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NOTE ON BLOW-UP OF SOLUTIONS FOR A POROUS MEDIUM
EQUATION WITH CONVECTION AND BOUNDARY FLUX

BY

ZHIYONG WANG (Changchun) and JINGXUE YIN (Guangzhou)

Abstract. De Pablo et al. [Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 513-530]
considered a nonlinear boundary value problem for a porous medium equation with a
convection term, and they classified exponents of nonlinearities which lead either to the
global-in-time existence of solutions or to a blow-up of solutions. In their analysis they
left open the case of a certain critical range of exponents. The purpose of this note is to
fill this gap.

1. Introduction. De Pablo et al. [3] studied the initial-boundary value

problem
up = (U g + AMu?),, x€(0,00),te(0,7T),
(1.1) —(u"™)4(0,t) = wP(0,t), te(0,7),
u(x,0) =up(z), x>0,

where ug is a continuous, non-negative, non-increasing and integrable func-
tion, and T is the maximal existence time which may be either finite or
infinite. They established an almost complete characterization, in terms of
the parameters m > 1, p, ¢ > 0 and A > 0, whether all solutions are global-
in-time or there exist solutions which blow up in finite time. In particular,
it is shown in [3] that for p # ¢ there exist both non-trivial global solutions
and blowing up solutions in the range p > max{q, %(m + 1)} while all so-
lutions are global in the complementary range of p. If p = ¢, the parameter
A plays a role in this analysis and it has a critical value A\, = 1: in the case
A > 1 all solutions are global while for A < 1 all non-trivial solutions blow
up if %(m +1) < p <m+ 1, and there are non-trivial global solutions and
blowing up solutions if p > m+ 1. Finally, it is proved in [3] that in the case
A = 1, all solutions are global in the range p = ¢ < m + 1, and there are
small global solutions when p = ¢ > m + 1.

As stated in [3, Remark 3.4], the question of blow-up of solutions in the
range p = ¢ > m + 1 and A = 1 was left open. Moreover, as pointed out
in [3], there might not exist blowing up subsolutions of self-similar type.

2010 Mathematics Subject Classification: Primary 35K55; Secondary 35B33.
Key words and phrases: diffusion and convection, finite time blow-up, critical exponents.

DOI: 10.4064/cm128-2-7 [223] © Instytut Matematyczny PAN, 2012



224 Z.Y. WANG AND J. X. YIN

The aim of this note is to solve this problem, which together with the result
from [3] provides a complete characterization of exponents A > 0, m > 1
and p,q > 0 for which problem has either global-in-time solutions or
blowing up solutions. The following theorem contains the main result of this
note.

THEOREM. For problem (1.1) in the case A\ =1, m > 1 and p = q >
m+1, there exists a smooth, positive, non-increasing and integrable function
ug such that the corresponding solution u of problem (1.1)) blows up in finite
time.

To prove this theorem, we will employ ideas of Alikakos et al. [I] and
of Fisher and Grant [4]. In our proof, the key step is to find a function
whose mass is “large enough” in a neighborhood of = 0 and such that
the mass of the corresponding solution remains sufficiently large on some
time interval in the same region. Moreover, we shall use the sub- and super-
solution approach from [3], which is based on an important observation that
the comparison principle for solutions to problem is valid as long as
the initial data are strictly ordered at x = 0 (see [3]).

2. Proof of Theorem. In the following we always assume that A = 1,
m > 1 and p = q > m + 1. First, we prove a lemma which provides a rough
control of mass in the interval [0, 1] of a certain large solution.

LEMMA 2.1. For fited M > 0 and T > 0, there exists a positive smooth
function uw € C(0,T; LY(RY)) such that u(x,t) is a subsolution of prob-
lem (1.1) satisfying

1
(2.1) Sg(x,t) de > M for t e (0,T).
0
Proof. Consider the function
c
e
t+1
where c,e > 0 are parameters to be determined. Assuming that € < 1 and
choosing ¢ = (T 4+ 1)Me, we have

(2.2) u(x,t) = et (x,t) € 0,00) x [0,T),

1 1 _1
c 1, ce
(S)u(x,t)da:ZT+1S dx—T+12M.

Recall that a function u is a subsolution of problem ([L.1]) if it satisfies

{ut < (Qm):px + (Qp)m, (l’,t) S (0,00) X (O,T),
(u™);(0,t) +uP(0,t) >0, te(0,T).
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Inserting the function u from (2.2)) into those inequalities, we obtain

c cm P

(2.3) o 1)26*596 < m(mg)Q o—meT _ e 1)pp€67p€x7
mec™ c?
24) _(t+€1)m OIS 20
Notice that p > m + 1 > 2. By choosing ¢ < p ——1, we have
(2.5) _ 1 ce < fé(cpps)e_” < - < pee” PEE.
(t+1)2 (t+1)2 (t+1)P

Since (tii%m(me)%_mw > 0, inequality ([2.3] ﬁ results immediately from .

On the other hand, we can also choose ¢ < W such that

c"me 1 1

< <
T (TH+1)p=m = (t41)p—m’
which leads immediately to inequality (2.4]).
To summarize the above arguments, if we take ¢ = (7' 4+ 1) Me and

. 1 cP—m
g = mm{l, pCpflj m(T + 1)p7m }7
then the function u of (2.2)) is the desired subsolution of problem (1.1)). m

With this lemma, we are now in a position to prove the main theorem.

Proof of Theorem. Consider the solution of the equation

(U)ze + (uP), =0 for 0 <z < oo

1
given by the explicit formula p(z) = (&)™ . Notice that ¢(z) blows
up at z = 0.

Denote
1 1

()
S(p der = —— _
m p—m—1
For M = 2M, and for ﬁxed v € (1/2,1), we choose T so large that
1 1 1 _1
(2.6) T < <’}/p1 - ,ym1>90p (1).
For such M and T, according to Lemma we have a positive smooth
subsolution u of problem (1.1)) on (0, 00) x (0,7") which satisfies
1
Sg(w,t) de > M forte (0,7).
0

We claim that a solution u corresponding to a smooth and integrable
initial datum ug(z) > u(z,0) with (u§")(0) + (uf)(0) = 0 blows up in finite
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time. Assume on the contrary that u(z,t) is global (for a local existence
result, cf. [2]). By the comparison principle for problem (I.1)), we have
c

e
t+1
where ¢ and € were determined in the proof of Lemma[2.1] Since the solution
u has a positive lower bound, it is a classical solution of problem (|1.1)) by [5].

Now let

u(z,t) > u(z,t) = = for (x,t) € (0,00) x (0,7),

A={(z,t) € (0,1) x (0,T) |z — (1 —t/T) > 0}.
Define the functions z,v : A — R by

a—(1—t/T)

z(x,t) = [S) ;gp(s) ds,

v(z,t) = Su(& t)ds.
0

Furthermore, we define an auxiliary function w : A — R by the formula
w(z,t) = e H(z(x,t) —v(z,1)).
Since u is a classical solution of problem (L.I]), we see w € C*(A) N C(A).
A direct computation yields
w(x,t) =e (0 —wv(z,t)) <0 forz— (1—-t/T)=0.
Using inequality and the comparison principle, we have

t)T 1

w(l, ) = et <i [ o(s)ds — (1) d:v)

0 0

<et <iMe — iu(z,t) dx)

0

<e_t<1MC—M> <0, 0<t<T.
Y

Since lim,_,o+ ¢(z) = +00, using L'Hospital’s rule we derive

. w(z,T) —w(0,T) . _r(1
0,7)= 1 ~ 1 “o(z) — u(z, T) ) = +o0.
we(0,T) = lim, . Jim e ,yw(m) u(z,T) 00
Sow < 0in A\ {(z,T) | 0 < z < 1}. In addition, from the conditions
w(0,T) = 0 and w,(0,T) = +o0, we see that w(z,t) attains its positive
maximum in the set AU {(x,T) | 0 < z < 1} at some point (zo,to). This
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implies that at (xo, o), the following relations hold true:

(2.7) w(xo,t()) > 0,
(2.8) wi(zo,t0) >0,
(2.9) wy (o, t0) = 0,
(2.10) Waz (20, t0) < 0.

Next, we show that for our choice of v and T' we have wy(xo,t9) < 0,

which contradicts (2.8). Indeed, by (2.9), we have z,(xo,to) = vz(x0, o).
Thus %ap(g) = u(xo, o), where & = g — (1 — to/T'). Therefore

ve(o, to) = S ut(z,to) de = S [(u™) gz, to) + (uP)z (2, t0)] dz
0 0

= (u")z (20, to) + uP (20, to)
= m<,1y<p(£)>m1ux(aro,to) - (is@(f))p-

On the other hand, it follows from ([2.10)) that %gp’(f) — ug (g, to) < 0, which
implies that

v
Recalling that ¢ satisfies (¢™)" + ¢P = 0, we deduce

vi(x0,t0) > (r;lp - 1) ©" (&),

o(zonto) m(iso)ml,lyso’@ ¥ (%)pm

which gives
z¢(x0,to) — vi(x0,t0) < € ©(&) — (1 - L >90p(§)
’ ’ — ,}/T ,yp ,ym
1 1 1 _
= SO,(f) (T - (,-yp—l - ,-ym—1>(pp 1(5))

Since ¢ is decreasing, and since 1/ > 1 and p > m + 1 > 2, we have
2t(zo, to) — vi(wo, o) < @(f) <; - (’ypll — 7ﬂil>@pl(1)>.
Consequently, by the choice of T' in , we obtain
(2.11) ze(zo,to) — vie(zo,to) < 0.
Moreover, by inequality , we have
wi(z0,t0) = —w(xo, to) + e (2 (20, to) — ve(o, to))

< e " (z(wo, to) — ve(z0st0))-
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This estimate together with leads to the inequality wq(zg,tp) < 0,
which contradicts .

This contradiction implies that the solution w(z,t), which was assumed
to be global, has to blow up in finite time, no later than at time

A0/~ ) < T

VP

(Cf. ) ]
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