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GENERIC EXTENSIONS OF NILPOTENT k[T ]-MODULES,
MONOIDS OF PARTITIONS AND CONSTANT TERMS OF HALL

POLYNOMIALS

BY

JUSTYNA KOSAKOWSKA (Toruń)

Abstract. We prove that the monoid of generic extensions of finite-dimensional
nilpotent k[T ]-modules is isomorphic to the monoid of partitions (with addition of par-
titions). This gives us a simple method for computing generic extensions, by addition of
partitions. Moreover we give a combinatorial algorithm that calculates the constant terms
of classical Hall polynomials.

1. Introduction. Let k be a field and let k[T ] be the k-algebra of poly-
nomials in one variable T . We consider nilpotent k[T ]-modules M , N and
the generic extension M ∗N of M by N , i.e. an extension of M by N with the
minimal dimension of its endomorphism ring (see Section 2 for definitions).
By results presented in [B, DD, DDM, Rei1] generic extensions of nilpo-
tent k[T ]-modules exist and the operation of taking the generic extension
provides the set M∗ of all isomorphism classes of nilpotent k[T ]-modules
with a monoid structure. There are many results concerning this monoid
and its properties (see [DD, DDM, Rei1, Hu, W]). In this paper we study
connections of the monoid M∗ with the monoid P+ of all partitions with
addition of partitions as operation. More precisely, we prove in Theorem 3.1
that these two monoids are isomorphic. This isomorphism gives us a com-
binatorial description of generic extensions that have a geometric nature.
For a geometric interpretation of generic extensions the reader is referred to
[Rei1, Rei2].

On the other hand, there is a C-algebra isomorphism CM∗ ' H0, where
H0 is the specialisation of the Hall algebra Hq to q = 0 and CM∗ is the
monoid algebra of M∗ (see [DD, Hu, W] and Section 3). There are many
results that show connections between generic extensions, degenerations, Lie
algebras, Hall polynomials and Ringel–Hall algebras (see [Rei1, Rei2, Hu, W]
for Dynkin and extended Dynkin quivers, [DD, DDM] for cyclic quivers,
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[Ri, Ried, KK, K4] for representation finite and representation directed al-
gebras, [K1, K2, K3] for poset representations).

In Section 4, exploring the isomorphism CM∗ ' H0 (explicitly given
in [W]), we describe a combinatorial algorithm of calculating the constant
terms of classical Hall polynomials.

2. Notation and definitions. Throughout this paper k is a fixed field.
Let λ = (λ1, λ2, . . .) be a partition (i.e. a sequence of non-negative in-

tegers containing only finitely many non-zero terms with λ1 ≥ λ2 ≥ · · · ).
Denote by λ = (λ1, λ2, . . .) the dual partition of λ, i.e.

λi = #{j ; λj ≥ i},
where #X denotes the cardinality of a finite set X. We identify partitions
that differ only by a string of zeros at the end. Let P be the set of all
partitions. Denote by |λ| the weight of λ defined by

|λ| = λ1 + λ2 + · · ·
and by 0 = (0) the unique partition of zero. Consider two associative
monoids:

• P+ = (P,+, 0), where (λ1, λ2, . . .)+(ν1, ν2, . . .) = (λ1+ν1, λ2+ν2, . . .);
• P∪ = (P,∪, 0), where (λ1, λ2, . . .) ∪ (ν1, ν2, . . .) = (µ1, µ2, . . .) and

(µ1, µ2, . . .) is the partition formed by the integers λ1, λ2, . . . , ν1, ν2, . . .
arranged in descending order (e.g. (3, 3, 2, 1) + (2, 2) = (5, 5, 2, 1) and
(3, 3, 2, 1) ∪ (2, 2) = (3, 3, 2, 2, 2, 1)).

By [M, 1.8] the operations + and ∪ are dual to each other (i.e. λ ∪ ν = λ+ν).
One of the main aims of the paper is to describe connections of these monoids
with extensions of nilpotent k[T ]-modules.

Let k[T ] be the k-algebra of polynomials in the variable T . For any
partition λ = (λ1, λ2, . . .), where λn+1 = λn+2 = · · · = 0 for some n, denote
by

M(λ) = M(λ, k) ∼= k[T ]/(T λ1)⊕ · · · ⊕ k[T ]/(T λn)

the corresponding k[T ]-module. It is obvious that the function λ 7→ M(λ)
gives a bijection between the set P of all partitions and the set of all isomor-
phism classes of nilpotent k[T ]-modules (i.e. finitely generated k[T ]-modules
M such that T aM = 0 for some a ≥ 0). Denote byM a set of representatives
of all isomorphism classes of nilpotent k[T ]-modules.

Let M,N ∈ M. By [B], [DD] and [Rei1], there is a unique (up to iso-
morphism) extension X of M by N with the minimal dimension of the
endomorphism ring Endk[T ](X), i.e. a nilpotent k[T ]-module X such that
there exists a short exact sequence of the form

0→ N → X →M → 0.
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The module X is called the generic extension of M by N and is denoted by
X = M ∗ N . Denote by M ⊕ N the direct sum of the modules M and N
and by 0 the unique zero module. Consider two monoids:

• M∗ = (M, ∗, 0) (the monoid of generic extensions),
• M⊕ = (M,⊕, 0).

The associativity of the monoid M∗ = (M, ∗, 0) follows by [DD], whereas
that of the monoid M⊕ = (M,⊕, 0) is obvious.

3. Generic extensions and partitions. The following is one of the
main results of the paper.

Theorem 3.1. The function Φ : P → M such that Φ(λ) = M(λ) for
any partition λ induces isomorphisms of monoids:

Φ : P+ →M∗ and Φ : P∪ →M⊕.
Moreover

M(α) ∗M(β) = M(α ∪ β).

To prove Theorem 3.1 we need a geometric interpretation of generic
extensions.

We identify k[T ]-modules of the form M(λ, k) with systems M(λ, k) =
(V, ϕ), where V is a finite-dimensional k-vector space and ϕ : V → V is
a nilpotent linear endomorphism of Jordan type λ (i.e. a nilpotent represen-
tation of a loop quiver). We denote by N (k) the category of all such systems.
If (V, ϕ), (V1, ϕ1) are objects in N (k), then a morphism f : (V, ϕ)→ (V1, ϕ1)
is a linear map f : V → V such that ϕ1f = fϕ. It is easy to see that the cat-
egory N (k) is equivalent to the category of all finite-dimensional nilpotent
k[T ]-modules. For an account of the theory of modules and quiver represen-
tations we refer the reader to [ASS] and [ARS].

Consider the affine k-scheme Mn(k) of all n×n-matrices with coefficients
in k. The general linear group Gln(k) acts on Mn(k) via conjugations, i.e.
for g ∈ Gln(k) and M ∈ Mn(k), we put g ·M = gMg−1. Let Mnil

n (k) be
the subset of Mn(k) consisting of all nilpotent matrices. The subset Mnil

n (k) is
closed in Mn(k) (in the Zariski topology) and it is closed under the action of
Gln(k). It is easy to observe that the points of Mnil

n (k) correspond bijectively
to the objects (V, ϕ) of N (k) with dimk V = n. Moreover the orbits of the
action of Gln(k) on Mnil

n (k) correspond bijectively to the isomorphism classes
of the objects V in N (k) (with dimk V = n) and hence to the isomorphism
classes of nilpotent k[T ]-modules V (with dimk V = n). If M(λ) ≡ (V, ϕ)
is a nilpotent k[T ]-module with dimkM(λ) = n, then we denote by Oλ
(resp. Oλ) the orbit (resp. the Zariski-closure of the orbit) of ϕ ∈ Mnil

n (k)
under the Gln(k)-action (see [G] and [H]).
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Let λ, ν be partitions with weights |λ| = |ν| = n. We say that a module
M(λ) degenerates to the module M(ν) if Oν ⊂ Oλ. If M(λ) degenerates
to M(ν) we write M(λ) ≤deg M(ν). The relation ≤deg is a partial order on
isomorphism classes of finite-dimensional nilpotent k[T ]-modules. Geometri-
cally, the generic extension M(λ)∗M(ν) (resp. the direct sum M(λ)⊕M(ν))
is the ≤deg-minimal (resp. ≤deg-maximal) extension of M(ν) by M(µ), i.e.
if X is an extension of M(ν) by M(µ), then M(λ) ∗M(ν) ≤deg X (resp.
X ≤deg M(λ) ⊕M(ν)) (see [B], [DD] and [Rei1]). For an introduction to
geometric methods in representation theory the reader is referred to [Kr1]
and [B].

The following fact is proved in [G] and [H] (see also [Kr2, I.3]).

Theorem 3.2. Let λ, ν be partitions with |λ| = |ν|. Then we have
M(λ) ≤deg M(ν) if and only if

m∑
i=1

λi ≤
m∑
i=1

νi for any m ≥ 1.

The following lemma is used in the proof of Theorem 3.1.

Lemma 3.3. Let σ, ν, µ be partitions. If there exists a short exact se-
quence

0→M(ν)
a→M(σ)

b→M(µ)→ 0,

then
m∑
i=1

σi ≤
m∑
i=1

λi for any m ≥ 1,

where λ = µ+ ν.

Proof. The proof is by induction on |ν|. If |ν| = 0, then M(σ) ∼= M(µ),
σ = µ and we are done.

Assume that |ν| > 0. We have ν = (ν1, . . . , νn), νn 6= 0 and

M(ν) = M(ν1)⊕ · · · ⊕M(νn).

Consider the monomorphism

f = [ι, 0, . . . , 0] : M(1)→M(ν1)⊕ · · · ⊕M(νn),

where ι : M(1)→M(ν1) is the inclusion. By the Snake Lemma, we get the
following diagram with exact rows and columns:



GENERIC EXTENSIONS 257

0 0 0

0 //M(ν ′)

OO

//M(σ′)

OO

//M(µ)

OO

// 0

0 //M(ν)

OO

a //M(σ)

OO

b //M(µ)

OO

// 0

0 //M(1)

f

OO

id //M(1)

a·f

OO

0 // 0

0

OO

// 0

0

OO

0

OO

where ν ′ = (ν1−1, ν2, . . . , νn−1, νn) and there exists i0 such that σ′i0 = σi0−1
and σ′j = σj for j 6= i0. By the induction hypothesis we get

m∑
i=1

σ′i ≤
m∑
i=1

λ′i,

where λ′ = µ+ ν ′. Therefore, for m < i0,
m∑
i=1

σi =
m∑
i=1

σ′i ≤
m∑
i=1

λ′i =
m∑
i=1

λi − 1 ≤
m∑
i=1

λi,

while for m ≥ i0,
m∑
i=1

σi =
m∑
i=1

σ′i + 1 ≤
m∑
i=1

λ′i + 1 =
m∑
i=1

λi − 1 + 1 =
m∑
i=1

λi,

where λ = µ+ ν, and we are done.

Lemma 3.4. Let ν, µ be partitions. We have

M(ν) ∗M(µ) = M(ν + µ),

where M(ν) ∗M(µ) is the generic extension of M(ν) by M(µ).

Proof. It is easy to see that M(ν+µ) is an extension of M(ν) by M(µ).
If M(σ) is any extension of M(µ) by M(ν), then by Lemma 3.3,

m∑
i=1

σi ≤
m∑
i=1

λi for any m ≥ 1,

where λ = µ+ ν. By [M, 1.11],

m∑
i=1

σi ≥
m∑
i=1

λi for any m ≥ 1.
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Theorem 3.2 yields

M(ν + µ) = M(λ) ≤deg M(σ).

Since M(λ) ∗M(ν) is the ≤deg-minimal extension of M(ν) by M(µ), we are
done.

Proof of Theorem 3.1. Let Φ : P → M be such that Φ(λ) = M(λ) for
any partition λ. By Lemma 3.4, the induced function Φ : P+ → M∗ is
an isomorphism of monoids. It is easy to see that so too is Φ : P∪ →M⊕.
Moreover

M(α) ∗M(β) = M(α+ β) = M(α ∪ β),

because α+ β = α ∪ β.

4. Constant terms of Hall polynomials. In this section we describe
a combinatorial algorithm for calculating the constant term of a given Hall
polynomial.

Let α, β, γ be partitions and let k be a finite field. Denote by F γα,β(k) the

number of submodules U of M(γ, k) such that U is isomorphic to M(β, k)
and the factor module M(γ, k)/U is isomorphic to M(α, k). By the result of
Hall (see [M, II.4.3]), there exists a polynomial ϕγαβ with integral coefficients
such that

ϕγαβ(#k) = F γα,β(k)

for any finite field k. We call ϕγα,β the Hall polynomial associated with the
partitions α, β, γ.

By [DD], [Hu] and [W], the complex algebra CM∗ generated by the
monoid M∗ of generic extensions is isomorphic to the degenerate complex
Hall algebra H0, where H0 has a basis {uα ; α ∈ P} as a C-vector space
and multiplication is given by the formula

uαuβ =
∑
γ

ϕγαβ(0)uγ .

By [W], the isomorphism F : CM∗ → H0 is given by the formula

F (M(α)) =
∑

β :M(α)≤degM(β)

uβ.

We use the following notation. A partition α = (α1, α2, . . .) will be writ-
ten as

(. . . , rmr , . . . , 2m2 , 1m1),

where mr indicates the number of times the integer r occurs in α, e.g.

(3, 3, 2, 2, 2, 1, 1, 1, 1) = (32, 23, 14).
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Lemma 4.1. Let γ be an arbitrary partition and let α=(1n) and β=(1m)
be partitions with ϕγα,β 6= 0. Then

ϕγα,β(0) = 1.

Proof. Note that F (M(α)) = uα and F (M(β)) = uβ since α = (1n) and
β = (1m), i.e. M(α) and M(β) are semisimple. Then

F (M(α))F (M(β)) = uαuβ =
∑
δ

ϕδαβ(0)uδ

and

F (M(α))F (M(β)) = F (M(α)∗M(β)) = F (M(α+β)) =
∑

M(α+β)≤degM(δ)

uδ.

Comparing these sums we get ϕγα,β(0) = 1 if ϕγα,β 6= 0.

Applying recursively (following the ≤deg-order) the methods used in the
proof of Lemma 4.1 one can calculate the constant terms of Hall polynomials.
We illustrate this by the following example.

Example 4.2. We calculate the constant term of the Hall polynomial

ϕ
(4,1)
(2,1)(2). We apply Theorem 3.2 and the definition of F .

Step 1. By Lemma 4.1, we have

ϕ
(15)
(13)(12)

(0) = ϕ
(2,13)
(13)(12)

(0) = ϕ
(22,1)
(13)(12)

(0) = 1.

Step 2. Note that

F (M(13))F (M(2)) = u(13)(u(12) + u(2))

= u(15) + u(2,13) + u(22,1) + ϕ
(2,13)
(13)(2)

(0)u(2,13)

+ ϕ
(3,12)
(13)(2)

(0)u(3,12).

On the other hand

F (M(13) ∗M((2))) = F (M(3, 12)) = u(15) + u(2,13) + u(22,1) + u(3,12).

Therefore

ϕ
(3,12)
(13)(2)

(0) = 1 and ϕ
(2,13)
(13)(2)

(0) = 0.

Step 3. We have

F (M(2, 1))F (M(12)) = (u(2,1) + u(13))u(12)

= ϕ
(2,13)
(2,1)(12)

(0)u(2,13) + ϕ
(3,12)
(2,1)(12)

(0)u(3,12)

+ ϕ
(22,1)
(2,1)(12)

(0)u(22,1) + ϕ
(3,2)
(2,1)(12)

(0)u(3,2) + u(15)

+ u(2,13) + u(22,1)
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and

F (M(2, 1)∗M((12))) = F (M(3, 2)) = u(15)+u(2,13)+u(22,1)+u(3,12)+u(3,2).

Therefore

ϕ
(2,13)
(2,1)(12)

(0) = ϕ
(22,1)
(2,1)(12)

(0) = 0,

ϕ
(3,12)
(2,1)(12)

(0) = ϕ
(3,2)
(2,1)(12)

(0) = 1.

Step 4. Finally

F (M(2, 1))F (M(2)) = (u(2,1) + u(13))(u(12) + u(2))

=ϕ
(22,1)
(2,1)(2)(0)u(22,1) +ϕ

(3,2)
(2,1)(2)(0)u(3,2) +ϕ

(4,1)
(2,1)(2)(0)u(4,1)

+ ϕ
(3,12)
(2,1)(2)(0)u(3,12) + u(3,12) + u(3,2) + u(3,12) + u(15)

+ u(2,13) + u(22,1)

and

F (M(2, 1) ∗M((2))) = F (M(4, 1))

= u(15) + u(2,13) + u(22,1) + u(3,12) + u(3,2) + u(4,1).

Therefore

ϕ
(22,1)
(2,1)(2)(0) = ϕ

(3,2)
(2,1)(2)(0) = 0,

ϕ
(4,1)
(2,1)(2)(0) = 1,

ϕ
(3,12)
(2,1)(2)(0) = −1.

Remark 4.3. In a similar way (exploring an isomorphism analogous to
F given in [W]) one may calculate the constant terms of Hall polynomials
for Dynkin quivers.
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