COLLOQUIUM MATHEMATICUM

VOL. 128 2012 NO. 2

JESMANOWICZ’ CONJECTURE WITH CONGRUENCE RELATIONS

BY

YASUTSUGU FUJITA (Chiba) and TAKAFUMI MIYAZAKI (Tokyo)

Abstract. Let a,b and ¢ be relatively prime positive integers such that a® +b% = ¢%.

We prove that if b = 0 (mod 2") and b = +2" (mod a) for some non-negative integer r, then
the Diophantine equation a® + b¥ = ¢* has only the positive solution (z,y, z) = (2,2,2).
We also show that the same holds if ¢ = —1 (mod a).

1. Introduction. Let a,b and c be relatively prime positive integers
such that a®+b? = 2. Such a triple (a, b, ¢) is called a primitive Pythagorean
triple. We consider the positive solutions (x,y, z) of the exponential Dio-
phantine equation

(1.1) a® +b¥ = .

The first non-trivial result on the Diophantine equation is due to
Sierpinski ([12]), who showed that the Diophantine equation 3% + 4Y = 5*
has only the positive solution (x,y,z) = (2,2,2). JeSmanowicz ([5]) further
showed that the same is true for

(a,b,c) € {(5,12,13),(7,24,25), (9,40,41), (11,60,61)},
and proposed the following conjecture.
CONJECTURE 1.1. Let a,b and ¢ be a primitive Pythagorean triple such

that a®+b? = c2. Then the Diophantine equation (1.1 has only the positive
solution (z,y,z) = (2,2,2).

There are various kinds of triples (a,b,c) for which Conjecture is
known to be valid. When we parameterize a,b and ¢ by
(1.2) a=m?—n% b=2mn, c=m>+n?

where m and n are positive integers with m > n, ged(m,n) = 1 and m #
n (mod 2), it was shown that Conjecture[L.1]is true for n = 1 by Lu ([8]) and
for n = m — 1 by Dem’janenko ([2]). In [10], the second author showed that
Conjecture is true if @ = —1 (mod b), a =1 (mod b) or ¢ =1 (mod b),
where the results for a = —1 (mod b) and ¢ = 1 (mod b) generalize the ones
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in [§] and [2], respectively. For other results supporting Conjecture see
for example [1], [3], [6] and [7]. In this paper, we show that Conjecture
is true under a certain assertion on b mod a.

THEOREM 1.2. Let a, b and c be a primitive Pythagorean triple such that
a? +b% = 2. Let r be a non-negative integer such that b = 0 (mod 27). If
b= €2" (mod a) with € € {£1}, then Conjecture[L.1] is true.

Note that in Theorem one can take any integer r > 0 as long as
b = 0 (mod 2"). Moreover, if b is odd, then r = 0 and b = £1 (mod a),
where Conjecture is true by [10]. Thus, we may assume (|1.2)).

Note that Theorem [1.2| contains the results of Lu ([§]) and Dem’janenko
([2]) whenever m is a power of 2. Indeed, if we put m = 2%, then n =m — 1
implies that @ = 2571 — 1 and b = 25+1(25 — 1) = —2% (mod a) (it is obvious
for the result of Lu).

The second main theorem asserts that Conjecture holds under the
assumption ¢ = —1 (mod a).

THEOREM 1.3. Let a,b and c be a primitive Pythagorean triple such that
a?+b?>=c2 Ifc=—1 (mod a), then Conjecture is true.

If c = —1 (mod a) with a even, then m? + n? = —1 4 2mnt for some
integer ¢, which does not hold modulo 4. Hence, we may assume in
this case, too. For the cases of ¢ = €2" (mod a) with (e,7) # (—1,0), see
the end of Section [5], where, in particular, it is shown that Conjecture|1.1]is
true if ¢ = 2 (mod a), which can be regarded as a paraphrase of the result
of Lu ([8]).

2. Preliminaries to the proof of Theorem By the assumptions
b=¢€2" (mod a), b=0 (mod 2") and a = 1 (mod 2), we may write

b=¢e2"+2"at

with some integer t > 0. If ¢ = 0, then (e = 1 and) b = 2", which implies
n = 1, and then Conjecture holds by [§]. Hence, we may assume that
t > 1. Putting M = m +n and N =m — n, we see from (|1.2]) that

(2.1) (M —2"Nt)? — ((2"t)2 + 1)N? = 271,

If t > 2, then the Pell equation U? — ((2"t)2 +1)V? = €2"*! has no primitive
solution (cf., e.g., [4, Lemma 2.3]), and the Diophantine equation ({2.1)) has
no solution, since ged(M, N) = 1. Hence, t = 1 and

(2.2) m? —n? = mong — e,
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where mg and ng are positive divisors of m and n, respectively, such that

2"mong = 2mn, that is,
( ) { (m/27=1, n) if m is even,
m ’n = . .
00 (m, n/2" 1) if m is odd.

If r = 0, then m? — n? = 2mn — ¢, which means a = b — €. In this case, we
know that Conjecture is true by [10]. Thus, we may assume that

r>1.

Moreover, equation immediately shows that mgng is even. If mg = 1,
then m = mg = 1, which contradicts m > n. If ngp = 1, then n = ng = 1,
where Conjecture is true by [8]. Furthermore, if my = 2, then e = —1
and m? = (n +1)?, and if ng = 2, then € = 1 and n? = (m — 1)?; in either
case, we have n = m — 1 and Conjecture is true by [2]. Thus, we may
assume that

mg, ng > 3.
By we have the following congruences:
(2.3) m? = —¢ (mod ng) and n% = e (mod my).
LEMMA 2.1. If e =1, then x and z are even. If ¢ = —1, then z is even.

Proof. Equation (1.1) implies that
(—n?)® = (n?)* (mod m) and (m?)® = (m?)? (mod n).
The assertion now follows from ([2.3) and mg,ng > 3. =

In the following sections, we consider the cases of ¢ = 1 and ¢ = —1
separately.

3. The case of ¢ = 1. Consider the case of ¢ = 1. By Lemma we
may write x = 2X and z = 27 with positive integers X and Z, which,
together with (|1.1)), enables us to write

(2mn)Y = DE,
where
(3.1) D=m>+n)% + (m*-n?)%,  E=@m?>+n*7 - (m?-nH*.
It is easy to see that ged(D, F) = 2. Also, y > Z, in particular, y > 1.
Indeed,
(2mn)Y = DE > D > (m*> 4+ n*)Z > (2mn)?,

Recall that mong is even. If mgng = 0 (mod 4), then m? —n? = —1 (mod 4),

which implies that m is even, so mo = 0 (mod 4). If mong = 2 (mod 4),
then m? —n? =1 (mod 4), which implies that n is even, so ng = 2 (mod 4).
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To sum up, it suffices to consider the case of either
(i) mp =0 (mod 4) and ny = n,
or
(ii) ng = 2 (mod 4) and my = m.
LEMMA 3.1. If mg = 0 (mod 4), then X and Z are odd. If nyg =
2 (mod 4), then X is odd.

Proof. Suppose that X is even. Then from and we see that
D =2 (mod 4), D = 2 (mod mg), F =0 (mod 4) and E = 0 (mod my).
Hence, in each case of (i) and (ii) we have £ = 0 (mod 2Y~'m¥). However,
this implies that 2¥~'m¥ < E < D < 2n¥, which contradicts y > 1 and
m > n. Therefore, X is odd.

Suppose that Z is even in the case of my = 0 (mod 4). Then F =
2 (mod my), E =2 (mod n) and we have E = 2, so D = 2Y~!m¥n¥. Thus,
W 2m¥n¥ = AB, where A = (m? +n?)%/2 +1, B = (m? + n?)%/? — 1.
Since A =2 (mod my), we see that B = 0 (mod 2Y~3mY). But this implies
that 2¢3mY < B < A < 2n¥, so y < 3. Since y > Z, we have y = 3 and
Z = 2. Hence, B =m?+n? —1 =0 (mod m?), a contradiction. Therefore,
if mop =0 (mod 4), then Z is also odd. =

In case (i), we need the following lemma in order to show that y is even.
LEMMA 3.2. If mg =0 (mod 4), then mg =0 (mod 27+2).
Proof. Put m; = mg/2. Equation implies

(n+mi)?— 2% + )mi =1.

Since any positive solution of the Pell equation U? — (22" 4+ 1)V? = 1 has
the form

U+ V22 41 =22+ 14 20+1/22r 4 1)

with a positive integer j, we easily see that m; = 0 (mod 2"*!), that is,
mo =0 (mod 2"12). u

By Lemma we see that £ = 2 (mod my) and E =0 (mod n), so
D=2""1mY, E=2nY.
Hence,
(m? +n®)? = (D+ E)/2 =2V"2mY +nY.
Since y > 2, we see from that
(3.2) nY =1 (mod my).

LEMMA 3.3. If mp =0 (mod 4), then y is even.
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Proof. Suppose that y is odd. Congruences (2.3)) and (3.2)) together imply
that n = 1 (mod myg). Putting n = 1 + hmg with a positive integer h, we
see from ([2.2)) that

(2772 — h% — h)mg = 2h + 1.

Hence, 22"72 — h?2 — h > 1, yielding h < 2"~!'. This implies that my <
2h 41 < 2" +1 < 2", which contradicts Lemma [3.2]

Thus, we have shown that all three z, y and z are even in case (i), where
it is not difficult to prove Theorem

Proof of Theorem in the case of € =1 and mo =0 (mod 4). Putting
y = 2Y, one may write

(3.3)  (m?—n)H =k =12, 2mn)Y =2k, (m*+n>? =k + 17

where k and [ are positive integers with k& > [, ged(k,l) = 1 and k #
[ (mod 2). Since y = 2Y > Z and

(m2 . n2)2Z > (m2 + n2)Z — k’2 + l2 > k2 . l2 — (m2 _ n2)X7

we have

(3.4) I X —-Z| < Z<?2Y.
Since (k4 1)(k —1) = (m? — n?)X and ged(k + 1,k — 1) = 1, we may write
(3.5) E+l=u®, k—1=0v%

for some positive odd integers u and v satisfying u > v, ged(u,v) = 1 and
wv = m? — n?. Then we see that
WX 02X 2 2

(2mn)Y = 2kl = 5 = w,

where w = (u?X — v?X)/(u? — v?) is an odd integer, since u,v and X are
odd. It follows from the above equation that

Yuvo(2mn) = vo(u? — v?) — 1 = p(u £ v)

for the proper sign for which v v = 0 (mod 4), where v is the 2-adic
valuation normalized by 1v2(2) = 1. Since

utv<ut+v<w+l=m?-—n?+1 §m2:22r_2m3
and m = 2""'mg = 0 (mod 2*"*!) by Lemma we find that
vo(u £ ) < (2r —2)log2+2logmgy  logmyg
va(2mn) — (2r +2)log2 2log 2

On the other hand, equation (I.1]) implies that n?* = n?? (mod m?), which
together with (2.2 yields (1 — mgn)?¥ = (1 —mgn)?? (mod m?). Hence,

2monX = 2monZ (mod md).

(3.6) Y=
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Similarly, we see that m** = m*? (mod n?) and
2monX = 2monZ (mod n?).

Since ged(mg,n) = 1, we have 2monX = 2monZ (mod m2n?), that is,

(3.7) X = Z (mod mgn/2).
If X = Z, then (3.4)), (3.6) and (3.7) together imply that
log myg

mon/2 <|X —Z|<2Y —-2<

log2 ’

which contradicts n > 3 and mg > 8. Therefore, X = Z. Since X is odd by
Lemma [3.1] we see that

(2mn)?Y = DE = (m* 4+ n*)* — (m? — n*)** = (2mn)*w/,

where w' is an odd integer. Hence, vo((2mn)?Y) = v5((2mn)?). This implies
that Y =1,s0 X =Z=1Dby (3.4). =

Secondly, consider the case of (ii) ng = 2 (mod 4). We begin by examining
m and nq = ng/2 modulo 271

LEMMA 3.4. If ng =2 (mod 4), then
m=2"+1 (mod 2"™) and n; =1 (mod 2"*1),
where ny = ng/2.

Proof. From (2.2)) we see that (m — ny)? — (22" + 1)nZ = —1. Since any
positive solution of the Pell equation U? — (22" + 1)V2 = —1 has the form

U+VV22 41 =27+ /22 + 1) (2 4142711/ £ 1)

with a non-negative integer j, we have m —n; = 2" (mod 2"!) and ny =
1 (mod 271, which immediately implies the assertion. m

LEMMA 3.5. If ng =2 (mod 4), then y is even.

Proof. We know from Lemma that X is odd. Assume first that Z
is even. By (3.1)), we see that D = 0 (mod m), D = 0 (mod ng) and
E =0 (mod 4), so

D =2mYnY, E =20ty
Hence,
(m? +n?)? = (D + E)/2 = mYn? + 20+1v=2,
Since y > 2, n = 2""'ng = 2"n; and Z is even, we see from Lemmathat
1=(1+2")Y (mod 271,

which implies that y is even.
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Assume secondly that Z is odd. By ({3.1]), we see that D = 0 (mod m),
D = -2 (mod ng) and E =0 (mod 4), so

D=2mY, E=2"1nY.

Hence,

(m?+n*)? = (D + E)/2=mY + 2" nY.
Since y > 2, m? = —1 (mod ng) and Z is odd, we obtain m¥ = —1 (mod ny).
If y is odd, then m = 41 (mod ng), and hence m? = 1 (mod nyg), which
contradicts m? = —1 (mod ng) and ng > 3. Therefore, y is even. m

Proof of Theorem in the case of € = 1 and ny = 2 (mod 4). Put

y = 2Y. Then, we may write equation (3.3]), and we have (3.4) and (3.5).
Similarly to the case of € =1 and mo = 0 (mod 4), we find

logm

~ log2’
Also, in the same way as in the proof of (3.7]), we have
X = Z (mod mngy/2).
If X # Z, then
2logm
log 2
This contradicts m > 3 and ng > 3. Hence, X = Z, which implies X =Y =
Z =1, as we observed in case (i). m

mny/2 <|X —Z| <2Y —-2<

4. The case of e = —1. In the case of e = —1, considering (2.2]) modulo 4,
we see that either
(i) mp =2 (mod 4) and n = ny,
or
(ii) np =0 (mod 4) and m = my.

Consider first the case of mg = 2 (mod 4). Since m is even, reducing equation
(1.1)) modulo 4, we find that (—1)* = 1 (mod 4), that is, = is even. Since
we already know by Lemma that z is even, we can put x = 2X and
z = 27 with positive integers X and Z, so we obtain (2mn)¥ = DFE with

equations (3.1)).
LEMMA 4.1. If mg =2 (mod 4), then X and Z are odd.

Proof. Suppose that X is even. Then, D =2 (mod 4) and D =2 (mod n).
If Z is even, then D = 2 (mod mp) and D = 2, which contradicts D > E. If
Z is odd, then D =0 (mod myg) and

D=2m{, E-= 2(T+1)y_1ny,
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where m; = mg/2. However, by (2.2), n? — 2min +1 —m? =0 and

n:—ml'F\/77m>ml(2r_1)2m17

which shows that D = 2m} < 2n¥ < E, a contradiction. Hence, X is odd.
Suppose that Z is even. Then D = 0 (mod 4), D = 2 (mod mg), D =

2 (mod n) and
D — 2(r+1)y—1

However, by (2.2)), we have

n=-my+/mi+m2—1>m((2" -1)>2" -1,

that is, n > 2". Since m1 > 3 by mg > 6, we obtain
E=2mYnY >2.392" > 20+y 5 D,

,  E=2min".

which is a contradiction. Therefore, Z is odd. =
By Lemma D =2Y"'m¥Y and E = 2nY. It is clear that y > 2 and
(m? +n?)? = (D+E)/2 =2V"?mY +nY.
Since n? = —1 (mod mg) by , we have n¥ = —1 (mod myg). If y is odd,

then n = 41 (mod myg), and hence n?> = 1 (mod mg), which contradicts
n? = —1 (mod mg) and mg > 3. Therefore, y is even.

Proof of Theorem in the case of e = —1 and mo =2 (mod 4). Similarly
to the case of ¢ =1 and mg = 0 (mod 4), we can show that

I
(y/2=) Y < —520

log 2 +2, X =Z (mod moyn),

and this leads to the desired conclusion. =
Consider now the case of ng = 0 (mod 4). We may write
m=2% +e, n=2%,
where «, 3,1, j are positive integers with ¢,j odd, and with a > 2, § > 2
and e € {£1}. By (2.2)), we have
(4.1) B+1=uwy(m?—1) = 1a(n” + mng) = va(no(2**ng + m))
=13(ng) < 1p(n) = a < 2a.

It follows from Lemma 3.1 in [9] that if y > 1, then = z (mod 2); since z

is even by Lemma x is also even. If y = 1, then by (1.1)) and (2.2)), we
have

(mng + 1)* + 2mn = (mng + 1)* (mod n?),

which yields £ 42" = z (mod ng), in particular, z = z (mod 2) (since r > 1).
Hence, in any case, x and z are even. Put x = 2X and z = 2Z7.

LEMMA 4.2. If ng =0 (mod 4), then X and Z are odd.



JESMANOWICZ’ CONJECTURE 219

Proof. By (4.1) and Lemma 2 in [10], we have X = Z (mod 2). We may
write (2mn)Y = DE with (3.1). Suppose that X and Z are even. Then,
D =2 (mod 4), D = 2 (mod m), D = 2 (mod ng), so D = 2, which
contradicts D > E. Hence, X and Z are odd. =

By (2.2), we have (m —n1)? — (22" + 1)n? = 1, where n; = ng/2, and
we see that
(4.2) np = 0 (mod 2"72)
in the same way as in Lemma On the other hand, by Lemma D=
2mY and E = 2Y"1n¥. We see that (m? +n2)? = (D+ E)/2 = m¥ +2Y~2nY.
Hence,

(4.3) mY =1 (mod ny).
These arguments lead to the following lemma.
LEMMA 4.3. If ng =0 (mod 4), then y is even.

Proof. The proof is similar to the proof of Lemma [3.3| and therefore we
omit it. =

Proof of Theorem in the case of e =—1 andng=0 (mod 4). Similarly
to the case of € = 1 and ng = 2 (mod 4), we can show that

logm
2=)Y <
W/2=)Y < SE

and this leads to the desired conclusion. =

X = Z (mod mng/2),

5. Proof of Theorem Assume that ¢ = —1 (mod a). Then, by
(1.1)) there exists an integer ¢t > 1 such that

(5.1) m? +n? = —1+ (m? —n?)t.
Putting M = m +n and N = m — n, we can rewrite this as
(5.2) (M — Nt)? — (> = 1)N? = —-2.

Since the fundamental solution (p, q) of the Pell equation P? — (1> —1)Q%? =1
is (p,q) = (t,1), the fundamental solution (u,v) of the Pell equation U? —
(t? — 1)V? = —2 satisfies

1 1
0<v< V2=

= V20t - 1) T—1

(cf. [I1, Theorem 108a]). Hence, we must have v = 1 and ¢t = 2. Substituting
this into (5.2), we obtain

(5.3) M? + N2> = —24+4MN,
which implies that
(5.4) M? = -2 (mod N), N?= -2 (mod M).
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LEMMA 5.1. y and z are even.
Proof. By and , we have
(MN)® + (2MN — N? — 1)V = (2MN — 1)?,
which together with implies
1= (-1)% (mod M).

Since M = m-+n > 3, z is even. Similarly, we have (—1)¥ = (—1)* (mod N),
that is, (—1)¥ =1 (mod N). If N = m —n = 1, then it is known by [2] that
(x,y,2) = (2,2,2). Hence, we may assume that N > 3 and y is even. m

Putting y = 2Y and z = 27, we may write
(MN)* =DE,
where
D= (2MN —1)? + (2MN — N? - 1)¥,
E=(2MN -1)? —(2MN — N? - 1),
LEMMA 5.2. Y and Z are odd.

Proof. Suppose that Z is even. Then, by and , we have D =
2 (mod M) and E > M* > N* > D, a contradiction. Thus, Z is odd.

Suppose that Y is even. Then, we similarly have F = —2 (mod M),

= —2 (mod N) and F = 1, which implies that 3 = 0 (mod M). This
contradicts M > N > 3. Hence, Y is odd. =

By Lemma [5.2 we have D =0 (mod M), D = —2 (mod N) and
D=M®, E=N-

(5.5)

that is,

(m? +n?)% 4+ (2mn)
Suppose that z is odd. Then, considering D + E modulo 2m, we see that
2(n?)? = 0 (mod 2m), that is, n?) = 0 (mod m), which contradicts
ged(m,n) = 1. Hence, z is even. We are now ready to prove Theorem

Proof of Theorem . Putting = = 2X, we may write equations (3.3])
and we have inequalities (3.4). Then

]{32 — %{(mQ _ n2)X + (mQ + nQ)Z}

Y Y

= (m+n)®, (m2+n?)?% - (2mn)Y = (m —n)*.

2

in other words, k = (M + NX)/2. Similarly, we have [ = (MX — NX)/2.

Suppose now that X is even. Then, k =n”~ (mod m) and k = m* (mod n).

This implies that k is prime to mn. But, since k is a divisor of (2mn)Y,

— 3 {30 ) = {Gor +NX>}2,
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we must have k = 1, which is clearly absurd. Therefore, X is odd. Since
M = m+nand N = m — n, as we observed in the case of ¢ = 1 and
mo = 0 (mod 4), we see that

Yuvo(2mn) = vo(M? — N?) — 1 = 15(2mn).
It follows that Y = 1, and, by (3.4), we obtain X =Z =1. u

We conclude this paper by considering the cases of ¢ = €2" (mod a) with

(e,7) # (—1,0). By (1.2)), we may write
m? +n? = 2" + (m? — n?)t

for some positive integer ¢, and putting M = m+n and N = m —n we have
(5.6) (M — Nt)? — (£* = 1)N? = 271,
If (e,7) = (1,0), then, since the fundamental solution (u,v) of the Pell
equation
(5.7) U? — (2 —1)v*=2

satisfies 0 < v < 1/4/t + 1 by [11], Theorem 108], we have v = 0, which does
not give a solution of ((5.7). Hence, ¢ Z 1 (mod a).

If (¢,7) = (1,1), then the fundamental solution (u, v) of the Pell equation
U?—(t2=1)V? = 4 satisfies 0 < v < /2/(t + 1). If t > 2, then v = 0, which
means that N is even, a contradiction. Thus, ¢t = 1 and n = 1, where
(2,y,2) = (2,2,2) by [].

In all other cases, (1.1)) and (5.6 together imply that

M? = 2" (mod N), N?=e2"" (mod M),
(MN)® + (MNt 4+ €2" — N?)Y = (M Nt + €27)?,

and
(—e2")¥ = (2")* (mod M), (e2")Y = (e2")* (mod N).

It seems difficult to deduce the evenness of y and z from these congruences.
This is why we did not treat the cases of ¢ = €2" (mod a), other than
¢=—1 (mod a).
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