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JEŚMANOWICZ’ CONJECTURE WITH CONGRUENCE RELATIONS

BY

YASUTSUGU FUJITA (Chiba) and TAKAFUMI MIYAZAKI (Tokyo)

Abstract. Let a, b and c be relatively prime positive integers such that a2 + b2 = c2.
We prove that if b ≡ 0 (mod 2r) and b ≡ ±2r (mod a) for some non-negative integer r, then
the Diophantine equation ax + by = cz has only the positive solution (x, y, z) = (2, 2, 2).
We also show that the same holds if c ≡ −1 (mod a).

1. Introduction. Let a, b and c be relatively prime positive integers
such that a2+b2 = c2. Such a triple (a, b, c) is called a primitive Pythagorean
triple. We consider the positive solutions (x, y, z) of the exponential Dio-
phantine equation

ax + by = cz.(1.1)

The first non-trivial result on the Diophantine equation (1.1) is due to
Sierpiński ([12]), who showed that the Diophantine equation 3x + 4y = 5z

has only the positive solution (x, y, z) = (2, 2, 2). Jeśmanowicz ([5]) further
showed that the same is true for

(a, b, c) ∈ {(5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61)},
and proposed the following conjecture.

Conjecture 1.1. Let a, b and c be a primitive Pythagorean triple such
that a2 +b2 = c2. Then the Diophantine equation (1.1) has only the positive
solution (x, y, z) = (2, 2, 2).

There are various kinds of triples (a, b, c) for which Conjecture 1.1 is
known to be valid. When we parameterize a, b and c by

a = m2 − n2, b = 2mn, c = m2 + n2,(1.2)

where m and n are positive integers with m > n, gcd(m,n) = 1 and m 6≡
n (mod 2), it was shown that Conjecture 1.1 is true for n = 1 by Lu ([8]) and
for n = m− 1 by Dem’janenko ([2]). In [10], the second author showed that
Conjecture 1.1 is true if a ≡ −1 (mod b), a ≡ 1 (mod b) or c ≡ 1 (mod b),
where the results for a ≡ −1 (mod b) and c ≡ 1 (mod b) generalize the ones
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in [8] and [2], respectively. For other results supporting Conjecture 1.1, see
for example [1], [3], [6] and [7]. In this paper, we show that Conjecture 1.1
is true under a certain assertion on b mod a.

Theorem 1.2. Let a, b and c be a primitive Pythagorean triple such that
a2 + b2 = c2. Let r be a non-negative integer such that b ≡ 0 (mod 2r). If
b ≡ ε2r (mod a) with ε ∈ {±1}, then Conjecture 1.1 is true.

Note that in Theorem 1.2 one can take any integer r ≥ 0 as long as
b ≡ 0 (mod 2r). Moreover, if b is odd, then r = 0 and b ≡ ±1 (mod a),
where Conjecture 1.1 is true by [10]. Thus, we may assume (1.2).

Note that Theorem 1.2 contains the results of Lu ([8]) and Dem’janenko
([2]) whenever m is a power of 2. Indeed, if we put m = 2s, then n = m− 1
implies that a = 2s+1− 1 and b = 2s+1(2s− 1) ≡ −2s (mod a) (it is obvious
for the result of Lu).

The second main theorem asserts that Conjecture 1.1 holds under the
assumption c ≡ −1 (mod a).

Theorem 1.3. Let a, b and c be a primitive Pythagorean triple such that
a2 + b2 = c2. If c ≡ −1 (mod a), then Conjecture 1.1 is true.

If c ≡ −1 (mod a) with a even, then m2 + n2 = −1 + 2mnt for some
integer t, which does not hold modulo 4. Hence, we may assume (1.2) in
this case, too. For the cases of c ≡ ε2r (mod a) with (ε, r) 6= (−1, 0), see
the end of Section 5, where, in particular, it is shown that Conjecture 1.1 is
true if c ≡ 2 (mod a), which can be regarded as a paraphrase of the result
of Lu ([8]).

2. Preliminaries to the proof of Theorem 1.2. By the assumptions
b ≡ ε2r (mod a), b ≡ 0 (mod 2r) and a ≡ 1 (mod 2), we may write

b = ε2r + 2rat

with some integer t ≥ 0. If t = 0, then (ε = 1 and) b = 2r, which implies
n = 1, and then Conjecture 1.1 holds by [8]. Hence, we may assume that
t ≥ 1. Putting M = m+ n and N = m− n, we see from (1.2) that

(M − 2rNt)2 − ((2rt)2 + 1)N2 = ε2r+1.(2.1)

If t ≥ 2, then the Pell equation U2− ((2rt)2 +1)V 2 = ε2r+1 has no primitive
solution (cf., e.g., [4, Lemma 2.3]), and the Diophantine equation (2.1) has
no solution, since gcd(M,N) = 1. Hence, t = 1 and

m2 − n2 = m0n0 − ε,(2.2)



JEŚMANOWICZ’ CONJECTURE 213

where m0 and n0 are positive divisors of m and n, respectively, such that
2rm0n0 = 2mn, that is,

(m0, n0) =

{
(m/2r−1, n) if m is even,

(m, n/2r−1) if m is odd.

If r = 0, then m2 − n2 = 2mn− ε, which means a = b− ε. In this case, we
know that Conjecture 1.1 is true by [10]. Thus, we may assume that

r ≥ 1.

Moreover, equation (2.2) immediately shows that m0n0 is even. If m0 = 1,
then m = m0 = 1, which contradicts m > n. If n0 = 1, then n = n0 = 1,
where Conjecture 1.1 is true by [8]. Furthermore, if m0 = 2, then ε = −1
and m2 = (n + 1)2, and if n0 = 2, then ε = 1 and n2 = (m − 1)2; in either
case, we have n = m − 1 and Conjecture 1.1 is true by [2]. Thus, we may
assume that

m0, n0 ≥ 3.

By (2.2) we have the following congruences:

m2 ≡ −ε (mod n0) and n2 ≡ ε (mod m0).(2.3)

Lemma 2.1. If ε = 1, then x and z are even. If ε = −1, then z is even.

Proof. Equation (1.1) implies that

(−n2)x ≡ (n2)z (mod m) and (m2)x ≡ (m2)z (mod n).

The assertion now follows from (2.3) and m0, n0 ≥ 3.

In the following sections, we consider the cases of ε = 1 and ε = −1
separately.

3. The case of ε = 1. Consider the case of ε = 1. By Lemma 2.1, we
may write x = 2X and z = 2Z with positive integers X and Z, which,
together with (1.1), enables us to write

(2mn)y = DE,

where

D = (m2 + n2)Z + (m2 − n2)X , E = (m2 + n2)Z − (m2 − n2)X .(3.1)

It is easy to see that gcd(D,E) = 2. Also, y > Z, in particular, y > 1.
Indeed,

(2mn)y = DE > D > (m2 + n2)Z > (2mn)Z .

Recall that m0n0 is even. If m0n0 ≡ 0 (mod 4), then m2−n2 ≡ −1 (mod 4),
which implies that m is even, so m0 ≡ 0 (mod 4). If m0n0 ≡ 2 (mod 4),
then m2−n2 ≡ 1 (mod 4), which implies that n is even, so n0 ≡ 2 (mod 4).
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To sum up, it suffices to consider the case of either

(i) m0 ≡ 0 (mod 4) and n0 = n,

or

(ii) n0 ≡ 2 (mod 4) and m0 = m.

Lemma 3.1. If m0 ≡ 0 (mod 4), then X and Z are odd. If n0 ≡
2 (mod 4), then X is odd.

Proof. Suppose that X is even. Then from (2.3) and (3.1) we see that
D ≡ 2 (mod 4), D ≡ 2 (mod m0), E ≡ 0 (mod 4) and E ≡ 0 (mod m0).
Hence, in each case of (i) and (ii) we have E ≡ 0 (mod 2y−1my). However,
this implies that 2y−1my ≤ E < D ≤ 2ny, which contradicts y > 1 and
m > n. Therefore, X is odd.

Suppose that Z is even in the case of m0 ≡ 0 (mod 4). Then E ≡
2 (mod m0), E ≡ 2 (mod n) and we have E = 2, so D = 2y−1myny. Thus,
2y−2myny = AB, where A = (m2 + n2)Z/2 + 1, B = (m2 + n2)Z/2 − 1.
Since A ≡ 2 (mod m0), we see that B ≡ 0 (mod 2y−3my). But this implies
that 2y−3my ≤ B < A ≤ 2ny, so y ≤ 3. Since y > Z, we have y = 3 and
Z = 2. Hence, B = m2 + n2 − 1 ≡ 0 (mod m3), a contradiction. Therefore,
if m0 ≡ 0 (mod 4), then Z is also odd.

In case (i), we need the following lemma in order to show that y is even.

Lemma 3.2. If m0 ≡ 0 (mod 4), then m0 ≡ 0 (mod 2r+2).

Proof. Put m1 = m0/2. Equation (2.2) implies

(n+m1)
2 − (22r + 1)m 2

1 = 1.

Since any positive solution of the Pell equation U2 − (22r + 1)V 2 = 1 has
the form

U + V
√

22r + 1 =
(
22r+1 + 1 + 2r+1

√
22r + 1

)j
with a positive integer j, we easily see that m1 ≡ 0 (mod 2r+1), that is,
m0 ≡ 0 (mod 2r+2).

By Lemma 3.1, we see that E ≡ 2 (mod m0) and E ≡ 0 (mod n), so

D = 2y−1my, E = 2ny.

Hence,

(m2 + n2)Z = (D + E)/2 = 2y−2my + ny.

Since y ≥ 2, we see from (2.3) that

ny ≡ 1 (mod m0).(3.2)

Lemma 3.3. If m0 ≡ 0 (mod 4), then y is even.
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Proof. Suppose that y is odd. Congruences (2.3) and (3.2) together imply
that n ≡ 1 (mod m0). Putting n = 1 + hm0 with a positive integer h, we
see from (2.2) that

(22r−2 − h2 − h)m0 = 2h+ 1.

Hence, 22r−2 − h2 − h ≥ 1, yielding h < 2r−1. This implies that m0 ≤
2h+ 1 < 2r + 1 < 2r+1, which contradicts Lemma 3.2.

Thus, we have shown that all three x, y and z are even in case (i), where
it is not difficult to prove Theorem 1.2.

Proof of Theorem 1.2 in the case of ε = 1 and m0 ≡ 0 (mod 4). Putting
y = 2Y , one may write

(m2 − n2)X = k2 − l2, (2mn)Y = 2kl, (m2 + n2)Z = k2 + l2,(3.3)

where k and l are positive integers with k > l, gcd(k, l) = 1 and k 6≡
l (mod 2). Since y = 2Y > Z and

(m2 − n2)2Z > (m2 + n2)Z = k2 + l2 > k2 − l2 = (m2 − n2)X ,
we have

|X − Z| < Z < 2Y.(3.4)

Since (k + l)(k − l) = (m2 − n2)X and gcd(k + l, k − l) = 1, we may write

k + l = uX , k − l = vX(3.5)

for some positive odd integers u and v satisfying u > v, gcd(u, v) = 1 and
uv = m2 − n2. Then we see that

(2mn)Y = 2kl =
u2X − v2X

2
=
u2 − v2

2
w,

where w = (u2X − v2X)/(u2 − v2) is an odd integer, since u, v and X are
odd. It follows from the above equation that

Y ν2(2mn) = ν2(u
2 − v2)− 1 = ν2(u± v)

for the proper sign for which u ± v ≡ 0 (mod 4), where ν2 is the 2-adic
valuation normalized by ν2(2) = 1. Since

u± v ≤ u+ v ≤ uv + 1 = m2 − n2 + 1 ≤ m2 = 22r−2m2
0

and m = 2r−1m0 ≡ 0 (mod 22r+1) by Lemma 3.2, we find that

Y =
ν2(u± v)

ν2(2mn)
≤ (2r − 2) log 2 + 2 logm0

(2r + 2) log 2
<

logm0

2 log 2
+ 1.(3.6)

On the other hand, equation (1.1) implies that n4X ≡ n4Z (mod m2), which
together with (2.2) yields (1−m0n)2X ≡ (1−m0n)2Z (mod m2). Hence,

2m0nX ≡ 2m0nZ (mod m2
0).
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Similarly, we see that m4X ≡ m4Z (mod n2) and

2m0nX ≡ 2m0nZ (mod n2).

Since gcd(m0, n) = 1, we have 2m0nX ≡ 2m0nZ (mod m2
0n

2), that is,

X ≡ Z (mod m0n/2).(3.7)

If X 6= Z, then (3.4), (3.6) and (3.7) together imply that

m0n/2 ≤ |X − Z| ≤ 2Y − 2 <
logm0

log 2
,

which contradicts n ≥ 3 and m0 ≥ 8. Therefore, X = Z. Since X is odd by
Lemma 3.1, we see that

(2mn)2Y = DE = (m2 + n2)2X − (m2 − n2)2X = (2mn)2w′,

where w′ is an odd integer. Hence, ν2((2mn)2Y ) = ν2((2mn)2). This implies
that Y = 1, so X = Z = 1 by (3.4).

Secondly, consider the case of (ii) n0 ≡ 2 (mod 4). We begin by examining
m and n1 = n0/2 modulo 2r+1.

Lemma 3.4. If n0 ≡ 2 (mod 4), then

m ≡ 2r + 1 (mod 2r+1) and n1 ≡ 1 (mod 2r+1),

where n1 = n0/2.

Proof. From (2.2) we see that (m− n1)2 − (22r + 1)n 2
1 = −1. Since any

positive solution of the Pell equation U2 − (22r + 1)V 2 = −1 has the form

U + V
√

22r + 1 =
(
2r +

√
22r + 1

)(
22r+1 + 1 + 2r+1

√
22r + 1

)j
with a non-negative integer j, we have m − n1 ≡ 2r (mod 2r+1) and n1 ≡
1 (mod 2r+1), which immediately implies the assertion.

Lemma 3.5. If n0 ≡ 2 (mod 4), then y is even.

Proof. We know from Lemma 3.1 that X is odd. Assume first that Z
is even. By (3.1), we see that D ≡ 0 (mod m), D ≡ 0 (mod n0) and
E ≡ 0 (mod 4), so

D = 2myn y1 , E = 2(r+1)y−1.

Hence,

(m2 + n2)Z = (D + E)/2 = myn y1 + 2(r+1)y−2.

Since y ≥ 2, n = 2r−1n0 = 2rn1 and Z is even, we see from Lemma 3.4 that

1 ≡ (1 + 2r)y (mod 2r+1),

which implies that y is even.
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Assume secondly that Z is odd. By (3.1), we see that D ≡ 0 (mod m),
D ≡ −2 (mod n0) and E ≡ 0 (mod 4), so

D = 2my, E = 2y−1ny.

Hence,

(m2 + n2)Z = (D + E)/2 = my + 2y−2ny.

Since y ≥ 2, m2 ≡ −1 (mod n0) and Z is odd, we obtain my ≡ −1 (mod n0).
If y is odd, then m ≡ ±1 (mod n0), and hence m2 ≡ 1 (mod n0), which
contradicts m2 ≡ −1 (mod n0) and n0 ≥ 3. Therefore, y is even.

Proof of Theorem 1.2 in the case of ε = 1 and n0 ≡ 2 (mod 4). Put
y = 2Y . Then, we may write equation (3.3), and we have (3.4) and (3.5).
Similarly to the case of ε = 1 and m0 ≡ 0 (mod 4), we find

Y ≤ logm

log 2
.

Also, in the same way as in the proof of (3.7), we have

X ≡ Z (mod mn0/2).

If X 6= Z, then

mn0/2 ≤ |X − Z| ≤ 2Y − 2 ≤ 2 logm

log 2
− 2.

This contradicts m ≥ 3 and n0 ≥ 3. Hence, X = Z, which implies X = Y =
Z = 1, as we observed in case (i).

4. The case of ε=−1. In the case of ε = −1, considering (2.2) modulo 4,
we see that either

(i) m0 ≡ 2 (mod 4) and n = n0,

or

(ii) n0 ≡ 0 (mod 4) and m = m0.

Consider first the case of m0 ≡ 2 (mod 4). Since m is even, reducing equation
(1.1) modulo 4, we find that (−1)x ≡ 1 (mod 4), that is, x is even. Since
we already know by Lemma 2.1 that z is even, we can put x = 2X and
z = 2Z with positive integers X and Z, so we obtain (2mn)y = DE with
equations (3.1).

Lemma 4.1. If m0 ≡ 2 (mod 4), then X and Z are odd.

Proof. Suppose that X is even. Then, D≡ 2 (mod 4) and D≡ 2 (mod n).
If Z is even, then D ≡ 2 (mod m0) and D = 2, which contradicts D > E. If
Z is odd, then D ≡ 0 (mod m0) and

D = 2m y
1 , E = 2(r+1)y−1ny,
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where m1 = m0/2. However, by (2.2), n2 − 2m1n+ 1−m2 = 0 and

n = −m1 +
√
m 2

1 +m2 − 1 > m1(2
r − 1) ≥ m1,

which shows that D = 2m y
1 < 2ny ≤ E, a contradiction. Hence, X is odd.

Suppose that Z is even. Then D ≡ 0 (mod 4), D ≡ 2 (mod m0), D ≡
2 (mod n) and

D = 2(r+1)y−1, E = 2m y
1 n

y.

However, by (2.2), we have

n = −m1 +
√
m 2

1 +m2 − 1 > m1(2
r − 1) ≥ 2r − 1,

that is, n ≥ 2r. Since m1 ≥ 3 by m0 ≥ 6, we obtain

E = 2m y
1 n

y ≥ 2 · 3y2ry > 2(r+1)y > D,

which is a contradiction. Therefore, Z is odd.

By Lemma 4.1, D = 2y−1my and E = 2ny. It is clear that y ≥ 2 and

(m2 + n2)Z = (D + E)/2 = 2y−2my + ny.

Since n2 ≡ −1 (mod m0) by (2.3), we have ny ≡ −1 (mod m0). If y is odd,
then n ≡ ±1 (mod m0), and hence n2 ≡ 1 (mod m0), which contradicts
n2 ≡ −1 (mod m0) and m0 ≥ 3. Therefore, y is even.

Proof of Theorem 1.2 in the case of ε=−1 and m0≡ 2 (mod 4). Similarly
to the case of ε = 1 and m0 ≡ 0 (mod 4), we can show that

(y/2 =) Y <
logm0

log 2
+ 2, X ≡ Z (mod m0n),

and this leads to the desired conclusion.

Consider now the case of n0 ≡ 0 (mod 4). We may write

m = 2βj + e, n = 2αi,

where α, β, i, j are positive integers with i, j odd, and with α ≥ 2, β ≥ 2
and e ∈ {±1}. By (2.2), we have

β + 1 = ν2(m
2 − 1) = ν2(n

2 +mn0) = ν2(n0(2
2r−2n0 +m))(4.1)

= ν2(n0) ≤ ν2(n) = α < 2α.

It follows from Lemma 3.1 in [9] that if y > 1, then x ≡ z (mod 2); since z
is even by Lemma 2.1, x is also even. If y = 1, then by (1.1) and (2.2), we
have

(mn0 + 1)x + 2mn ≡ (mn0 + 1)z (mod n2),

which yields x+2r ≡ z (mod n0), in particular, x ≡ z (mod 2) (since r ≥ 1).
Hence, in any case, x and z are even. Put x = 2X and z = 2Z.

Lemma 4.2. If n0 ≡ 0 (mod 4), then X and Z are odd.
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Proof. By (4.1) and Lemma 2 in [10], we have X ≡ Z (mod 2). We may
write (2mn)y = DE with (3.1). Suppose that X and Z are even. Then,
D ≡ 2 (mod 4), D ≡ 2 (mod m), D ≡ 2 (mod n0), so D = 2, which
contradicts D > E. Hence, X and Z are odd.

By (2.2), we have (m − n1)2 − (22r + 1)n 2
1 = 1, where n1 = n0/2, and

we see that

n0 ≡ 0 (mod 2r+2)(4.2)

in the same way as in Lemma 3.2. On the other hand, by Lemma 4.2, D =
2my and E = 2y−1ny. We see that (m2 +n2)Z = (D+E)/2 = my + 2y−2ny.
Hence,

my ≡ 1 (mod n0).(4.3)

These arguments lead to the following lemma.

Lemma 4.3. If n0 ≡ 0 (mod 4), then y is even.

Proof. The proof is similar to the proof of Lemma 3.3 and therefore we
omit it.

Proof of Theorem 1.2 in the case of ε=−1 and n0≡ 0 (mod 4). Similarly
to the case of ε = 1 and n0 ≡ 2 (mod 4), we can show that

(y/2 =) Y ≤ logm

2 log 2
, X ≡ Z (mod mn0/2),

and this leads to the desired conclusion.

5. Proof of Theorem 1.3. Assume that c ≡ −1 (mod a). Then, by
(1.1) there exists an integer t > 1 such that

m2 + n2 = −1 + (m2 − n2)t.(5.1)

Putting M = m+ n and N = m− n, we can rewrite this as

(M −Nt)2 − (t2 − 1)N2 = −2.(5.2)

Since the fundamental solution (p, q) of the Pell equation P 2− (t2−1)Q2 = 1
is (p, q) = (t, 1), the fundamental solution (u, v) of the Pell equation U2 −
(t2 − 1)V 2 = −2 satisfies

0 < v ≤ 1√
2(t− 1)

·
√

2 =
1√
t− 1

(cf. [11, Theorem 108a]). Hence, we must have v = 1 and t = 2. Substituting
this into (5.2), we obtain

M2 +N2 = −2 + 4MN,(5.3)

which implies that

M2 ≡ −2 (mod N), N2 ≡ −2 (mod M).(5.4)
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Lemma 5.1. y and z are even.

Proof. By (1.1) and (5.3), we have

(MN)x + (2MN −N2 − 1)y = (2MN − 1)z,

which together with (5.4) implies

1 ≡ (−1)z (mod M).

Since M = m+n ≥ 3, z is even. Similarly, we have (−1)y ≡ (−1)z (mod N),
that is, (−1)y ≡ 1 (mod N). If N = m− n = 1, then it is known by [2] that
(x, y, z) = (2, 2, 2). Hence, we may assume that N ≥ 3 and y is even.

Putting y = 2Y and z = 2Z, we may write

(MN)x = DE,

where

(5.5)
D = (2MN − 1)Z + (2MN −N2 − 1)Y ,

E = (2MN − 1)Z − (2MN −N2 − 1)Y .

Lemma 5.2. Y and Z are odd.

Proof. Suppose that Z is even. Then, by (5.4) and (5.5), we have D ≡
2 (mod M) and E ≥Mx > Nx ≥ D, a contradiction. Thus, Z is odd.

Suppose that Y is even. Then, we similarly have E ≡ −2 (mod M),
E ≡ −2 (mod N) and E = 1, which implies that 3 ≡ 0 (mod M). This
contradicts M > N ≥ 3. Hence, Y is odd.

By Lemma 5.2, we have D ≡ 0 (mod M), D ≡ −2 (mod N) and

D = Mx, E = Nx,

that is,

(m2 + n2)Z + (2mn)Y = (m+ n)x, (m2 + n2)Z − (2mn)Y = (m− n)x.

Suppose that x is odd. Then, considering D + E modulo 2m, we see that
2(n2)Z ≡ 0 (mod 2m), that is, n2Z ≡ 0 (mod m), which contradicts
gcd(m,n) = 1. Hence, x is even. We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Putting x = 2X, we may write equations (3.3)
and we have inequalities (3.4). Then

k2 =
1

2
{(m2 − n2)X + (m2 + n2)Z}

=
1

2

{
(MN)X +

1

2
(D + E)

}
=

{
1

2
(MX +NX)

}2

,

in other words, k = (MX +NX)/2. Similarly, we have l = (MX −NX)/2.
Suppose now that X is even. Then, k≡ nX (mod m) and k≡mX (mod n).

This implies that k is prime to mn. But, since k is a divisor of (2mn)Y ,
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we must have k = 1, which is clearly absurd. Therefore, X is odd. Since
M = m + n and N = m − n, as we observed in the case of ε = 1 and
m0 ≡ 0 (mod 4), we see that

Y ν2(2mn) = ν2(M
2 −N2)− 1 = ν2(2mn).

It follows that Y = 1, and, by (3.4), we obtain X = Z = 1.

We conclude this paper by considering the cases of c ≡ ε2r (mod a) with
(ε, r) 6= (−1, 0). By (1.2), we may write

m2 + n2 = ε2r + (m2 − n2)t
for some positive integer t, and putting M = m+n and N = m−n we have

(M −Nt)2 − (t2 − 1)N2 = ε2r+1.(5.6)

If (ε, r) = (1, 0), then, since the fundamental solution (u, v) of the Pell
equation

U2 − (t2 − 1)V 2 = 2(5.7)

satisfies 0 ≤ v ≤ 1/
√
t+ 1 by [11, Theorem 108], we have v = 0, which does

not give a solution of (5.7). Hence, c 6≡ 1 (mod a).
If (ε, r) = (1, 1), then the fundamental solution (u, v) of the Pell equation

U2− (t2−1)V 2 = 4 satisfies 0 ≤ v ≤
√

2/(t+ 1). If t ≥ 2, then v = 0, which
means that N is even, a contradiction. Thus, t = 1 and n = 1, where
(x, y, z) = (2, 2, 2) by [8].

In all other cases, (1.1) and (5.6) together imply that

M2 ≡ ε2r+1 (mod N), N2 ≡ ε2r+1 (mod M),

(MN)x + (MNt+ ε2r −N2)y = (MNt+ ε2r)z,

and
(−ε2r)y ≡ (ε2r)z (mod M), (ε2r)y ≡ (ε2r)z (mod N).

It seems difficult to deduce the evenness of y and z from these congruences.
This is why we did not treat the cases of c ≡ ε2r (mod a), other than
c ≡ −1 (mod a).
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