Assume that $\sqrt{2} \notin K_{2, d}$. Then n is a congruent number over $K_{2, d}$ if and only if at least one of the 2^{d} numbers $n m_{1}^{e_{1}} \cdots m_{d}^{e_{d}}\left(e_{i}=0,1\right)$ is a congruent number over \mathbb{Q}.

To prove this corollary we need the following proposition.
Proposition 7 (Theorem B in Ta|). Assume that E is an elliptic curve over a number field k and $D \in k \backslash k^{2}$. Then

$$
\operatorname{rank}(E(k(\sqrt{D})))=\operatorname{rank}(E(k))+\operatorname{rank}\left(E^{D}(k)\right),
$$

where E^{D} is the twist of E over $k(\sqrt{D})$.
Proof. See for example [Se, p. 63].

Proof of Corollary 6. By easy induction, from Proposition 7 and the first sentence of the proof of Lemma 5 we conclude that

$$
\operatorname{rank}\left(E_{n}\left(K_{2, d}\right)\right)=\sum \operatorname{rank}\left(E_{n m_{1}^{e_{1}} \ldots m_{d}^{e_{d}}}(\mathbb{Q})\right),
$$

where summation is over all d-tuples $e_{i} \in\{0,1\}, i=1, \ldots, d$. By Theorem 1 we know that n is a congruent number over $K_{2, d} \Leftrightarrow \operatorname{rank}\left(E_{n}\left(K_{2, d}\right)\right)>0$. Hence in particular at least one summand in this sum is positive. Using Criterion 0 we are done.

Remark 8. From Tunnell's criterion ($(\mathbb{T u})$ it follows, in particular, that any squarefree $n \equiv 5,6,7(\bmod 8)$ is conditionally a congruent number over \mathbb{Q}. Corollary 6 then implies that, conjecturally, every odd positive integer is a congruent number over $\mathbb{Q}(\sqrt{5})$ and every even positive integer is a congruent number over $\mathbb{Q}(\sqrt{3})$. Therefore, hypothetically every squarefree positive integer is a congruent number over $\mathbb{Q}(\sqrt{3}, \sqrt{5})$.

Corollary 9. Assume that $\sqrt{2} \notin K_{2, d}$. If n is a congruent number over $K_{2, d}$, then n is a congruent number over \mathbb{Q} or over some real quadratic subfield $\mathbb{Q}\left(\sqrt{m_{1}^{e_{1}} \cdots m_{d}^{e_{d}}}\right) \subset K_{2, d}$.

Proof. This follows easily from Corollary 6.
Remark 10. Any positive integer n is a congruent number over the field $\mathbb{Q}(\sqrt{2}, \sqrt{n})$. Indeed, it is enough to take $a=b=\sqrt{2 n}$ and $c=2 \sqrt{n}$. Then equations (4) lead to the points $P=(n(1 \pm \sqrt{2}), n \sqrt{2 n}(1 \pm \sqrt{2})) \in$ $E_{n}(\mathbb{Q}(\sqrt{2}, \sqrt{n}))$ such that $2 P=(n, 0)$. Taking an odd n such that neither n nor $2 n$ are congruent numbers over \mathbb{Q} (e.g. $n=1,33$) we see that the assumption $\sqrt{2} \notin K_{2, d}$ in Theorem 1 and in Corollaries 6 and 9 is necessary. In particular such an n is not properly $\mathbb{Q}(\sqrt{2}, \sqrt{n})$-congruent.
3. Congruent numbers over other real number fields. Now we consider real number fields of degree $\neq 2^{d}$ (or $=4$). We obtain the following counterpart of Theorem 1.

Theorem 11. Let $K \subset \mathbb{R}$ be a number field such that $\sqrt{2}, \sqrt{3}, \sqrt{5} \notin K$. Suppose that $[K: \mathbb{Q}]$ is odd or $[K: \mathbb{Q}]=2 p$, where p is a prime. Then n is a congruent number over K if and only if $E_{n}(K)$ has a point of infinite order.

To prove Theorem 11 we require a bound on the torsion subgroup of $E_{n}(K)$. We write down the following two general results about torsion of CM elliptic curves.

Theorem 12 (SPY-bounds). Let E be an elliptic curve over a number field K of degree d with $C M$ by an order O in an imaginary quadratic field L.

Let $P \in E(K)$ be a point of order N, let M be the order of the torsion subgroup of $E(K)$ and μ be the number of roots of unity in O. Then
(i) $\varphi(N) \leq(\mu / 2) d$ if $L \subset K$,
(ii) $\varphi(M) \leq 2 d$ if $K \cap L=\mathbb{Q}$,
where φ denotes Euler's totient function.
Proof. See the papers of Silverberg [Si] or Prasad and Yogananda [PY].
ThEOREM 13. With the above notation and assumptions suppose furthermore that O is a maximal order in $L=\mathbb{Q}(\sqrt{D}), K \cap L=\mathbb{Q}$ and N is an odd prime. Then be the number of roots of unity in O. Then
(i) if $\left(\frac{D}{N}\right)=1$, then $\left.(N-1) \frac{2 h(L)}{\mu} \right\rvert\, d$,
(ii) if $\left(\frac{D}{N}\right)=0$, then $\left.(N-1) \frac{h(L)}{\mu} \right\rvert\, d$,
(iii) if $\left(\frac{D}{N}\right)=-1$, then $\left.\left(N^{2}-1\right) \frac{h(L)}{\mu} \right\rvert\, d$,
where $h(L)$ is the class number of L.
Proof. See [CCS, Theorem 2].
Lemma 14. If a number field $K \subset \mathbb{R}$ satisfies the assumptions of Theorem 11 then $T_{n}(K)=E_{n}[2]$.

Proof. Let $[K: \mathbb{Q}]=s$. It is obvious that the curve E_{n} has complex multiplication by $\mathbb{Z}[i]$. From Theorem 12 we get $\varphi\left(\# T_{n}(K)\right) \leq 2[K: \mathbb{Q}]=$ $2 s$. Since $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \subset T_{n}(K)$ we have $T_{n}(K) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 N \mathbb{Z}$ for some positive integer N. Next for any squarefree positive integer $n>1$ we have $\sqrt{-n}, \sqrt{2} \notin K$, hence (see the proof of Lemma 5) $T_{n}(K)$ has no point of order 4 . Therefore N is odd and we obtain $\varphi(N) \leq s$. Thus in order to finish the proof it will be sufficient to check that $T_{n}(K)$ has no point of order N, where N is an odd prime $\leq s+1$.

Now we use Theorem 13 which in some cases refines SPY-bounds. Assume that $T_{n}(K)$ has a point of an odd prime order $N \leq s+1$. Then $N \equiv 1(\bmod 4)$ implies $\left.\frac{N-1}{2} \right\rvert\, s$, and $N \equiv 3(\bmod 4)$ implies $\left.\frac{N^{2}-1}{4} \right\rvert\, s$. In either case, we have a contradiction if s is odd. Hence we can assume that $s=2 p$.

Let $N \equiv 1(\bmod 4)$. Note that $\left.\frac{N-1}{2} \right\rvert\, 2 p$ if and only if $N=5$. Similarly for $N \equiv 3(\bmod 4)$ we have $\left.\frac{N^{2}-1}{4} \right\rvert\, 2 p$ if and only if $N=3$. Hence it will be sufficient to consider $N=3,5$.

If $P \in E_{n}(K)$ has an odd order N, then $x\left(\left[\frac{N+1}{2}\right] P\right)=x\left(\left[-\frac{N-1}{2}\right] P\right)$. So using the group law formulas we obtain homogeneous polynomial equations $F_{N}(x, n)=0($ for $N=3,5)$ where
$F_{3}(x, n)=n^{4}+6 n^{2} x^{2}-3 x^{4}$,
$F_{5}(x, n)=n^{12}+50 n^{10} x^{2}-125 n^{8} x^{4}+300 n^{6} x^{6}-105 n^{4} x^{8}-62 n^{2} x^{10}+5 x^{12}$
(we have used Mathematica for symbolic computations). Let $f_{N}(x):=$ $F_{N}(x, 1)$ be the dehomogenization of $F_{N}(x, n)$. We find that $\pm \sqrt{(3+2 \sqrt{3}) / 3}$ are all real roots of polynomials f_{3} and check that if $\sqrt{3} \notin K$ then f_{3} has no roots in K. Similarly we can compute all real roots of f_{5} and check that they do not belong to K if $\sqrt{5} \notin K$. The assertion follows.

Proof of Theorem 11. This follows immediately from Lemmas 4 and 14.
Corollary 15. If a real number field K satisfies the assumptions of Theorems 1 or 11 then a number n is K-congruent if and only if n is properly K-congruent.

Proof. For such fields K a number n is K-congruent if and only if $\operatorname{rank}\left(E_{n}(K)\right)>0$. The correspondence between K-rational points on E_{n} and right triangles with sides in K (cf. (3)) finishes the proof.

Questions. 1) One can ask whether there exists a real number field F such that any $n \in \mathbb{N}$ is a congruent number over F. Such a field must have the following property: for every $n \in \mathbb{N}$ either the group $T_{n}(F)$ is strictly larger than $E_{n}[2]$ or $\operatorname{rank}\left(E_{n}(F)\right)>0$. Of course the field $F=\mathbb{Q}(\sqrt{n}: n \in \mathbb{N})$ has the desired property unconditionally but $[F: \mathbb{Q}]=\infty$. Hypothetically, we may take $F=\mathbb{Q}(\sqrt{3}, \sqrt{5})$ (see Remark 8).
2) One can ask whether for any positive integer d there exists a number field F of degree d over \mathbb{Q} such that $T_{n}(F)=E_{n}[2]$ for all squarefree n. We have proved that the answer is positive when d is a power of 2 or an odd number or $d=2 p$, where p is a prime.
3) In [GGGSS] it is proved that any number n is properly congruent over some real quadratic and some real cubic field. One can ask whether for a given positive integer d every $n \in \mathbb{N}$ is properly congruent over some real field of degree d.
4) It would be of interest to characterize all real number fields with the property given in Corollary 15.

Acknowledgements. I would like to thank Andrzej Dąbrowski for helpful conversations and suggestions.

REFERENCES

[Be] M. A. Bennett, Lucas' square pyramid problem revisited, Acta Arith. 105 (2002), 341-347.
[Ch] J. S. Chahal, On the identity of Desboves, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), 105-108.
[CCS] P. Clark, B. Cook and J. Stankiewicz, Torsion points on elliptic curves with complex multiplication, Int. J. Number Theory, to appear; http://math.uga. edu/~pete/torspaper.pdf
[Fu] M. Fujiwara, θ-congruent numbers, in: Number Theory, de Gruyter, 1997, 235-241.
[GGGSS] E. Girondo, G. González-Diez, E. González-Jiménez, R. Steuding and J. Steuding, Right triangles with algebraic sides and elliptic curves over number fields, Math. Slovaca 59 (2009), 299-306.
[Kn] A. Knapp, Elliptic Curves, Math. Notes 40, Princeton Univ. Press, NJ, 1992.
[Ko] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Grad. Texts in Math. 97, Springer, New York, 1984.
[Ne] F. R. Nemenzo, All congruent numbers less than 40000, Proc. Japan. Acad. Ser. A Math. Sci. 74 (1998), 144-162.
[PY] D. Prasad and C. S. Yogananda, Bounding the torsion in CM elliptic curves, C. R. Math. Rep. Acad. Sci. Canada 23 (2001), 1-5.
[QZ] D. Qui and X. Zhang, Elliptic curves and their torsion subgroups over number fields of type $(2,2, \ldots, 2)$, Sci. China 44 (2001), 159-167.
[RR] A. Rajan and F. Ramaroson, Ratios of congruent numbers, Acta Arith. 128 (2007), 101-106.
[Se] P. Serf, The rank of elliptic curves over real quadratic number fields of class number 1, PhD Thesis, Univ. Saarbrücken, 1995.
[Si] A. Silverberg, Points of finite order on abelian varieties, in: Contemp. Math. 133, Amer. Math. Soc., 1992, 175-193.
[Ta] M. Tada, Congruent numbers over real quadratic fields, Hiroshima Math. J. 31 (2001), 331-343.
[Tu] J. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334.

Tomasz Jędrzejak
Institute of Mathematics
University of Szczecin
Wielkopolska 15
70-451 Szczecin, Poland
E-mail: tjedrzejak@gmail.com

Received 21 November 2011;
revised 28 August 2012

[^0]: 2010 Mathematics Subject Classification: Primary 11G05; Secondary 14H52. Key words and phrases: congruent numbers, elliptic curves, number fields.

