JEŚMANOWICZ' CONJECTURE WITH CONGRUENCE RELATIONS

BY
YASUTSUGU FUJITA (Chiba) and TAKAFUMI MIYAZAKI (Tokyo)

Abstract

Let a, b and c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$. We prove that if $b \equiv 0\left(\bmod 2^{r}\right)$ and $b \equiv \pm 2^{r}(\bmod a)$ for some non-negative integer r, then the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive solution $(x, y, z)=(2,2,2)$. We also show that the same holds if $c \equiv-1(\bmod a)$.

1. Introduction. Let a, b and c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$. Such a triple (a, b, c) is called a primitive Pythagorean triple. We consider the positive solutions (x, y, z) of the exponential Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1.1}
\end{equation*}
$$

The first non-trivial result on the Diophantine equation (1.1) is due to Sierpiński $([12])$, who showed that the Diophantine equation $3^{x}+4^{y}=5^{z}$ has only the positive solution $(x, y, z)=(2,2,2)$. Jeśmanowicz ([5]) further showed that the same is true for

$$
(a, b, c) \in\{(5,12,13),(7,24,25),(9,40,41),(11,60,61)\}
$$

and proposed the following conjecture.
Conjecture 1.1. Let a, b and c be a primitive Pythagorean triple such that $a^{2}+b^{2}=c^{2}$. Then the Diophantine equation (1.1) has only the positive solution $(x, y, z)=(2,2,2)$.

There are various kinds of triples (a, b, c) for which Conjecture 1.1 is known to be valid. When we parameterize a, b and c by

$$
\begin{equation*}
a=m^{2}-n^{2}, \quad b=2 m n, \quad c=m^{2}+n^{2} \tag{1.2}
\end{equation*}
$$

where m and n are positive integers with $m>n, \operatorname{gcd}(m, n)=1$ and $m \not \equiv$ $n(\bmod 2)$, it was shown that Conjecture 1.1 is true for $n=1$ by $\mathrm{Lu}(8)$ and for $n=m-1$ by Dem'janenko ([2]). In [10], the second author showed that Conjecture 1.1 is true if $a \equiv-1(\bmod b), a \equiv 1(\bmod b)$ or $c \equiv 1(\bmod b)$, where the results for $a \equiv-1(\bmod b)$ and $c \equiv 1(\bmod b)$ generalize the ones

[^0]in [8] and [2], respectively. For other results supporting Conjecture 1.1, see for example [1], [3], [6] and [7]. In this paper, we show that Conjecture 1.1] is true under a certain assertion on $b \bmod a$.

Theorem 1.2. Let a, b and c be a primitive Pythagorean triple such that $a^{2}+b^{2}=c^{2}$. Let r be a non-negative integer such that $b \equiv 0\left(\bmod 2^{r}\right)$. If $b \equiv \epsilon 2^{r}(\bmod a)$ with $\epsilon \in\{ \pm 1\}$, then Conjecture 1.1 is true.

Note that in Theorem 1.2 one can take any integer $r \geq 0$ as long as $b \equiv 0\left(\bmod 2^{r}\right)$. Moreover, if b is odd, then $r=0$ and $b \equiv \pm 1(\bmod a)$, where Conjecture 1.1 is true by [10]. Thus, we may assume (1.2).

Note that Theorem 1.2 contains the results of Lu (8) and Dem'janenko ([2]) whenever m is a power of 2 . Indeed, if we put $m=2^{s}$, then $n=m-1$ implies that $a=2^{s+1}-1$ and $b=2^{s+1}\left(2^{s}-1\right) \equiv-2^{s}(\bmod a)$ (it is obvious for the result of Lu).

The second main theorem asserts that Conjecture 1.1 holds under the assumption $c \equiv-1(\bmod a)$.

Theorem 1.3. Let a, b and c be a primitive Pythagorean triple such that $a^{2}+b^{2}=c^{2}$. If $c \equiv-1(\bmod a)$, then Conjecture 1.1 is true.

If $c \equiv-1(\bmod a)$ with a even, then $m^{2}+n^{2}=-1+2 m n t$ for some integer t, which does not hold modulo 4. Hence, we may assume (1.2) in this case, too. For the cases of $c \equiv \epsilon 2^{r}(\bmod a)$ with $(\epsilon, r) \neq(-1,0)$, see the end of Section 5. where, in particular, it is shown that Conjecture 1.1 is true if $c \equiv 2(\bmod a)$, which can be regarded as a paraphrase of the result of Lu ([8]).
2. Preliminaries to the proof of Theorem 1.2, By the assumptions $b \equiv \epsilon 2^{r}(\bmod a), b \equiv 0\left(\bmod 2^{r}\right)$ and $a \equiv 1(\bmod 2)$, we may write

$$
b=\epsilon 2^{r}+2^{r} a t
$$

with some integer $t \geq 0$. If $t=0$, then $\left(\epsilon=1\right.$ and) $b=2^{r}$, which implies $n=1$, and then Conjecture 1.1 holds by [8]. Hence, we may assume that $t \geq 1$. Putting $M=m+n$ and $N=m-n$, we see from (1.2) that

$$
\begin{equation*}
\left(M-2^{r} N t\right)^{2}-\left(\left(2^{r} t\right)^{2}+1\right) N^{2}=\epsilon 2^{r+1} . \tag{2.1}
\end{equation*}
$$

If $t \geq 2$, then the Pell equation $U^{2}-\left(\left(2^{r} t\right)^{2}+1\right) V^{2}=\epsilon 2^{r+1}$ has no primitive solution (cf., e.g., [4, Lemma 2.3]), and the Diophantine equation (2.1) has no solution, since $\operatorname{gcd}(M, N)=1$. Hence, $t=1$ and

$$
\begin{equation*}
m^{2}-n^{2}=m_{0} n_{0}-\epsilon, \tag{2.2}
\end{equation*}
$$

where m_{0} and n_{0} are positive divisors of m and n, respectively, such that $2^{r} m_{0} n_{0}=2 m n$, that is,

$$
\left(m_{0}, n_{0}\right)= \begin{cases}\left(m / 2^{r-1}, n\right) & \text { if } m \text { is even }, \\ \left(m, n / 2^{r-1}\right) & \text { if } m \text { is odd } .\end{cases}
$$

If $r=0$, then $m^{2}-n^{2}=2 m n-\epsilon$, which means $a=b-\epsilon$. In this case, we know that Conjecture 1.1 is true by [10]. Thus, we may assume that

$$
r \geq 1 .
$$

Moreover, equation (2.2) immediately shows that $m_{0} n_{0}$ is even. If $m_{0}=1$, then $m=m_{0}=1$, which contradicts $m>n$. If $n_{0}=1$, then $n=n_{0}=1$, where Conjecture 1.1 is true by 8 . Furthermore, if $m_{0}=2$, then $\epsilon=-1$ and $m^{2}=(n+1)^{2}$, and if $n_{0}=2$, then $\epsilon=1$ and $n^{2}=(m-1)^{2}$; in either case, we have $n=m-1$ and Conjecture 1.1 is true by [2]. Thus, we may assume that

$$
m_{0}, n_{0} \geq 3 .
$$

By (2.2) we have the following congruences:

$$
\begin{equation*}
m^{2} \equiv-\epsilon\left(\bmod n_{0}\right) \quad \text { and } \quad n^{2} \equiv \epsilon\left(\bmod m_{0}\right) . \tag{2.3}
\end{equation*}
$$

Lemma 2.1. If $\epsilon=1$, then x and z are even. If $\epsilon=-1$, then z is even.
Proof. Equation (1.1) implies that

$$
\left(-n^{2}\right)^{x} \equiv\left(n^{2}\right)^{z}(\bmod m) \quad \text { and } \quad\left(m^{2}\right)^{x} \equiv\left(m^{2}\right)^{z}(\bmod n)
$$

The assertion now follows from (2.3) and $m_{0}, n_{0} \geq 3$.
In the following sections, we consider the cases of $\epsilon=1$ and $\epsilon=-1$ separately.
3. The case of $\epsilon=1$. Consider the case of $\epsilon=1$. By Lemma 2.1, we may write $x=2 X$ and $z=2 Z$ with positive integers X and Z, which, together with (1.1), enables us to write

$$
(2 m n)^{y}=D E,
$$

where

$$
\begin{equation*}
D=\left(m^{2}+n^{2}\right)^{Z}+\left(m^{2}-n^{2}\right)^{X}, \quad E=\left(m^{2}+n^{2}\right)^{Z}-\left(m^{2}-n^{2}\right)^{X} . \tag{3.1}
\end{equation*}
$$

It is easy to see that $\operatorname{gcd}(D, E)=2$. Also, $y>Z$, in particular, $y>1$. Indeed,

$$
(2 m n)^{y}=D E>D>\left(m^{2}+n^{2}\right)^{Z}>(2 m n)^{Z} .
$$

Recall that $m_{0} n_{0}$ is even. If $m_{0} n_{0} \equiv 0(\bmod 4)$, then $m^{2}-n^{2} \equiv-1(\bmod 4)$, which implies that m is even, so $m_{0} \equiv 0(\bmod 4)$. If $m_{0} n_{0} \equiv 2(\bmod 4)$, then $m^{2}-n^{2} \equiv 1(\bmod 4)$, which implies that n is even, so $n_{0} \equiv 2(\bmod 4)$.

To sum up, it suffices to consider the case of either

$$
\text { (i) } m_{0} \equiv 0(\bmod 4) \text { and } n_{0}=n \text {, }
$$

or

$$
\text { (ii) } n_{0} \equiv 2(\bmod 4) \text { and } m_{0}=m \text {. }
$$

Lemma 3.1. If $m_{0} \equiv 0(\bmod 4)$, then X and Z are odd. If $n_{0} \equiv$ $2(\bmod 4)$, then X is odd.

Proof. Suppose that X is even. Then from (2.3) and (3.1) we see that $D \equiv 2(\bmod 4), D \equiv 2\left(\bmod m_{0}\right), E \equiv 0(\bmod 4)$ and $E \equiv 0\left(\bmod m_{0}\right)$. Hence, in each case of (i) and (ii) we have $E \equiv 0\left(\bmod 2^{y-1} m^{y}\right)$. However, this implies that $2^{y-1} m^{y} \leq E<D \leq 2 n^{y}$, which contradicts $y>1$ and $m>n$. Therefore, X is odd.

Suppose that Z is even in the case of $m_{0} \equiv 0(\bmod 4)$. Then $E \equiv$ $2\left(\bmod m_{0}\right), E \equiv 2(\bmod n)$ and we have $E=2$, so $D=2^{y-1} m^{y} n^{y}$. Thus, $2^{y-2} m^{y} n^{y}=A B$, where $A=\left(m^{2}+n^{2}\right)^{Z / 2}+1, B=\left(m^{2}+n^{2}\right)^{Z / 2}-1$. Since $A \equiv 2\left(\bmod m_{0}\right)$, we see that $B \equiv 0\left(\bmod 2^{y-3} m^{y}\right)$. But this implies that $2^{y-3} m^{y} \leq B<A \leq 2 n^{y}$, so $y \leq 3$. Since $y>Z$, we have $y=3$ and $Z=2$. Hence, $B=m^{2}+n^{2}-1 \equiv 0\left(\bmod m^{3}\right)$, a contradiction. Therefore, if $m_{0} \equiv 0(\bmod 4)$, then Z is also odd.

In case (i), we need the following lemma in order to show that y is even.
Lemma 3.2. If $m_{0} \equiv 0(\bmod 4)$, then $m_{0} \equiv 0\left(\bmod 2^{r+2}\right)$.
Proof. Put $m_{1}=m_{0} / 2$. Equation (2.2) implies

$$
\left(n+m_{1}\right)^{2}-\left(2^{2 r}+1\right) m_{1}^{2}=1 .
$$

Since any positive solution of the Pell equation $U^{2}-\left(2^{2 r}+1\right) V^{2}=1$ has the form

$$
U+V \sqrt{2^{2 r}+1}=\left(2^{2 r+1}+1+2^{r+1} \sqrt{2^{2 r}+1}\right)^{j}
$$

with a positive integer j, we easily see that $m_{1} \equiv 0\left(\bmod 2^{r+1}\right)$, that is, $m_{0} \equiv 0\left(\bmod 2^{r+2}\right)$.

By Lemma 3.1, we see that $E \equiv 2\left(\bmod m_{0}\right)$ and $E \equiv 0(\bmod n)$, so

$$
D=2^{y-1} m^{y}, \quad E=2 n^{y} .
$$

Hence,

$$
\left(m^{2}+n^{2}\right)^{Z}=(D+E) / 2=2^{y-2} m^{y}+n^{y} .
$$

Since $y \geq 2$, we see from (2.3) that

$$
\begin{equation*}
n^{y} \equiv 1\left(\bmod m_{0}\right) . \tag{3.2}
\end{equation*}
$$

Lemma 3.3. If $m_{0} \equiv 0(\bmod 4)$, then y is even.

Proof. Suppose that y is odd. Congruences (2.3) and (3.2) together imply that $n \equiv 1\left(\bmod m_{0}\right)$. Putting $n=1+h m_{0}$ with a positive integer h, we see from (2.2) that

$$
\left(2^{2 r-2}-h^{2}-h\right) m_{0}=2 h+1 .
$$

Hence, $2^{2 r-2}-h^{2}-h \geq 1$, yielding $h<2^{r-1}$. This implies that $m_{0} \leq$ $2 h+1<2^{r}+1<2^{r+1}$, which contradicts Lemma 3.2 .

Thus, we have shown that all three x, y and z are even in case (i), where it is not difficult to prove Theorem 1.2 .

Proof of Theorem 1.2 in the case of $\epsilon=1$ and $m_{0} \equiv 0(\bmod 4)$. Putting $y=2 Y$, one may write
(3.3) $\quad\left(m^{2}-n^{2}\right)^{X}=k^{2}-l^{2}, \quad(2 m n)^{Y}=2 k l, \quad\left(m^{2}+n^{2}\right)^{Z}=k^{2}+l^{2}$,
where k and l are positive integers with $k>l, \operatorname{gcd}(k, l)=1$ and $k \not \equiv$ $l(\bmod 2)$. Since $y=2 Y>Z$ and

$$
\left(m^{2}-n^{2}\right)^{2 Z}>\left(m^{2}+n^{2}\right)^{Z}=k^{2}+l^{2}>k^{2}-l^{2}=\left(m^{2}-n^{2}\right)^{X},
$$

we have

$$
\begin{equation*}
|X-Z|<Z<2 Y . \tag{3.4}
\end{equation*}
$$

Since $(k+l)(k-l)=\left(m^{2}-n^{2}\right)^{X}$ and $\operatorname{gcd}(k+l, k-l)=1$, we may write

$$
\begin{equation*}
k+l=u^{X}, \quad k-l=v^{X} \tag{3.5}
\end{equation*}
$$

for some positive odd integers u and v satisfying $u>v, \operatorname{gcd}(u, v)=1$ and $u v=m^{2}-n^{2}$. Then we see that

$$
(2 m n)^{Y}=2 k l=\frac{u^{2 X}-v^{2 X}}{2}=\frac{u^{2}-v^{2}}{2} w,
$$

where $w=\left(u^{2 X}-v^{2 X}\right) /\left(u^{2}-v^{2}\right)$ is an odd integer, since u, v and X are odd. It follows from the above equation that

$$
Y \nu_{2}(2 m n)=\nu_{2}\left(u^{2}-v^{2}\right)-1=\nu_{2}(u \pm v)
$$

for the proper sign for which $u \pm v \equiv 0(\bmod 4)$, where ν_{2} is the 2 -adic valuation normalized by $\nu_{2}(2)=1$. Since

$$
u \pm v \leq u+v \leq u v+1=m^{2}-n^{2}+1 \leq m^{2}=2^{2 r-2} m_{0}^{2}
$$

and $m=2^{r-1} m_{0} \equiv 0\left(\bmod 2^{2 r+1}\right)$ by Lemma 3.2 , we find that

$$
\begin{equation*}
Y=\frac{\nu_{2}(u \pm v)}{\nu_{2}(2 m n)} \leq \frac{(2 r-2) \log 2+2 \log m_{0}}{(2 r+2) \log 2}<\frac{\log m_{0}}{2 \log 2}+1 . \tag{3.6}
\end{equation*}
$$

On the other hand, equation (1.1) implies that $n^{4 X} \equiv n^{4 Z}\left(\bmod m^{2}\right)$, which together with (2.2) yields $\left(1-m_{0} n\right)^{2 X} \equiv\left(1-m_{0} n\right)^{2 Z}\left(\bmod m^{2}\right)$. Hence,

$$
2 m_{0} n X \equiv 2 m_{0} n Z\left(\bmod m_{0}^{2}\right) .
$$

Similarly, we see that $m^{4 X} \equiv m^{4 Z}\left(\bmod n^{2}\right)$ and

$$
2 m_{0} n X \equiv 2 m_{0} n Z\left(\bmod n^{2}\right) .
$$

Since $\operatorname{gcd}\left(m_{0}, n\right)=1$, we have $2 m_{0} n X \equiv 2 m_{0} n Z\left(\bmod m_{0}^{2} n^{2}\right)$, that is,

$$
\begin{equation*}
X \equiv Z\left(\bmod m_{0} n / 2\right) . \tag{3.7}
\end{equation*}
$$

If $X \neq Z$, then (3.4), (3.6) and (3.7) together imply that

$$
m_{0} n / 2 \leq|X-Z| \leq 2 Y-2<\frac{\log m_{0}}{\log 2}
$$

which contradicts $n \geq 3$ and $m_{0} \geq 8$. Therefore, $X=Z$. Since X is odd by Lemma 3.1, we see that

$$
(2 m n)^{2 Y}=D E=\left(m^{2}+n^{2}\right)^{2 X}-\left(m^{2}-n^{2}\right)^{2 X}=(2 m n)^{2} w^{\prime},
$$

where w^{\prime} is an odd integer. Hence, $\nu_{2}\left((2 m n)^{2 Y}\right)=\nu_{2}\left((2 m n)^{2}\right)$. This implies that $Y=1$, so $X=Z=1$ by (3.4).

Secondly, consider the case of (ii) $n_{0} \equiv 2(\bmod 4)$. We begin by examining m and $n_{1}=n_{0} / 2$ modulo 2^{r+1}.

Lemma 3.4. If $n_{0} \equiv 2(\bmod 4)$, then

$$
m \equiv 2^{r}+1\left(\bmod 2^{r+1}\right) \quad \text { and } \quad n_{1} \equiv 1\left(\bmod 2^{r+1}\right),
$$

where $n_{1}=n_{0} / 2$.
Proof. From (2.2) we see that $\left(m-n_{1}\right)^{2}-\left(2^{2 r}+1\right) n_{1}^{2}=-1$. Since any positive solution of the Pell equation $U^{2}-\left(2^{2 r}+1\right) V^{2}=-1$ has the form

$$
U+V \sqrt{2^{2 r}+1}=\left(2^{r}+\sqrt{2^{2 r}+1}\right)\left(2^{2 r+1}+1+2^{r+1} \sqrt{2^{2 r}+1}\right)^{j}
$$

with a non-negative integer j, we have $m-n_{1} \equiv 2^{r}\left(\bmod 2^{r+1}\right)$ and $n_{1} \equiv$ $1\left(\bmod 2^{r+1}\right)$, which immediately implies the assertion.

Lemma 3.5. If $n_{0} \equiv 2(\bmod 4)$, then y is even.
Proof. We know from Lemma 3.1 that X is odd. Assume first that Z is even. By (3.1), we see that $D \equiv 0(\bmod m), D \equiv 0\left(\bmod n_{0}\right)$ and $E \equiv 0(\bmod 4)$, so

$$
D=2 m^{y} n_{1}^{y}, \quad E=2^{(r+1) y-1} .
$$

Hence,

$$
\left(m^{2}+n^{2}\right)^{Z}=(D+E) / 2=m^{y} n_{1}^{y}+2^{(r+1) y-2} .
$$

Since $y \geq 2, n=2^{r-1} n_{0}=2^{r} n_{1}$ and Z is even, we see from Lemma 3.4 that

$$
1 \equiv\left(1+2^{r}\right)^{y}\left(\bmod 2^{r+1}\right),
$$

which implies that y is even.

Assume secondly that Z is odd. By (3.1), we see that $D \equiv 0(\bmod m)$, $D \equiv-2\left(\bmod n_{0}\right)$ and $E \equiv 0(\bmod 4)$, so

$$
D=2 m^{y}, \quad E=2^{y-1} n^{y} .
$$

Hence,

$$
\left(m^{2}+n^{2}\right)^{Z}=(D+E) / 2=m^{y}+2^{y-2} n^{y} .
$$

Since $y \geq 2, m^{2} \equiv-1\left(\bmod n_{0}\right)$ and Z is odd, we obtain $m^{y} \equiv-1\left(\bmod n_{0}\right)$. If y is odd, then $m \equiv \pm 1\left(\bmod n_{0}\right)$, and hence $m^{2} \equiv 1\left(\bmod n_{0}\right)$, which contradicts $m^{2} \equiv-1\left(\bmod n_{0}\right)$ and $n_{0} \geq 3$. Therefore, y is even.

Proof of Theorem 1.2 in the case of $\epsilon=1$ and $n_{0} \equiv 2(\bmod 4)$. Put $y=2 Y$. Then, we may write equation (3.3), and we have (3.4) and (3.5). Similarly to the case of $\epsilon=1$ and $m_{0} \equiv 0(\bmod 4)$, we find

$$
Y \leq \frac{\log m}{\log 2}
$$

Also, in the same way as in the proof of (3.7), we have

$$
X \equiv Z\left(\bmod m n_{0} / 2\right) .
$$

If $X \neq Z$, then

$$
m n_{0} / 2 \leq|X-Z| \leq 2 Y-2 \leq \frac{2 \log m}{\log 2}-2 .
$$

This contradicts $m \geq 3$ and $n_{0} \geq 3$. Hence, $X=Z$, which implies $X=Y=$ $Z=1$, as we observed in case (i).
4. The case of $\epsilon=-1$. In the case of $\epsilon=-1$, considering (2.2) modulo 4, we see that either

$$
\text { (i) } m_{0} \equiv 2(\bmod 4) \text { and } n=n_{0} \text {, }
$$

or

$$
\text { (ii) } n_{0} \equiv 0(\bmod 4) \text { and } m=m_{0} \text {. }
$$

Consider first the case of $m_{0} \equiv 2(\bmod 4)$. Since m is even, reducing equation (1.1) modulo 4 , we find that $(-1)^{x} \equiv 1(\bmod 4)$, that is, x is even. Since we already know by Lemma 2.1 that z is even, we can put $x=2 X$ and $z=2 Z$ with positive integers X and Z, so we obtain $(2 m n)^{y}=D E$ with equations (3.1).

Lemma 4.1. If $m_{0} \equiv 2(\bmod 4)$, then X and Z are odd.
Proof. Suppose that X is even. Then, $D \equiv 2(\bmod 4)$ and $D \equiv 2(\bmod n)$. If Z is even, then $D \equiv 2\left(\bmod m_{0}\right)$ and $D=2$, which contradicts $D>E$. If Z is odd, then $D \equiv 0\left(\bmod m_{0}\right)$ and

$$
D=2 m_{1}^{y}, \quad E=2^{(r+1) y-1} n^{y},
$$

where $m_{1}=m_{0} / 2$. However, by (2.2), $n^{2}-2 m_{1} n+1-m^{2}=0$ and

$$
n=-m_{1}+\sqrt{m_{1}^{2}+m^{2}-1}>m_{1}\left(2^{r}-1\right) \geq m_{1}
$$

which shows that $D=2 m_{1}^{y}<2 n^{y} \leq E$, a contradiction. Hence, X is odd.
Suppose that Z is even. Then $D \equiv 0(\bmod 4), D \equiv 2\left(\bmod m_{0}\right), D \equiv$ $2(\bmod n)$ and

$$
D=2^{(r+1) y-1}, \quad E=2 m_{1}^{y} n^{y}
$$

However, by (2.2), we have

$$
n=-m_{1}+\sqrt{m_{1}^{2}+m^{2}-1}>m_{1}\left(2^{r}-1\right) \geq 2^{r}-1
$$

that is, $n \geq 2^{r}$. Since $m_{1} \geq 3$ by $m_{0} \geq 6$, we obtain

$$
E=2 m_{1}^{y} n^{y} \geq 2 \cdot 3^{y} 2^{r y}>2^{(r+1) y}>D
$$

which is a contradiction. Therefore, Z is odd.
By Lemma 4.1, $D=2^{y-1} m^{y}$ and $E=2 n^{y}$. It is clear that $y \geq 2$ and

$$
\left(m^{2}+n^{2}\right)^{Z}=(D+E) / 2=2^{y-2} m^{y}+n^{y}
$$

Since $n^{2} \equiv-1\left(\bmod m_{0}\right)$ by (2.3), we have $n^{y} \equiv-1\left(\bmod m_{0}\right)$. If y is odd, then $n \equiv \pm 1\left(\bmod m_{0}\right)$, and hence $n^{2} \equiv 1\left(\bmod m_{0}\right)$, which contradicts $n^{2} \equiv-1\left(\bmod m_{0}\right)$ and $m_{0} \geq 3$. Therefore, y is even.

Proof of Theorem 1.2 in the case of $\epsilon=-1$ and $m_{0} \equiv 2(\bmod 4)$. Similarly to the case of $\epsilon=1$ and $m_{0} \equiv 0(\bmod 4)$, we can show that

$$
(y / 2=) Y<\frac{\log m_{0}}{\log 2}+2, \quad X \equiv Z\left(\bmod m_{0} n\right)
$$

and this leads to the desired conclusion.
Consider now the case of $n_{0} \equiv 0(\bmod 4)$. We may write

$$
m=2^{\beta} j+e, \quad n=2^{\alpha} i
$$

where α, β, i, j are positive integers with i, j odd, and with $\alpha \geq 2, \beta \geq 2$ and $e \in\{ \pm 1\}$. By (2.2), we have

$$
\begin{align*}
\beta+1 & =\nu_{2}\left(m^{2}-1\right)=\nu_{2}\left(n^{2}+m n_{0}\right)=\nu_{2}\left(n_{0}\left(2^{2 r-2} n_{0}+m\right)\right) \tag{4.1}\\
& =\nu_{2}\left(n_{0}\right) \leq \nu_{2}(n)=\alpha<2 \alpha
\end{align*}
$$

It follows from Lemma 3.1 in $[9$ that if $y>1$, then $x \equiv z(\bmod 2)$; since z is even by Lemma 2.1, x is also even. If $y=1$, then by 1.1 and 2.2 , we have

$$
\left(m n_{0}+1\right)^{x}+2 m n \equiv\left(m n_{0}+1\right)^{z}\left(\bmod n^{2}\right)
$$

which yields $x+2^{r} \equiv z\left(\bmod n_{0}\right)$, in particular, $x \equiv z(\bmod 2)($ since $r \geq 1)$. Hence, in any case, x and z are even. Put $x=2 X$ and $z=2 Z$.

Lemma 4.2. If $n_{0} \equiv 0(\bmod 4)$, then X and Z are odd.

Proof. By (4.1) and Lemma 2 in [10], we have $X \equiv Z(\bmod 2)$. We may write $(2 m n)^{y}=D E$ with (3.1). Suppose that X and Z are even. Then, $D \equiv 2(\bmod 4), D \equiv 2(\bmod m), D \equiv 2\left(\bmod n_{0}\right)$, so $D=2$, which contradicts $D>E$. Hence, X and Z are odd.

By 2.2), we have $\left(m-n_{1}\right)^{2}-\left(2^{2 r}+1\right) n_{1}^{2}=1$, where $n_{1}=n_{0} / 2$, and we see that

$$
\begin{equation*}
n_{0} \equiv 0\left(\bmod 2^{r+2}\right) \tag{4.2}
\end{equation*}
$$

in the same way as in Lemma 3.2. On the other hand, by Lemma 4.2, $D=$ $2 m^{y}$ and $E=2^{y-1} n^{y}$. We see that $\left(m^{2}+n^{2}\right)^{Z}=(D+E) / 2=m^{y}+2^{y-2} n^{y}$. Hence,

$$
\begin{equation*}
m^{y} \equiv 1\left(\bmod n_{0}\right) . \tag{4.3}
\end{equation*}
$$

These arguments lead to the following lemma.
Lemma 4.3. If $n_{0} \equiv 0(\bmod 4)$, then y is even.
Proof. The proof is similar to the proof of Lemma 3.3 and therefore we omit it.

Proof of Theorem 1.2 in the case of $\epsilon=-1$ and $n_{0} \equiv 0(\bmod 4)$. Similarly to the case of $\epsilon=1$ and $n_{0} \equiv 2(\bmod 4)$, we can show that

$$
(y / 2=) Y \leq \frac{\log m}{2 \log 2}, \quad X \equiv Z\left(\bmod m n_{0} / 2\right),
$$

and this leads to the desired conclusion.
5. Proof of Theorem 1.3. Assume that $c \equiv-1(\bmod a)$. Then, by (1.1) there exists an integer $t>1$ such that

$$
\begin{equation*}
m^{2}+n^{2}=-1+\left(m^{2}-n^{2}\right) t . \tag{5.1}
\end{equation*}
$$

Putting $M=m+n$ and $N=m-n$, we can rewrite this as

$$
\begin{equation*}
(M-N t)^{2}-\left(t^{2}-1\right) N^{2}=-2 . \tag{5.2}
\end{equation*}
$$

Since the fundamental solution (p, q) of the Pell equation $P^{2}-\left(t^{2}-1\right) Q^{2}=1$ is $(p, q)=(t, 1)$, the fundamental solution (u, v) of the Pell equation $U^{2}-$ $\left(t^{2}-1\right) V^{2}=-2$ satisfies

$$
0<v \leq \frac{1}{\sqrt{2(t-1)}} \cdot \sqrt{2}=\frac{1}{\sqrt{t-1}}
$$

(cf. [11, Theorem 108a]). Hence, we must have $v=1$ and $t=2$. Substituting this into (5.2), we obtain

$$
\begin{equation*}
M^{2}+N^{2}=-2+4 M N, \tag{5.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
M^{2} \equiv-2(\bmod N), \quad N^{2} \equiv-2(\bmod M) . \tag{5.4}
\end{equation*}
$$

Lemma 5.1. y and z are even.
Proof. By (1.1) and (5.3), we have

$$
(M N)^{x}+\left(2 M N-N^{2}-1\right)^{y}=(2 M N-1)^{z}
$$

which together with (5.4) implies

$$
1 \equiv(-1)^{z}(\bmod M)
$$

Since $M=m+n \geq 3, z$ is even. Similarly, we have $(-1)^{y} \equiv(-1)^{z}(\bmod N)$, that is, $(-1)^{y} \equiv 1(\bmod N)$. If $N=m-n=1$, then it is known by [2] that $(x, y, z)=(2,2,2)$. Hence, we may assume that $N \geq 3$ and y is even.

Putting $y=2 Y$ and $z=2 Z$, we may write

$$
(M N)^{x}=D E,
$$

where

$$
\begin{align*}
& D=(2 M N-1)^{Z}+\left(2 M N-N^{2}-1\right)^{Y} \tag{5.5}\\
& E=(2 M N-1)^{Z}-\left(2 M N-N^{2}-1\right)^{Y}
\end{align*}
$$

Lemma 5.2. Y and Z are odd.
Proof. Suppose that Z is even. Then, by (5.4) and (5.5), we have $D \equiv$ $2(\bmod M)$ and $E \geq M^{x}>N^{x} \geq D$, a contradiction. Thus, Z is odd.

Suppose that Y is even. Then, we similarly have $E \equiv-2(\bmod M)$, $E \equiv-2(\bmod N)$ and $E=1$, which implies that $3 \equiv 0(\bmod M)$. This contradicts $M>N \geq 3$. Hence, Y is odd.

By Lemma 5.2, we have $D \equiv 0(\bmod M), D \equiv-2(\bmod N)$ and

$$
D=M^{x}, \quad E=N^{x}
$$

that is,

$$
\left(m^{2}+n^{2}\right)^{Z}+(2 m n)^{Y}=(m+n)^{x}, \quad\left(m^{2}+n^{2}\right)^{Z}-(2 m n)^{Y}=(m-n)^{x} .
$$

Suppose that x is odd. Then, considering $D+E$ modulo $2 m$, we see that $2\left(n^{2}\right)^{Z} \equiv 0(\bmod 2 m)$, that is, $n^{2 Z} \equiv 0(\bmod m)$, which contradicts $\operatorname{gcd}(m, n)=1$. Hence, x is even. We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Putting $x=2 X$, we may write equations (3.3) and we have inequalities (3.4). Then

$$
\begin{aligned}
k^{2} & =\frac{1}{2}\left\{\left(m^{2}-n^{2}\right)^{X}+\left(m^{2}+n^{2}\right)^{Z}\right\} \\
& =\frac{1}{2}\left\{(M N)^{X}+\frac{1}{2}(D+E)\right\}=\left\{\frac{1}{2}\left(M^{X}+N^{X}\right)\right\}^{2}
\end{aligned}
$$

in other words, $k=\left(M^{X}+N^{X}\right) / 2$. Similarly, we have $l=\left(M^{X}-N^{X}\right) / 2$.
Suppose now that X is even. Then, $k \equiv n^{X}(\bmod m)$ and $k \equiv m^{X}(\bmod n)$. This implies that k is prime to $m n$. But, since k is a divisor of $(2 m n)^{Y}$,
we must have $k=1$, which is clearly absurd. Therefore, X is odd. Since $M=m+n$ and $N=m-n$, as we observed in the case of $\epsilon=1$ and $m_{0} \equiv 0(\bmod 4)$, we see that

$$
Y \nu_{2}(2 m n)=\nu_{2}\left(M^{2}-N^{2}\right)-1=\nu_{2}(2 m n)
$$

It follows that $Y=1$, and, by (3.4), we obtain $X=Z=1$.
We conclude this paper by considering the cases of $c \equiv \epsilon 2^{r}(\bmod a)$ with $(\epsilon, r) \neq(-1,0)$. By (1.2), we may write

$$
m^{2}+n^{2}=\epsilon 2^{r}+\left(m^{2}-n^{2}\right) t
$$

for some positive integer t, and putting $M=m+n$ and $N=m-n$ we have

$$
\begin{equation*}
(M-N t)^{2}-\left(t^{2}-1\right) N^{2}=\epsilon 2^{r+1} \tag{5.6}
\end{equation*}
$$

If $(\epsilon, r)=(1,0)$, then, since the fundamental solution (u, v) of the Pell equation

$$
\begin{equation*}
U^{2}-\left(t^{2}-1\right) V^{2}=2 \tag{5.7}
\end{equation*}
$$

satisfies $0 \leq v \leq 1 / \sqrt{t+1}$ by [11, Theorem 108], we have $v=0$, which does not give a solution of 5.7$)$. Hence, $c \not \equiv 1(\bmod a)$.

If $(\epsilon, r)=(1,1)$, then the fundamental solution (u, v) of the Pell equation $U^{2}-\left(t^{2}-1\right) V^{2}=4$ satisfies $0 \leq v \leq \sqrt{2 /(t+1)}$. If $t \geq 2$, then $v=0$, which means that N is even, a contradiction. Thus, $t=1$ and $n=1$, where $(x, y, z)=(2,2,2)$ by [8].

In all other cases, (1.1) and (5.6) together imply that

$$
\begin{aligned}
M^{2} & \equiv \epsilon 2^{r+1}(\bmod N), \quad N^{2} \equiv \epsilon 2^{r+1}(\bmod M) \\
(M N)^{x} & +\left(M N t+\epsilon 2^{r}-N^{2}\right)^{y}=\left(M N t+\epsilon 2^{r}\right)^{z}
\end{aligned}
$$

and

$$
\left(-\epsilon 2^{r}\right)^{y} \equiv\left(\epsilon 2^{r}\right)^{z}(\bmod M), \quad\left(\epsilon 2^{r}\right)^{y} \equiv\left(\epsilon 2^{r}\right)^{z}(\bmod N)
$$

It seems difficult to deduce the evenness of y and z from these congruences. This is why we did not treat the cases of $c \equiv \epsilon 2^{r}(\bmod a)$, other than $c \equiv-1(\bmod a)$.

Acknowledgements. The authors are grateful to the referee for the helpful comments. The second author is supported by JSPS Research Fellowships for Young Scientists.

REFERENCES

[1] Z. F. Cao, A note on the Diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arith. 91 (1999), 85-93.
[2] V. A. Dem'janenko, On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
[3] M.-J. Deng and G. L. Cohen, A note on a conjecture of Jeśmanowicz, Colloq. Math. 86 (2000), 25-30.
[4] Y. Fujita, The non-extensibility of $D(4 k)$-triples $\left\{1,4 k(k-1), 4 k^{2}+1\right\}$ with $|k|$ prime, Glas. Mat. Ser. III 41 (2006), 205-216.
[5] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/1956), 196-202 (in Polish).
[6] M.-H. Le, A note on Jeśmanowicz conjecture, Colloq. Math. 69 (1995), 47-51.
[7] M.-H. Le, A note on Jeśmanowicz' conjecture concerning primitive Pythagorean triplets, Acta Arith. 138 (2009), 137-144.
[8] W. T. Lu, On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$, Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
[9] T. Miyazaki, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 80 (2009), 413-422.
[10] T. Miyazaki, Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples, in: Diophantine Analysis and Related Fields 2010, AIP Conf. Proc. 1264, Amer. Inst. Phys., Melville, NY, 2010, 41-51.
[11] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm, and Wiley, New York, 1951.
[12] W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat. 1 (1955/1956), 194-195 (in Polish).

Yasutsugu Fujita
Department of Mathematics
College of Industrial Technology
Nihon University
2-11-1 Shin-ei
Narashino, Chiba, Japan
Takafumi Miyazaki
Department of Mathematics and Information Sciences
Tokyo Metropolitan University 1-1 Minami-Ohsawa
Hachioji, Tokyo, Japan
E-mail: fujita.yasutsugu@nihon-u.ac.jp

Received 1 April 2012;
revised 17 September 2012

[^0]: 2010 Mathematics Subject Classification: Primary 11D61; Secondary 11D09.
 Key words and phrases: exponential Diophantine equations, Pythagorean triples, Pell equations.

